
Agent-Based Evolutionary
Game Dynamics

Agent-Based Evolutionary
Game Dynamics

A guide to implement and analyze Agent-Based Models within
the framework of Evolutionary Game Theory

LUIS R. IZQUIERDO; SEGISMUNDO S. IZQUIERDO; AND
WILLIAM H. SANDHOLM

Agent-Based Evolutionary Game Dynamics Copyright © 2024 by Luis R. Izquierdo, Segismundo S.

Izquierdo & William H. Sandholm is licensed under a Creative Commons Attribution 4.0 International

License, except where otherwise noted.

Cover picture by Dino Reichmuth

Save citation: BIB TXT RIS

This book was produced with Pressbooks (https://pressbooks.com) and rendered with Prince.

Contents

Dedication xii

Preface

1. Purpose xiii

2. Structure of the book and potential courses xv

3. Why NetLogo? xvi

4. One book, many formats xvi

5. What about the programming and the math? xvii

6. History of the book and acknowledgments xvii

xiii

Part I. Introduction

I-1. Overview

1. What is this book about? 2

2. How is this book organized? 3

2

I-2. Introduction to evolutionary game theory

1. What is game theory? 12

2. Traditional game theory 14

3. Evolutionary game theory 16

4. How can I learn game theory? 23

12

I-3. Introduction to agent-based modeling

1. What is agent-based modeling? 24

2. What is an agent? 27

3. A paradigmatic example 27

4. Agent-based modeling and evolutionary game theory 30

5. How can I learn about agent-based modeling? 31

24

I-4. Introduction to NetLogo

1. What is NetLogo? 32

2. How to learn NetLogo 36

32

I-5. The fundamentals of NetLogo

1. The three tabs 38

2. Types of agents 39

3. Instructions 39

4. Variables 41

5. Ask 43

6. Lists 44

7. Agentsets 46

8. Synchronization 47

9. Consistency within procedures 48

10. Breeds 50

11. Ticks and Plotting 50

12. Skeleton of many NetLogo models 51

13. The code for Schelling-Sakoda model 52

38

Part II. Our first agent-based evolutionary model

II-1. Our very first model

1. Goal 56

2. Motivation. Cooperation in social dilemmas 56

3. Description of the model 57

4. Interface design 58

5. Code 60

6. Sample runs 70

7. Exercises 70

56

II-2. Extension to any number of strategies

1. Goal 73

2. Motivation. Rock, paper, scissors 73

3. Description of the model 73

4. Interface design 73

5. Code 75

6. Sample run 81

7. Exercises 82

73

II-3. Noise and initial conditions

1. Goal 84

2. Motivation. Noise in rock, paper, scissors 84

3. Description of the model 84

4. Interface design 85

5. Code 87

6. Sample run 92

7. Exercises 92

84

II-4. Interactivity and efficiency

1. Goal 94

2. Motivation. The impact of population size 94

3. Description of the model 95

4. Interactivity 95

5. Efficiency 98

6. Complete code in the Code tab 113

7. Sample run 116

8. Exercises 116

94

II-5. Analysis of these models

1. Two complementary approaches 119

2. Computer simulation approach 119

3. Mathematical analysis approach. Markov chains 122

4. Exercises 146

119

Part III. Spatial interactions on a grid

III-1. Spatial chaos in the Prisoner's Dilemma

1. Goal 148

2. Motivation. Cooperation in spatial settings 148

3. Description of the model 148

4. Interface design 149

5. Code 152

6. Sample runs 161

7. Exercises 162

148

III-2. Robustness and fragility

1. Goal 164

2. Motivation. Robustness of cooperation in spatial settings 164

3. Description of the model 164

4. Interface design 165

5. Code 166

6. Sample runs 172

7. Exercises 174

164

III-3. Extension to any number of strategies

1. Goal 177

2. Motivation. Spatial Hawk-Dove-Retaliator 177

3. Description of the model 179

4. Interface design 179

5. Code 181

6. Sample runs 193

7. Exercises 194

177

III-4. Other types of neighborhoods and other decision rules

1. Goal 196

2. Motivation. The impact of decision rules 196

3. Description of the model 197

4. Interface design 198

5. Code 199

6. Sample runs 215

7. Exercises 218

196

III-5. Analysis of these models

1. A much greater state space 220

2. Cellular automata 221

3. Models more amenable to mathematical analysis. The pair approximation 226

4. Exercises 240

220

Part IV. Games on networks

IV-1. The nxn game on a random network

1. Goal 242

2. Motivation. A single-optimum coordination game 243

3. Description of the model 244

4. Interface design 245

5. Code 247

6. Sample runs 259

7. Exercises 259

242

IV-2. Different types of networks

1. Goal 261

2. Motivation. Assessing the significance of network structure 261

3. Description of the model 264

4. Interface design 265

5. Code 266

6. Sample runs 279

7. Exercises 283

261

IV-3. Implementing network metrics

1. Goal 286

2. Motivation. Reassessing the significance of network structure 287

3. Description of the model 289

4. Interface design 289

5. Code 294

6. Sample runs 303

7. Exercises 311

286

IV-4. Other ways of computing payoffs and other decision rules

1. Goal 313

2. Motivation. Cooperation on scale-free networks 313

3. Description of the model 314

4. Interface design 315

5. Code 315

6. Sample runs 335

7. Exercises 343

313

IV-5. Analysis of these models

1. Introduction 345

2. Avoid errors 346

3. Use informative metrics 349

4. Report meaningful statistics 353

5. Derive sound conclusions 355

6. Final thoughts 355

7. Exercises 355

345

Part V. Agent-based models vs ODE models

V-1. Introduction 358

V-2. A rather general model for games played in well-mixed populations

1. Goal 361

2. Motivation 361

3. Description of the model 361

4. Extension I. Implementation of different ways of computing payoffs 363

5. Extension II. Implementation of different decision rules 374

6. Exercises 388

361

V-3. Mean Dynamics

1. Introduction 391

2. The mean dynamic 391

3. Derivation of the mean dynamic for different stochastic processes 393

4. Running an agent-based model and solving its mean dynamic at runtime 402

5. Representative simulations together with their mean dynamics 405

6. Details matter 407

7. Exercises 408

391

Appendices

A-1. Different implementations with the same output

1. Introduction 410

2. Three possible stories behind the same behavior 410

3. Which algorithm should we use? 413

410

A-2. Legend for code skeletons 414

A-3. Models implemented in this book

In Part I. Introduction 415

In Part II. Our first agent-based evolutionary model 415

In Part III. Spatial interactions on a grid 415

In Part IV. Games on networks 416

In Part V. Agent-based models vs ODE models 416

415

References 417

Dedication

To Carmen, Daniela, and Alejandra,
for being the meaning, the music,
the beauty, and the adventure of my life

To May, Gemma, and Luis

You are always on my mind

xii | Luis R. Izquierdo, Segismundo S. Izquierdo & William H. Sandholm

Preface

1. Purpose

The purpose of this book is to help you learn to implement and analyze evolutionary models of social

interactions in finite populations. This goal may not be perfectly clear to you right now (and that is

absolutely fine), so let us examine the main terms in the bold sentence above, one by one.

• By “social interactions” we mean interactions between individuals where the outcome for each

individual depends not only on her own actions, but also on the actions of others. A simple

example is the decision to drive on the left or on the right of a two-way road. Driving on your

left is a good idea if everyone else also drives on their left, but not so good if everyone drives on

their right. The interaction between a penalty kicker and the goal keeper is another example.

A more complex example would be the decision to start a new collaboration with a partner or

not and, if so, how much effort to put into the partnership. We will see in this book that game

theory is a great framework to formalize and analyze this type of social interactions.

• By “evolutionary model” we mean a model where the individuals involved in the interaction

may change their actions in time, according to some decision rule. An example of a decision

rule could be: “Look at what other individuals are doing, identify who is doing best, and copy

what she is doing (i.e., her action)”. If individuals update their actions in time, the distribution

of actions in the population changes or evolves. Evolutionary models at their core are just

dynamic models, i.e. models where there is some change in time. We will see in this book that

evolutionary game theory is a great framework to formalize and analyze this type of dynamic

models of social interactions.

• By “finite populations” we mean that there is a finite number of individuals in our models. You

may be wondering: what else could it be? Well, the point is that many models in evolutionary

game theory assume that the population is infinite. Normally, this assumption is made for

mathematical tractability, i.e., for analytical convenience. Here we will not impose that

assumption. Our object of study will always be a model of a population which, in principle,

could exist in the real world.

• By “learn to implement evolutionary models“, we mean that we are going to learn how to code

our evolutionary models in a programming language, using a computer. It is perfectly fine if

you have never programmed before; actually, if that is the case, we believe that you are going

to enjoy this book immensely. If, on the other hand, you have some programming experience,

chances are that you will sail through many chapters of this book faster than you think. In this

book we are going to use an agent-based (aka individual-based) approach, i.e. we are going

to implement how individuals make their own decisions, how they individually change their

actions in time, and we are going to see how they individually enjoy or suffer the consequences

of their individual decisions. We will also be able to see how the distribution of actions in the

population changes in time, according to the different assumptions that we wish to implement

in our models.

Agent-Based Evolutionary Game Dynamics | xiii

• And finally, by “learn to analyze evolutionary models” we mean that we will do our very best

to understand the dynamics of our models, i.e. we are going to find out why we observe what

we observe, and try to derive conclusions about the logical implications of the assumptions we

implement in our models.

The following paragraphs explain why the two skills we are going to learn with this book –i.e. model

implementation and analysis– are key for scientific modeling.

Model implementation

To use a scientific model rigorously, it is important to be fully aware of all the assumptions embedded

in it, and also of the various alternative assumptions that could have been chosen. If we don’t

understand all the details of a model, we run the risk of over-extrapolating its scope and of drawing

unsound conclusions. A great way to understand a model in depth is to implement it in computer

code following an agent-based approach. We believe this is true regardless of whether the model is

currently expressed in natural language (and may even exist only in your mind) or, alternatively, it is

written down in mathematical language (e.g. using equations).

Coding a model expressed in natural language is very useful because it ensures that the model is

both unambiguous and completely specified. A computer implementation of a model is necessarily

unambiguous because the language used to code it (i.e. the programming language) is formal, so it

does not allow ambiguities to infiltrate; symbols and instructions used in programming languages

have always the same meaning regardless of context. A computer implementation of a model

must also be completely specified before it can be run, since computers do not make assumptions

by themselves. Thus, to execute a model in a computer, there cannot be any loose ends in the

description of the model. This contrasts with models expressed in natural language, where it is easy

to leave aspects of the model partially unspecified –often unintentionally–, since our brains are

particularly good at using context to unconsciously fill the details. If we use natural language to

describe a model, the audience may understand something slightly different from what we mean to

communicate, and results may be driven by assumptions that we have not made explicit. By contrast,

computers need all assumptions to be spelt out, and this requirement makes the process of scientific

modeling more sound and rigorous.

If a model is written in the language of mathematics, the problems outlined in the paragraph above

are no longer an issue. Thus, is it really worth implementing a mathematical model in computer code

following an agent-based approach? We believe that, in many cases, it certainly is. The reason is

that many mathematical models contain assumptions that are desirable for analytical tractability, but

which also weaken the link between the model and the real world. These assumptions made for

analytical convenience tend to elevate the mathematical model to a higher level of abstraction and

aggregation. By contrast, the agent-based approach has the advantage of forcing the programmer to

implement the microfoundations of a model explicitly, considering each individual agent as a separate

entity. This requirement helps the modeler be aware of all the assumptions that are made in the

mathematical model, and it also allows for an assessment of their significance.

xiv | Luis R. Izquierdo, Segismundo S. Izquierdo & William H. Sandholm

Model analysis

Once the model is implemented, the way to fully understand it is to analyze it. In this book, we will

see several techniques that are useful to analyze finite-population evolutionary models, including

Markov chains, Monte Carlo simulations, mean dynamics, stochastic stability analyses, diffusion

approximations and pair approximations. For each of these techniques, we give a brief introduction,

illustrate its usefulness with concrete examples, and provide references for the interested reader to

learn more about it.

2. Structure of the book and potential courses

In this section we present an overview of the whole book and suggest different paths that readers

may want to follow, depending on their particular interests and the time they want to spend on the

book.

The book is divided into five parts, numbered in roman numerals:

• Part I. Introduction

• Part II. Our first agent-based evolutionary model

• Part III. Spatial interactions on a grid

• Part IV. Games on networks

• Part V. Agent-based models vs ODE models

These parts are largely independent and self-contained, except for Parts IV and V, which build on Part

II. Each part contains several chapters. Each chapter corresponds to one webpage in the webbook.

Part I is somewhat special in the sense that it contains introductions to Evolutionary Game Theory

(chapter I-2), Agent-based Modeling (chapter I-3), NetLogo (chapter I-4) and programming in NetLogo

(chapter I-5). These introductions are self-contained and independent, so the reader who is already

familiar with some of these topics can perfectly skip the corresponding chapters.

The modular design of the book allows for the configuration of different courses. The following lists

provide some examples.

Courses on Agent-Based Modeling (ABM):

• Basic course on ABM: Chapters I-3, I-4 and I-5, plus Part II. Optional: chapter I-2.

• Course on ABM, including spatial interactions: Parts I, II and III.

• Course on ABM, including networks: Parts I, II and IV.

• Advanced course on ABM: Parts I, II, III and IV.

Courses on Evolutionary Game Theory (EGT):

• Basic course on EGT: Parts I and II.

• Intermediate course on EGT: Parts I, II and V.

Agent-Based Evolutionary Game Dynamics | xv

• Course on EGT, including spatial interactions: Parts I, II, III and V.

• Course on EGT, including networks: Parts I, II, IV and V.

• Advanced course on EGT: The whole book.

The book contains more than 100 exercises with detailed solutions. The exercises are proposed at the

end of most chapters, in a section titled “Exercises“. The solutions for the exercises proposed in each

Part are included in the last chapter of the corresponding Part, which is titled “Answers to exercises“.

These chapters are only present in the online webbook, and they are protected with a password. If

you are not a student following a course based on this book, feel free to contact us to obtain access

to these solutions.

3. Why NetLogo?

This book uses a programming language called NetLogo (Wilensky, 1999) to implement several

models. In chapter I-4 we explain many of the features that make NetLogo our language of choice.

Nonetheless, the main reason we chose NetLogo is that it is remarkably close to natural language.

As a matter of fact, we believe that NetLogo language can perfectly be used as pseudo-code to

communicate algorithms. This means that, in theory, a proficient programmer could use this book to

implement the proposed models in her language of choice, rather than in NetLogo.

Given how easy it is to understand NetLogo code, admittedly, we have been very sparing in

commenting our code. The reader may want to comment her own code much more than we do,

and we definitely recommend this good practice. We did not comment our code much because

we wanted to provide code as clean as possible, and also because comments are fairly personal;

everyone has her own personal difficulties when programming and understanding code.

4. One book, many formats

This book has been written and formatted following a hands-on approach. It contains several (internal

and external) hyperlinks, images, videos, code snippets, links to NetLogo programs, etc. The book

comes in different formats:

• Webbook: This is the online version of the book. We believe this is the most convenient format

for most readers. Its only drawback is that it requires access to the internet.

• Digital PDF: This a pdf document that you can download and use online or offline. This format

preserves all the hyperlinks of the webbook, and these hyperlinks use the same colored fonts

as in the webbook. Naturally, you will need to be online to follow the external links. Also, note

that in this format all the videos have been replaced with hyperlinks, so you will need to be

online to watch the videos.

• Print PDF: This is a pdf document that has no hyperlinks (nor videos). The hyperlinked (colored)

words in the Digital PDF are not colored in this format, so readers who want to print the pdf

may prefer this version to the Digital PDF.

xvi | Luis R. Izquierdo, Segismundo S. Izquierdo & William H. Sandholm

• EPUB: This is an e-book file that can be read by most e-book readers. All images and videos

are contained inside this file, so they can be seen without access to the internet.

In addition to these formats, we also provide Common Cartridge Files. These files contain web links

to the different chapters of the book, and are useful to import parts of the book into Learning

Management Systems such as Canvas, Moodle or Blackboard.

5. What about the programming and the math?

We are hopeful and confident that if you go through the whole text, implement the proposed models,

and try to do some of the exercises included at the end of most chapters, you will master the art

of implementing and analyzing agent-based evolutionary dynamics, using both computer simulation

and mathematical analysis.

Nonetheless, we also have in mind two other types of less committed readers:

• If you are interested in learning how to analyze finite-population evolutionary models, and in

their relation to other models in Evolutionary Game Theory, but you do not wish to program,

then you should skip all the sections preceded by the NetLogo icon . These are the

sections with a strong programming component.

• If you want to become proficient in coding agent-based models, but you are not interested

in learning how to analyze these models, please do reconsider your preference. If your

preference persists after careful reflection, you may want to skip the chapters titled “Analysis

of these models” (which you will find at the end of Parts II, III and IV) and also chapter V-3.

These are the chapters with a strong mathematical component.

Our hope is that, regardless of the discipline you are coming from, your background and your

preferences, this book will help you learn new and exciting ways of understanding evolutionary

systems.

6. History of the book and acknowledgments

The first steps of this book date back to 2016. That year, we —Segis and Luis— were awarded a grant

to visit world-renowned Professor Bill Sandholm at the University of Wisconsin–Madison for three

months. Having read his work, we had extremely high expectations for our in-person meeting with

Bill.

Bill exceeded all our expectations by orders of magnitude in every conceivable way. Every minute

spent with him was full of wisdom, generosity, awe, admiration, and joy. Every day spent working

with him was worth a year on our own. Meeting Bill was, without a doubt, the decisive moment in

our scientific careers.

Agent-Based Evolutionary Game Dynamics | xvii

Segis, Bill and Luis in Madison (Wisconsin), in the Summer of 2016

The primary goal of our visit was to design this book, and we hoped that Bill would review our

proposal and provide some feedback. Not only did he fulfill our request with the greatest interest and

professionalism, but he also offered his assistance in every way he could. Specifically, he introduced

us to Steel Wagstaff, an extremely competent and inspiring instructional technology consultant who

dedicates his life to doing wonderful things for wonderful reasons. Steel suggested we could use

Pressbooks to publish this book, set everything up for us to begin writing, and instilled in us his

passion for developing Open Educational Resources. Since then, Steel has been a constant source

of motivation and support. This book would never have existed in its present form had we not met

Steel.

After working with Bill for a couple of months, he honored us by accepting our invitation to

contribute to the book as an author. Then, over the following years, we had the great privilege of

collaborating with Bill on various projects, including this book. During those wonderful years, our

admiration for Bill only grew, and every day we felt incredibly fortunate to have the opportunity to

work alongside such an amazing scholar.

Then, on a fateful summer day in 2020, we received the devastating news that our dear mentor and

friend had left this world.

xviii | Luis R. Izquierdo, Segismundo S. Izquierdo & William H. Sandholm

Bench at the University of Wisconsin–Madison Arboretum

After Bill’s passing, it took us a long time to muster the courage and energy to continue working on a

book that we had begun with him. Eventually, we found the strength to pull ourselves together and

finish the book at the University of British Columbia, largely thanks to the wonderful support and

care of Christoph and Claudia Hauert.

Our greatest hope now is that Bill would feel proud to see his name on the book’s cover. If you find

anything unclear or mistaken in this book, it is certainly our fault; if you discover something beautiful

or inspiring, Bill is likely to be behind. We profoundly miss Bill’s extraordinary intelligence, kindness,

playful spirit, and commitment to scientific rigor. But, most importantly, when we think of him, we are

filled with immense gratitude. We are truly thankful for the chance life afforded us to learn so much

from such an incredible and remarkable friend.

This book could not have been finished without the help of many others. We are deeply indebted

to our home universities —the University of Burgos (UBU) and the University of Valladolid (UVa)—

for allowing us to travel occasionally to visit other institutions and learn from the best. We have

worked on this book while at the University of Wisconsin–Madison (UW–Madison), the University

of California, Santa Barbara (UCSB), and the University of British Columbia (UBC). We could not

have made and enjoyed these trips so much without the wonderful support of Jose M. Galán,

Nacho Santos, Nacho Fontaneda, Juan José Lavios, and José M. Cámara (UBU), the EII section of

the Department of Business Organization (UVa), Marzena Rostek, Daniel Quint, Marek Weretka,

and Ananth Seshadri (UW–Madison), Jason Marden (UCSB), Daniel Coombs and, most especially,

Christoph Hauert (UBC). We would also like to gratefully acknowledge the financial support from the

Spanish State Research Agency, the Fulbright Program, the Spanish Ministry of Science, Innovation

and Universities, and the European Regional Development Fund.

Academically, many scholars have profoundly influenced and enhanced our understanding of agent-

based evolutionary dynamics, and we are immensely grateful to them. In particular, we acknowledge

Fernando Vega-Redondo, Christoph Hauert, José M. Galán, Nick Gotts, Gary Polhill, Bruce Edmonds,

Agent-Based Evolutionary Game Dynamics | xix

Jörgen W. Weibull, Nacho Santos, Francisco Fatás-Villafranca, Koen Frenken, Isabel Almudí, Doina

Olaru, Ryan McAllister, and Cesáreo Hernández for their pivotal roles in shaping our academic

careers.

Finally, we would like to acknowledge our greatest debt. Over the past eight years, our beloved

families have made tremendous sacrifices so we could write this book. Carmen and Gemma had to

leave their jobs in Spain three times. Luis left his friends behind and followed us into the unknown,

Daniela changed schools five times and Alejandra had to learn to walk on a transatlantic flight. They

all had to endure countless nights sleeping on the floor of unfurnished student flats adorned with

camping chairs. Most families we know would not have survived the ordeals our families have been

through to support us. Only two families we know can do it with a smile on their face and remember

all of it as a great adventure. We cannot thank them enough for that.

xx | Luis R. Izquierdo, Segismundo S. Izquierdo & William H. Sandholm

PART I. INTRODUCTION

Agent-Based Evolutionary Game Dynamics | 1

I-1. Overview

1. What is this book about?

This book is a guide to implement and analyze Agent-Based Models within the framework of

Evolutionary Game Theory, using a programming language called NetLogo.

Let us flesh out the main terms in the previous sentence. A model is an abstraction of the real world

and, basically, agent-based models are models where individuals and their interactions are explicitly

represented in the model (see fig. 1).

Figure 1. In an agent-based model, the individual units of the real-world system to be modeled and
their interactions are explicitly and individually represented in the model

Agent-based models are most often implemented as computer programs, and the programming

language we are going to use in this book is NetLogo. And finally, game theory is a formal theory

devoted to studying interactions among individuals whose actions affect each other. In particular,

evolutionary game theory studies populations of individuals who may change their actions in time.

In this book we are going to learn how to implement agent-based models in NetLogo, within the

framework of evolutionary game theory, and we are also going to learn how to analyze these models

using both computer simulation and mathematical analysis.

2 | Part I. Introduction

2. How is this book organized?

The book is divided into five parts:

Structure of the book

• Part I. Introduction

• Part II. Our first agent-based evolutionary model

• Part III. Spatial interactions on a grid

• Part IV. Games on networks

• Part V. Agent-based models vs ODE models

Each part contains several chapters; and each chapter corresponds to one webpage in the online

webbook.

The following sections summarize each of the parts of the book. To do this, admittedly, we will have

to use concepts that you may not be familiar with, just yet. Apologies for that, but do not worry. We

will define and explain every concept we use here in the following chapters.

2.1. Part I. Introduction

This first part contains the following chapters:

Part I. Introduction

• Chapter I-1. Overview

• Chapter I-2. Introduction to evolutionary game theory

• Chapter I-3. Introduction to agent-based modeling

• Chapter I-4. Introduction to NetLogo

• Chapter I-5. The fundamentals of NetLogo

This very chapter you are now reading is “Chapter I-1. Overview”. The rest of the chapters in this first

part are introductions to the three main components of the book: evolutionary game theory (chapter

I-2), agent-based modeling (chapter I-3), and NetLogo (chapter I-4 describes the main features of

NetLogo, while chapter I-5 is a tutorial on programming in NetLogo). These introductions are self-

contained and independent, so if you are already familiar with any of these topics, feel free to skip

the corresponding chapters.

I-1. Overview | 3

2.2. Part II. Our first agent-based evolutionary model

In Part II we implement our first agent-based evolutionary model, which is a simple model of a

well-mixed population. The term well-mixed population refers to a population where all individuals are

equally likely to interact with each other. Part II includes the following chapters:

Part II. Our first agent-based evolutionary model

• II-1. Our very first model

• II-2. Extension to any number of strategies

• II-3. Noise and initial conditions

• II-4. Interactivity and efficiency

• II-5. Analysis of these models

• II-6. Answers to exercises

In chapter II-1, we implement a model where agents repeatedly play a symmetric 2-player 2-strategy

game (chosen by the user) and follow a simple rule to update their strategies. The code for this first

(fully-functional) model fits in one page. In chapter II-2 we extend this model to allow for games with

any number of strategies. Then, in chapter II-3, we add two very useful features to the model: the

possibility of setting initial conditions explicitly, and the possibility that revising agents select their

strategy at random with a small probability (i.e., noise). In chapter II-4, we improve the interactivity of

our model (i.e., the possibility of changing the value of parameters at runtime, with immediate effect

on the dynamics of the model) and its efficiency (i.e., we modify the code of our model to make it run

significantly faster).

Chapter II-5 does not extend the model anymore. Instead, this chapter focuses on how to analyze

it using both computer simulation and mathematical analysis. In this chapter, we present different

mathematical theories and approximations that can be used to analyze agent-based evolutionary

models of well-mixed populations. In particular, we discuss the theory of Markov chains and we

introduce various mathematical techniques such as the mean dynamic, the diffusion approximation

and stochastic stability analyses.

Finally, in chapter II-6, we provide the solution to the 30 exercises proposed in this part.

2.3. Part III. Spatial interactions on a grid

Part III is self-contained and completely independent of Part II. In Part III, we show how to build

and analyze agent-based models with spatial structure. The video below shows an illustrative run of

a population of agents embedded on a 81×81 spatial grid. Each cell represents an agent. Agents play

4 | Part I. Introduction

a game called the Prisoner’s Dilemma with their neighbors. In the video below, agents are colored

according to their current strategy and their previous one.
1

One or more interactive elements has been excluded from this version of the text. You can

view them online here: https://wisc.pb.unizin.org/agent-based-evolutionary-game-

dynamics/?p=5#video-5-1

In the models implemented in this part, agents do not interact with other agents with the same

probability (as in Part II), but they interact only with those who are nearby in space. Populations

where not every agent is equally likely to interact with each other are called structured populations

(as opposed to well-mixed populations). Part III includes the following chapters:

Part III. Spatial interactions on a grid

• III-1. Spatial chaos in the Prisoner’s Dilemma

• III-2. Robustness and fragility

• III-3. Extension to any number of strategies

• III-4. Other types of neighborhoods and other decision rules

• III-5. Analysis of these models

• III-6. Answers to exercises

In chapter III-1, we implement a model where agents embedded on a grid repeatedly play a

symmetric 2-player 2-strategy game (chosen by the user) with their spatial neighbors. The code

for this first spatial model can perfectly fit in one page. In chapter III-2, we add three very useful

features to the basic spatial model: noise, asynchronous strategy updating, and the possibility to

choose whether agents play the game with themselves or not. We use these features to assess the

robustness of various results in the literature. Then, in chapter III-3, we extend the model to allow

for games with any number of strategies. In chapter III-4, we add two features that are crucial to

assess the impact of space on evolutionary dynamics: the possibility to model different types of

neighborhoods of arbitrary size, and the possibility to model different decision rules agents may use

to update their strategy. The resulting model allows us to replicate many results in the literature.

Chapter III-5 does not extend the model anymore, but instead focuses on how to analyze it using

both computer simulation and mathematical analysis. In this chapter, we explain what cellular

automata are, and we discuss the pair approximation, a mathematical technique that is sometimes

used to approximate the dynamics of evolutionary models on grids.

1. The settings for this simulation run are defined in the Discussion section of chapter III-2.

I-1. Overview | 5

Finally, in chapter III-6, we provide the solution to the 29 exercises proposed in this part.

2.4. Part IV. Games on networks

In Part IV, we show how to implement and analyze agent-based models where players are connected

through a network (fig. 2). In our models, the nodes in the network are the players, and each link

connects two players.

Figure 2. Example of a network. Players are
represented as circles and colored according to

their strategy. There are links between some pairs
of players

In network models, we assume that players can only interact with their link-neighbors (i.e. those with

whom the player shares a link), so link-neighbors are the only players that a player can observe or

play with.

By using networks, we are able to generalize all the models previously developed in the book. Note

that in Part II we implement models where every player could observe and play with every other

player. Such models can be interpreted as network models where players are connected through a

complete network, i.e., a network where everyone is linked to everybody else (fig. 3).

6 | Part I. Introduction

(a) A grid where adjacent cells are neighbors.
White lines connect neighbors

(b) A square lattice network that corresponds to
the grid on the left

Figure 3. A complete network with 12 nodes

The spatial models developed in Part III can also be interpreted as network models. For instance, a

grid model where adjacent cells (i.e., players) are neighbors (fig. 4a) corresponds to a square lattice

network (fig. 4b).

Figure 4. (a) A grid model where adjacent cells are neighbors and (b) an equivalent representation as a square
lattice network

I-1. Overview | 7

In this Part IV, we learn to implement models where players are connected through any arbitrary

network. Part IV includes the following chapters:

Part IV. Games on networks

• IV-1. The nxn game on a random network

• IV-2. Different types of networks

• IV-3. Implementing network metrics

• IV-4. Other ways of computing payoffs and other decision rules

• IV-5. Analysis of these models

• IV-6. Answers to exercises

In chapter IV-1, we modify the well-mixed population model implemented in Part II by embedding the

players on a random network. In chapter IV-2, we extend our random-network model by adding the

possibility of creating many other types of networks, such as small-world, preferential attachment,

rings, stars, wheels, paths, etc. This allows us to assess the significance of network structure on

evolutionary dynamics. Then, in chapter IV-3, we implement several functions to compute network

metrics such as the density, the size of the largest component, the clustering coefficient and the

degree distribution. Chapter IV-4 greatly generalizes the model by adding two features that can have

a major impact on evolutionary dynamics on networks: the possibility to model different ways of

computing payoffs and the possibility to model different decision rules that agents may use to update

their strategy. With this final network model we are able to replicate and discuss many results in the

literature.

Chapter IV-5 does not extend the model anymore. Instead, this chapter focuses on how to analyze

it. In this chapter, we discuss four best practices that can help us to analyze evolutionary dynamics

using computer simulation.

Finally, in chapter IV-6, we provide the solution to the 30 exercises proposed in this part.

2.5. Part V. Agent-based models vs ODE (Ordinary Differential
Equation) models

Many models in the Evolutionary Game Theory literature are described as systems of Ordinary

Differential Equations (ODEs). The most famous example is the Replicator Dynamics (Taylor and

Jonker, 1978). These mathematical models are very different from the agent-based models we

consider in this book. Our goal in Part V is to explain the relationship between these two kinds of

models. We will see that ODE models in the literature can be seen as approximations to the dynamics

of different agent-based models when the population is large (fig. 5).

8 | Part I. Introduction

Figure. 5. Agent-based models are described at the individual level, while ODE models are described at the
population level

Part V includes the following chapters:

Part V. Agent-based models vs ODE models

• V-1. Introduction

• V-2. A rather general model for games played in well-mixed populations

• V-3. Mean Dynamics

• V-4. Answers to exercises

Chapter V-1 provides an introduction to the (many-to-one) relationship between agent-based models

and ODE models. In chapter V-2, we generalize the well-mixed population model implemented in

Part II by adding two important features: the possibility to model different ways of computing payoffs

and the possibility to model different decision rules that agents may use to update their strategy.

Then, in chapter V-3, we derive an ODE approximation (i.e., the mean dynamic) for every possible

parameterization of our new (and fairly general) agent-based model. In this chapter we also learn how

to numerically solve ODEs within NetLogo at runtime. This functionality allows us to compare agent-

based simulations and their ODE approximations at runtime (fig. 6).

I-1. Overview | 9

Figure 6. Time series of the strategy distribution of an agent-based model, together
with the solution of its mean dynamic (in black). The green area shows the fraction
of agents using strategy 1 along time. The black line is the numerical solution of the
corresponding ODE approximation to that fraction. The settings for this simulation

run are defined in the caption of figure 3 in section 4.3 of chapter V-3

Finally, in chapter V-4, we provide the solution to the 12 exercises proposed in this part.

2.6. Appendices

The book contains three appendices:

• In Appendix A-1, we explain that oftentimes there are different ways of implementing any

particular model, and we comment on how to choose the most appropriate implementation for

a given purpose.

• The book contains many code skeletons that provide a schematic bird’s-eye view of the code.

Figure 7 below shows an example. Appendix A-2 includes the legend to interpret these code

skeletons.

• Finally, Appendix A-3 includes links to download each of the 22 NetLogo programs that are

implemented in this book.

10 | Part I. Introduction

Figure 7. Skeleton of the code implemented in chapter III-2

I-1. Overview | 11

I-2. Introduction to evolutionary game theory

The goal of this chapter is to provide a brief introduction to Evolutionary Game Theory (EGT).

Nonetheless, since EGT is a branch of a more general discipline called game theory, we believe it is

useful to get familiar with the basic ideas underlying game theory first.

1. What is game theory?

Game theory is a discipline devoted to studying social interactions where individuals’ decisions are

interdependent, i.e. situations where the outcome of the interaction for any individual generally

depends not only on her own choices, but also on the choices made by every other individual. Thus,

several scholars have pointed out that game theory could well be defined as ‘interactive decision

theory’ (Myerson, 1997, p. 1). Some examples of interactive decisions for which game theory is useful

are:

1. Choosing the side of the road on which to drive.

2. Choosing WhatsApp or Facebook messenger as your default text messaging app.

3. Choosing which restaurant to go in the following situation:

Imagine that over breakfast your partner and you decided to have lunch together, but you

did not specify where. Right before lunch time you discover that you left your cellphone

at home, and there is no other way to contact your partner quickly. Fortunately, you are

not completely lost: there are only two restaurants that you both love in town. Which one

should you go to?

Social interactions like the ones outlined above are modeled in game theory as games. A game is an

abstract representation of a social interaction which is meant to capture its most basic properties. In

particular, a game typically comprises:

• the set of individuals who interact (called players),

• the different choices available to each of the individuals when they are called upon to act

(named actions or pure strategies),

• the information individuals have at the time of making their decisions,

• and a payoff function that assigns a value to each individual for each possible combination of

choices made by every individual (Fig. 1). In most cases, payoffs represent the preferences of

each individual over each possible outcome of the social interaction,
1

though there are some

1. A common misconception about game theory relates to the roots of players’ preferences. There is no assumption in
game theory that dictates that players’ preferences are formed in complete disregard of each other’s interests. On the
contrary, preferences in game theory are assumed to account for anything, i.e. they may include altruistic

12 | Part I. Introduction

evolutionary models where payoffs represent Darwinian fitness.

Player 2

Player 2 chooses A Player 2 chooses B

Player 1
Player 1 chooses A 1 , 1 0 , 0

Player 1 chooses B 0 , 0 2 , 2

Figure 1. Payoff matrix of a 2-player 2-strategy game. For each possible combination of pure strategies there
is a corresponding pair of numbers (x , y) in the matrix whose first element x represents the payoff for player

1, and whose second element y represents the payoff for player 2

Note that the payoff matrix shown in Fig. 1 could well be used for the three examples outlined above,

assuming that there is a preferred side of the road, text messaging app or restaurant in town. To

be sure, let us model the example about choosing a restaurant as a game, identifying each of its

elements:

• The players would be you and your partner.

• Each of you may choose restaurant A or restaurant B.

• Neither of you have any information about the other’s choice at the time of making your

decision.

• Both of you prefer eating together rather than being alone, no matter where, and you both

prefer restaurant B over restaurant A. Thus, the best possible outcome for both would be

to meet at restaurant B; second best would be meeting at restaurant A; and any lack of

coordination would be equally awful.
2

The three examples above are very different in many aspects, but they all could be modeled using the

same game. This is so because games are abstractions that are meant to capture the bare essentials

of the original social interaction and, at least to some extent, the three examples above share the

same strategic backbone.

Having seen this, it may not come as a surprise that the sort of issues for which game theory can

be useful is impressively broad and diverse, including applications in international relations, resource

management, network routing (of vehicles or information packages), voting systems, linguistics,

law, distributed control, evolutionary biology, design of incentive systems, and business and

environmental regulations.

motivations, moral principles, and social constraints (see e.g. Colman (1995, p. 301), Vega-Redondo (2003, p. 7),
Binmore and Shaked (2010, p. 88), Binmore (2011, p. 8) or Gintis (2014, p. 7)).

2. Note that there is no inconsistency in being indifferent about outcomes {A, B} and {B, A}, even if you prefer restaurant
B. It is sufficient to assume that you care about your partner as much as about yourself.

I-2. Introduction to evolutionary game theory | 13

2. Traditional game theory

Game theory has nowadays various branches. Historically, the first branch to be developed was

Traditional Game Theory (TGT) (von Neumann and Morgenstern (1944), Nash (1950), Selten (1965,

1975), Harsanyi (1967, 1968a, 1968b)). TGT is also the branch where most of the work has been

focused, and the one with the largest representation in most game theory textbooks and academic

courses.
3

In TGT, payoffs reflect preferences and players are assumed to be rational, meaning that they act

as if they have consistent preferences and unlimited computational capacity to achieve their well-

defined objectives. The aim of the discipline is to study how these instrumentally rational players

would behave in order to obtain the maximum possible payoff in the formal game.

A key problem in TGT is that, in general, assuming rational behavior for any one player rules out

very few actions –and consequently very few outcomes– in the absence of strong assumptions

about what players know about others’ rationality, knowledge and actions. Hence, in order to derive

specific predictions about how rational players would behave, it is often necessary to make very

stringent assumptions about everyone’s beliefs and their reciprocal consistency. If one assumes

common knowledge of rationality and consistency of beliefs, then the outcome of the game is a Nash

equilibrium, which is a set of strategies, one for each player, such that no player, knowing the other

players’ strategies in that set, could improve her expected payoff by unilaterally changing her own

strategy (see Samuelson (1997, pp. 10-12) and Holt and Roth (2004) for several interpretations). An

equivalent definition is the following: A Nash equilibrium is a strategy profile (i.e. one strategy for

each player in the game) where every player is best responding to the strategies of the others.

Oftentimes, games have several Nash equilibria. As an example, the game depicted in Fig. 1 has three

different Nash equilibria: the two strategy profiles where both players choose the same action (i.e.

{A, A} and {B, B}), and a third equilibrium in mixed strategies, which means that players choose each

action with a certain probability. In this third Nash equilibrium, both players choose action A with

probability ⅔ (and action B with probability ⅓), a strategy that we denote (⅔, ⅓).

In this example, the equilibrium in mixed strategies is unsatisfactory for a number of reasons. First,

since both actions can be chosen with strictly positive probability by each player, any observation

of the actions actually taken by the two players would be consistent with this Nash equilibrium.

Therefore, this equilibrium cannot be falsified by observing the outcome of the game. Another

disappointing property of the Nash equilibrium in mixed strategies is the low payoff that players

are expected to receive when they play it. In that equilibrium, outcome {B, B} would occur with

probability ⅓ × ⅓, outcome {A, A} would occur with probability ⅔ × ⅔, and players would not

coordinate with probability 2 × ⅓ × ⅔ , yielding a total expected payoff of ⅔ for each of them. Thus,

3. TGT can be divided further into cooperative and non-cooperative game theory. In cooperative game theory, it is
assumed that players may negotiate binding agreements that can be externally enforced (by e.g. contract law). In non-
cooperative game theory, such agreements cannot be enforced externally, so they are relevant only to the extent that
abiding by them is in each individual's interest.

14 | Part I. Introduction

this equilibrium is worse than any of the other two Nash equilibria for both players. Finally, the mixed-

strategy equilibrium does not seem to be very robust. Imagine that one of the players deviates from

this equilibrium only slightly, by choosing action B with a probability marginally greater than ⅓. Then

the other player’s best response would be to choose action B with probability 1, and the deviator’s

best response to that reaction would be to play B with probability 1, too. Thus, this mixed-strategy

equilibrium does not seem to be very stable.
4

One could think that this diversity of equilibria, and the existence of the mixed-strategy equilibrium,

may be partly an artifact of the fact that the game is played just once. It seems intuitive to think

that if the game was played repeatedly, rational individuals would manage to coordinate in the

(unique) Pareto optimal
5

outcome {B, B}, and the other suboptimal outcomes would not be observed

in any Nash equilibrium. However, that natural intuition turns out to be wrong. To understand this,

let us briefly review how repeated games are modeled in TGT.

In a repeated game, a certain basic game (called stage game) is played a number of rounds; the payoff

obtained by each player in the repeated game is the sum of the (potentially discounted) payoffs

obtained in each of the rounds. At any round, all the actions chosen by each of the players in

previous rounds are known by everyone. A strategy in this repeated game is a complete plan of action

for every possible contingency that may occur. For instance, in our coordination game, a possible

strategy for the 3-round repeated game would be:

• At initial round t = 1, play B.

• At round t > 1, play B if the other player chose B at time t – 1. Otherwise play A.

Importantly, note that, even though the game is played repeatedly, the interaction only occurs once,

since the strategies of the individuals dictate what to do in every possible history of the long game.

Players could send their strategies by mail, and robots could implement them.

So, does repetition lead to sharper predictions about how rational players may interact? Not at

all, rather the opposite. It turns out that when a game is repeated, the number of Nash equilibria

generally multiplies, and there is a wide range of possible outcomes that can be supported by

them. As an example, in our coordination game, any sequence formed by combining the three Nash

equilibria of the stage game is a Nash equilibrium of the repeated game, and there are many more.
6

The approach followed to model repeated interactions in Evolutionary Game Theory is rather

different, as we explain below.

4. The same logic applies if one assumes that the deviation consists in choosing action B with a probability marginally
less than ⅓. In this case, the other player's best response would be to choose action A with probability 1.

5. An outcome is Pareto optimal if it is impossible to make one player better off without making at least one other player
worse off.

6. In general, any strategy profile which at every round prescribes the play of a Nash equilibrium of the stage game
regardless of history is a (subgame perfect) Nash equilibrium of the repeated game. This can be easily proved using
the one-shot deviation principle.

I-2. Introduction to evolutionary game theory | 15

3. Evolutionary game theory

3.1. The beginnings

Some time after the emergence of traditional game theory, biologists realized the potential of

game theory to formally study adaptation and coevolution of biological populations, particularly in

contexts where the fitness of a phenotype depends on the composition of the population (Hamilton,

1967). The initial development of the evolutionary approach to game theory came with important

changes on how the main elements of a game (i.e. players, strategies, information and payoffs) were

interpreted and used:

• Players (who most often represented non-human animals) were assumed to be pre-

programmed to play one given strategy, i.e. players were seen as mere carriers of a particular

fixed strategy that had been genetically endowed to them and could not be changed during

the course of the player’s lifetime. As for the number of players, the main interest in early EGT

was to study large populations of animals, where the actions of one single individual could not

significantly affect the overall success of any strategy in the population.

• Strategies, therefore, were not assumed to be selected by players, but rather hardwired in the

animals’ genetic make-up. Strategies were, basically, phenotypes.

The concept is couched in terms of a ‘strategy’ because it arose in the context of animal

behaviour. The idea, however, can be applied equally well to any kind of phenotypic

variation, and the word strategy could be replaced by the word phenotype; for example,

a strategy could be the growth form of a plant, or the age at first reproduction, or the

relative numbers of sons and daughters produced by a parent. Maynard Smith (1982, p.

10)

• Since strategies are not consciously chosen by players, but they are simply hardwired,

information at the time of making the decision plays no significant role.

• Payoffs did not represent any order of preference, but Darwinian fitness, i.e. the expected

reproductive contribution to future generations.

The main assumption underlying evolutionary thinking was that strategies with greater payoffs at

a particular time would tend to spread more and thus have better chances of being present in

the future. The first models in EGT, which were developed for biological contexts, assumed that

this selection biased towards individuals with greater payoffs occurred at the population level,

through a process of natural selection. As a matter of fact, early EGT models embraced a fairly direct

interpretation of the essence of Wallace and Darwin’s idea of evolution by natural selection.

16 | Part I. Introduction

As many more individuals of each species are born than can possibly survive; and as,

consequently, there is a frequently recurring struggle for existence, it follows that any being, if

it vary however slightly in any manner profitable to itself, under the complex and sometimes

varying conditions of life, will have a better chance of surviving, and thus be naturally selected.

From the strong principle of inheritance, any selected variety will tend to propagate its new and

modified form. Darwin (1859, p. 5)

The essence of this simple and groundbreaking idea could be algorithmically summarized as follows:

IF:

• More offspring are produced than can survive and reproduce, and

• variation within populations:

◦ affects the fitness (i.e. the expected reproductive contribution to future

generations) of individuals, and

◦ is heritable,

THEN:

• evolution by natural selection occurs.

The key insight that game theory contributed to evolutionary biology is that, once the strategy

distribution changes as a result of the evolutionary process, the relative fitness of the remaining

strategies may also change, so previously unsuccessful strategies may turn out to be successful in

the new environment, and thus increase their prevalence. In other words, the fitness landscape is not

static, but it also evolves as the distribution of strategies changes.

An important concept developed in this research programme was the notion of Evolutionarily Stable

Strategy (ESS), put forward by Maynard Smith and Price (1973) for 2-player symmetric games played

by individuals belonging to the same population. Informally, a strategy I (for Incumbent) is an ESS

if and only if, when adopted by all members of a population, it enjoys a uniform invasion barrier

in the sense that any other strategy M (for Mutant) that could enter the population (in sufficiently

low proportion) would obtain a strictly lower expected payoff in the postentry population than the

incumbent strategy I. The ESS concept is a refinement of (symmetric) Nash equilibrium.

As an example, in the coordination game depicted in Fig. 1 both pure strategies are ESSs, but the

mixed strategy (⅔ , ⅓), corresponding to the symmetric Nash equilibrium in mixed strategies, is not

an ESS. The intuition for this is clear: a population where every agent is playing strategy I = (⅔ , ⅓)

would be invadable by e.g. a small fraction of mutants playing action B (i.e. strategy (0,1)). This is so

because the mutants would obtain the same payoff against the incumbents as the incumbents among

I-2. Introduction to evolutionary game theory | 17

themselves (i.e. ⅔ on average), but a strictly greater payoff whenever they met other mutants (i.e. 2

for certain). Thus, natural selection would gradually favor the mutants over the incumbents.
7

The basic ideas behind EGT –i.e. that strategies with greater payoffs tend to spread more, and that

fitness is frequency-dependent– soon transcended the borders of biology and started to permeate

many other disciplines. In economic contexts, it was understood that natural selection would derive

from competition among entities for scarce resources or market shares. In other social contexts,

evolution was often understood as cultural evolution, and it referred to dynamic changes in behavior

or ideas over time (Nelson and Winter (1982), Boyd and Richerson (1985)).

3.2. An interpretation of evolutionary game theory where
strategies are explicitly selected by individuals

Evolutionary ideas proved very useful to understand several phenomena in many disciplines, but –at

the same time– it became increasingly clear that a direct application of the principles of Darwinian

natural selection was not always appropriate for the study of (non-Darwinian) social evolution.
8

In

many contexts, it seems more natural to assume that players are capable of adapting their behavior

within their lifetime, occasionally revising their strategy in a way that tends to favor strategies leading

to higher payoffs over strategies leading to lower payoffs. The key distinction is that, in this latter

interpretation, strategies are selected at the individual level (rather than at the population level).

Also, in this view of selection taking place at the individual level, payoffs do not have to represent

Darwinian fitness anymore, but can perfectly well represent a preference ordering, and interpersonal

comparisons of payoffs may not be needed. Following this interpretation, the algorithmic view of

the process by which strategies with greater payoffs gradually displace strategies with lower payoffs

would look as follows:

IF:

• Players using different strategies obtain different payoffs, and

• they occasionally revise their strategies (by e.g. imitation or direct reasoning over

gathered information), preferentially switching to strategies that provide greater

payoffs,

7. Note that mutants playing action A (i.e. strategy (1,0)) would also be able to invade the incumbent population.
8. As an example, note that payoffs interpreted as Darwinian fitness are added across different players to determine the

relative frequency of different types of players (i.e. strategies) in succeeding generations. These interpersonal
comparisons are inherent to the notion of biological evolution by natural selection, and pose no problems if payoffs
reflect Darwinian fitness. However, if evolution is interpreted in cultural terms, presuming the ability to conduct
interpersonal comparisons of payoffs across players may be controversial. In this link, you can watch a video that
shows how unconvinced John Maynard Smith was by direct applications of the principles of Darwinian natural
selection in Economics.

18 | Part I. Introduction

THEN:

• the frequency of strategies with greater payoffs will tend to increase (and this

change in strategy frequencies may alter the future relative success of strategies).

In this interpretation, the canonical evolutionary model typically comprises the following elements:

• A population of agents,

• a game that is recurrently played by the agents,

• a procedure by which revision opportunities are assigned to agents, and

• a decision rule, which dictates how individual agents choose their strategy when they are given

the opportunity to revise.

Note that this approach to EGT can formally encompass the biological interpretation, since one can

always interpret the revision of a strategy as a death and birth event, rather than as a conscious

decision. Having said that, it is clear that different interpretations may seem more natural in different

contexts. The important point is that the framework behind the two interpretations is the same.

To conclude this chapter, let us revisit our coordination example (with payoff matrix shown in Fig.

1) in a population context. We will analyze two decision rules that lead to different results: imitative

pairwise-difference and best experienced payoff.

• Under the imitative pairwise-difference rule (Helbing (1992), Schlag (1998)), a revising agent

looks at another individual at random and considers imitating her strategy only if that strategy

yields a higher expected payoff than his current strategy; in this case he switches with

probability proportional to the payoff difference. It can be proved that the dynamics of this

rule in large populations will tend to approach the state where every agent plays action B if

the initial proportion of B-players is greater than ⅓, and will tend to approach the state where

every agent plays action A if the initial proportion of B-players is less than ⅓ (Fig. 2).
9

Figure 2. Mean dynamic of the imitative pairwise-difference rule in a
coordination game

The following video shows some NetLogo simulations that illustrate these dynamics. In this

book, we will learn to implement and analyze this model.
10

9. To prove this statement, note that the mean dynamic of this decision rule is the well-known replicator dynamic
(Taylor and Jonker, 1978).

10. See exercise 5 in chapter II-1 and exercise 3 in chapter II-5.

I-2. Introduction to evolutionary game theory | 19

One or more interactive elements has been excluded from this version of the text.

You can view them online here: https://wisc.pb.unizin.org/agent-based-

evolutionary-game-dynamics/?p=94#video-94-1

Simulation runs of the imitative pairwise-difference rule in coordination game [[1 0][0 2]]

• Under the best experienced payoff rule (Osborne and Rubinstein (1998), Sethi (2000, 2021),

Sandholm et al. (2019, 2020)), a revising agent tests each of the two strategies against a

random agent, with each play of each strategy being against a newly drawn opponent. The

revising agent then selects the strategy that obtained the greater payoff in the test, with ties

resolved at random. It can be proved that the dynamics of this rule in large populations will

tend to approach the state where every agent plays action B from any initial condition (other

than the state where everyone plays A; see Fig. 3).
11

Figure 3. Mean dynamic of the best experienced rule in a coordination
game.

The following video shows some NetLogo simulations that illustrate these dynamics. In this

book, we will learn to implement and analyze this model.
12

One or more interactive elements has been excluded from this version of the text.

You can view them online here: https://wisc.pb.unizin.org/agent-based-

evolutionary-game-dynamics/?p=94#video-94-2

Simulation runs of the best experienced payoff rule in coordination game [[1 0][0 2]]

The example above shows that different decision rules can lead to very different dynamics in non-

trivial ways. Both rules above tend to favor best-performing strategies, and in both the mixed-

strategy Nash equilibrium is unstable. However, given an initial state where 80% of the population

is playing strategy A, one of the rules will almost certainly lead the population to the state where

everyone plays A, while the other rule will lead the population to the state where everyone plays B.

In this book, we will learn a range of different concepts and techniques that will help us understand

these differences.

11. This statement is a direct application of Proposition 5.11 in Sandholm et al. (2020). Izquierdo et al. (2022) prove that
this dynamic leads to the efficient state in a larger class of games called single-optimum coordination games.

12. See exercise 6 in chapter II-1 and exercise 4 in chapter II-5.

20 | Part I. Introduction

Evolutionary Game Theory and Engineering

Many engineering infrastructures are becoming increasingly complex to manage

due to their large-scale distributed nature and the nonlinear interdependences

between their components (Quijano et al., 2017). Examples include

communication networks, transportation systems, sensor and data networks, wind

farms, power grids, teams of autonomous vehicles, and urban drainage systems.

Controlling such large-scale distributed systems requires the implementation of

decision rules for the interconnected components that guarantee the

accomplishment of a collective objective in an environment that is often dynamic

and uncertain. To achieve this goal, traditional control theory is often of little

use, since distributed architectures generally lack a central entity with access or

authority over all components (Marden and Shamma, 2015).

The concepts developed in EGT can be very useful in such situations. The analogy

between distributed systems in engineering and the social interactions analyzed

in EGT has been formally established in various engineering contexts (Marden and

Shamma, 2015). In EGT terms, the goal is to identify decision rules that will lead

to desirable outcomes using limited local information only. As an example, at least

in the coordination game discussed above, the best experienced payoff rule is more

likely to lead to the most efficient outcome than the imitative pairwise-difference

rule.

3.3. Take-home message

EGT is devoted to the study of the evolution of strategies in a population context where individuals

repeatedly interact to play a game. Strategies are subjected to evolutionary pressures in the sense

that the relative frequency of strategies which obtain higher payoffs in the population will tend to

increase at the expense of those which obtain relatively lower payoffs. The aim is to identify which

strategies are most likely to thrive in this “evolving ecosystem of strategies” and which will be wiped

out, under different evolutionary dynamics. In this sense, note that EGT is an inherently dynamic

theory.

There are two ways of interpreting the process by which strategies are selected. In biological

systems, players are typically assumed to be pre-programmed to play one given strategy throughout

their whole lifetime, and strategy composition changes by natural selection. By contrast, in socio-

economic models, players are usually assumed capable of adapting their behavior within their

lifetime, revising their strategy in a way that tends to favor strategies that provide greater payoffs at

the time of revision.

Whether strategies are selected by natural selection or by individual players is rather irrelevant for

the formal analysis of the system, since in both cases the interest lies in studying the evolution of

I-2. Introduction to evolutionary game theory | 21

strategies. In this book, we will follow the approach which assumes that strategies are selected by

individuals using a decision rule.

3.4. Relation with other branches

The differences between TGT and EGT are quite clear and rather obvious. TGT players are rational

and forward-looking, while EGT players adapt in a fairly gradual and myopic fashion. TGT is a theory

stated in terms of a one-time interaction: even if the interaction is a repeated game, this long game

is played just once. In stark contrast, dynamics are at the core of EGT: the outcomes of the game

shape the distribution of strategies in the population, and this change in distribution modifies the

relative success of different strategies when the game is played again. Finally, TGT is mainly focused

on the study of end-states and possible equilibria, paying hardly any attention to how such equilibria

might be reached. By contrast, EGT is concerned with the evolution of the strategy composition in a

population, which in some cases may never settle down on an equilibrium.

The branch of game theory that is closest to EGT is the Theory of Learning in Games (TLG). Like EGT,

TLG abandons the demanding assumptions of TGT on players’ rationality and beliefs, and assumes

instead that players learn over time about the game and about the behavior of others (e.g. through

reinforcement, imitation, or belief updating).

The process of learning in TLG can take many different forms, depending on the available information

and feedback, and the way these are used to modify behavior. The assumptions made in these

regards give rise to different models of learning. In most models of TLG, players use the history of the

game to decide what action to take. In the simplest forms of learning (e.g. reinforcement or imitation)

this link between acquired information and action is direct (e.g. in a stimulus-response fashion); in

more sophisticated learning, players use the history of the game to form expectations or beliefs about

the other players’ behavior, and they then react optimally to these inferred expectations.
13

The interpretation of EGT which assumes that players can revise their strategy is very similar to TLG.

The main differences between these two branches are:

• EGT tends to study large populations of small agents, who interact anonymously. This implies

that players’ payoffs only depend on the distribution of strategies in the population, and also

that any one player’s actions have little or no effect on the aggregate success of any strategy

at the population level. In contrast, TLG is mainly concerned with the analysis of small groups

of players who repeatedly play a game among them, each of them in her particular role.

• The decision rules analyzed in EGT tend to be fairly simple and use information about the

current state of the population only. By contrast, the sort of algorithms analyzed in TLG tend

to be more sophisticated, and make use of the history of the game to decide what action to

take.

13. Izquierdo et al. (2012) provide a succinct overview of some of the learning models that have been studied in TLG. For a
more detailed account, see chapters 11 and 12 in Vega-Redondo (2003).

22 | Part I. Introduction

4. How can I learn game theory?

To learn more about game theory, we recommend the following material:

• Overviews:

◦ Introductory: Colman (1995).

◦ Advanced: Vega-Redondo (2003).

• Traditional game theory:

◦ Introductory: Dixit and Nalebuff (2008).

◦ Intermediate: Osborne (2004).

◦ Advanced: Fudenberg and Tirole (1991), Myerson (1997), Binmore (2007).

• Evolutionary game theory:

◦ Introductory: Maynard Smith (1982), Gintis (2009).

◦ Intermediate: Hofbauer and Sigmund (2003), Sandholm (2009), Alexander (2023).

◦ Advanced: Hofbauer and Sigmund (1998), Weibull (1995), Samuelson (1997), Sandholm

(2010a).

◦ Recent literature review: Newton (2018).

• The theory of learning in games:

◦ Introductory: Vega-Redondo (2003, chapters 11 and 12).

◦ Advanced: Fudenberg and Levine (1998), Young (2004).

I-2. Introduction to evolutionary game theory | 23

I-3. Introduction to agent-based modeling

In this chapter, we briefly explain what agent-based modeling (ABM) is about, including a paradigmatic

example. We also try to clarify the relationship between evolutionary game theory and agent-based

modeling, and offer some arguments in favor of implementing evolutionary models using an agent-

based approach. Finally, we provide some references to other books that can be used to learn more

about how to implement agent-based models.

1. What is agent-based modeling?

Agent-based modeling (ABM) is a methodology used to build formal models of real-world systems

that are made up by individual units (such as e.g. atoms, cells, animals, people or institutions)

which repeatedly interact among themselves and/or with their environment.

The essence of agent-based modeling

The defining feature of the agent-based modeling approach is that it establishes a

direct and explicit correspondence

• between the individual units in the target system to be modeled and the

parts of the model that represent these units (i.e. the agents), and also

• between the interactions of the individual units in the target system and

the interactions of the corresponding agents in the model (figure 1).

This approach contrasts with e.g. equation-based modeling, where entities of

the target system may be represented via average properties or via single

representative agents.

24 | Part I. Introduction

Figure 1. In an agent-based model, the individual units of the real-world system to be
modeled and their interactions are explicitly and individually represented in the model

Thus, in an agent-based model, the individual units of the system and their

repeated interactions are explicitly and individually represented in the

model (Edmonds, 2001).
1

Beyond this, no further assumptions are made in agent-

based modeling.

At this point, you may be wondering whether game theory is part of ABM, since in game theory

players are indeed explicitly and individually represented in the models.
2

The key to answer that

question is the last sentence in the box above, i.e. “Beyond this, no further assumptions are made in

agent-based modeling“. There are certainly many disciplines (e.g. game theory and cellular automata

theory) that analyze models where individuals and their interactions are represented explicitly. The

key distinction is that these disciplines make further assumptions, i.e. impose additional structure

on their models. These additional assumptions constrain the type of models that are analyzed and,

by doing so, they often allow for more accurate predictions and/or greater understanding within

their (somewhat more limited) scope. Thus, when one encounters a model that fits perfectly into

the framework of a particular discipline (e.g. game theory), it seems more appropriate to use the

more specific name of the particular discipline, and leave the term “agent-based” for those models

which satisfy the defining feature of ABM mentioned above and they do not currently fit in any more

specific area of study.

The last sentence in the box also uncovers a key feature of ABM: its flexibility. In principle, you can

make your agent-based model as complex as you wish. This has pros and cons. Adding complexity

to your model allows you to study any phenomenon you may be interested in, but it also makes

1. These three videos by Bruce Edmonds and Michael Price and Uri Wilensky nicely describe what ABM is about.
2. The extent to which repeated interactions are explicitly represented in traditional game theoretical models is not so

clear.

I-3. Introduction to agent-based modeling | 25

analyzing and understanding the model harder (or even sometimes practically impossible) using

the most advanced mathematical techniques. Because of this, agent-based models are generally

implemented in a programming language and explored using computer simulation. This is so common

that the terms agent-based modeling and agent-based simulation are often used

interchangeably. The following is a list of some features that traditionally have been difficult to

analyze mathematically, and for which agent-based modeling can be useful (Epstein and Axtell,

1996):

• Agents’ heterogeneity. Since agents are explicitly represented in the model, they can be as

heterogeneous as the modeler deems appropriate.

• Interdependencies between processes (e.g. demographic, economic, biological, geographical,

technological) that have been traditionally studied in different disciplines, and are not

often analyzed together. There is no restriction on the type of rules that can be implemented

in an agent-based model, so models can include rules that link disparate aspects of the world

that are often studied in different disciplines.

• Out-of-equilibrium dynamics. Dynamics are inherent to ABM. Running a simulation consists

in applying the rules that define the model over and over, so agent-based models almost

invariably include some notion of time within them. Equilibria are never imposed a priori: they

may emerge as an outcome of the simulation, or they may not.

• The micro-macro link. ABM is particularly well suited to study how global phenomena emerge

from the interactions among individuals, and also how these emergent global phenomena may

constrain and shape back individuals’ actions.

• Local interactions and the role of physical space. The fact that agents and their environment

are represented explicitly in ABM makes it particularly straightforward and natural to model

local interactions (e.g. via networks).

As you can imagine, introducing any of the aspects outlined above in an agent-based model often

means that the model becomes mathematically intractable, at least to some extent. However, in

this book we will learn that, in many cases, there are various aspects of agent-based models that

can be analytically solved, or described using formal approximation results. Our view is that the

most useful agent-based models lie at the boundaries of theoretical understanding, and help us

push these boundaries. They are advances sufficiently small so that simplified versions of them (or

certain aspects of their behaviour) can be fully understood in mathematical terms –thus retaining its

analytical rigour–, but they are steps large enough to significantly extend our understanding beyond

what is achievable using the most advanced mathematical techniques available.

In my personal (albeit biased) view, the best simulations are those which just peek over the

rim of theoretical understanding, displaying mechanisms about which one can still obtain causal

intuitions. Probst (1999)

26 | Part I. Introduction

2. What is an agent?

In this book we will use the term agent to refer to a distinct part of our (computational) model that

is meant to represent a decision-maker. Agents could represent human beings, non-human animals,

institutions, firms, etc. The agents in our models will always play a game, so in this book we will use

the term agent and the term player interchangeably.

Agents have individually-owned variables, which describe their internal state (e.g. a strategy), and are

able to conduct certain computations or tasks, i.e. they are able to run instructions (e.g. to update

their strategy). These instructions are sometimes called decision rules, or rules of behavior, and most

often imply some kind of interaction with other agents or with the environment.

The following are some of the individually-owned variables that the agents we are going to

implement in this book may have:

• strategy (a number)

• payoff (a number)

• my-coplayers (the set of agents with whom this agent plays the game)

• color (the color of this agent)

And the following are examples of instructions that the agents in most of our models will be able to

run:

• to play (play a certain game with my-coplayers and set the payoff appropriately)

• to update-strategy (revise strategy according to a certain decision rule)

• to update-color (set color according to strategy)

3. A paradigmatic example

In this section we present a model that captures the spirit of ABM. The model implements the

main features of a family of models proposed by Sakoda (1949, 1971) and –independently– by

Schelling (1969, 1971, 1978).
34

Specifically, here we present a computer implementation put forward

by Edmonds and Hales (2005).
5

In this model there are 133 blue agents and 133 orange agents who live in a 2-dimensional grid made

3. Hegselmann (2017) provides a detailed and fascinating account of the history of this family of models.
4. Our implementation is not a precise instance of neither Sakoda's nor Schelling's family of models, because unhappy

agents in our model move to a random location. We chose this migration regime to make the code simpler. For
details, see Hegselmann (2017, footnote 124). A faithful NetLogo implementation of the model described in Schelling
(1971, pp. 154-158), which also includes other migration regimes, can be run online in this link (Izquierdo et al., 2022).

5. Izquierdo et al. (2009, appendix B) analyze this model as a Markov chain.

I-3. Introduction to agent-based modeling | 27

up of 20×20 cells (figure 2). Agents are initially located at random on the grid. The neighborhood of

a cell is defined by the eight neighboring cells (i.e. the eight cells which surround it).
6

Figure 2. Grid of Schelling-Sakoda model (20×20), with 133 blue agents, 133
orange agents. The agents in yellow circles have 2 out of 5 neighbors of the

same color

Agents may be happy or unhappy. An agent is happy if the proportion of other agents of its same

colour in its neighbourhood is greater or equal than a certain threshold (%-similar-wanted), which is

a parameter of the model; otherwise the agent is said to be unhappy. Agents with no neighbors are

assumed to be happy regardless of the value of %-similar-wanted. In each iteration of the model one

unhappy agent is randomly selected to move to a random empty cell in the lattice.

As an example, the two agents surrounded by a circle in figure 2 have 2 out of 5 neighbors of the

same color as them, i.e. 40%. This means that in simulation runs where %-similar-wanted ≤ 40% these

agents would be happy, and would not move. On the other hand, in simulations where %-similar-

wanted > 40% these two agents would move to a random location.

6. Cells on a side have five neighbors and cells at a corner have three neighbors.

28 | Part I. Introduction

Individually-owned variables and instructions

In this model, agent’s individually-owned variables are:

• color, which can be either blue or orange,

• (xcor, ycor), which determine the agent’s location on the grid, and

• happy?, which indicates whether the agent is happy or not.

Agents are able to run the following instructions:

• to move, to change the agent’s location to a random empty cell, and

• to update-happiness, to update the agent’s individually-owned variable

happy?.

Now imagine that we simulate a society where agents require at least 60% of their neighbors to be

of the same color as them in order to be happy (i.e. %-similar-wanted = 60%). These are pretty strong

segregationist preferences, so one would expect a fairly clear pattern of spatial segregation at the

end. The following video shows a representative run. You may wish to run the simulations yourself

downloading this model’s code.

One or more interactive elements has been excluded from this version of the text. You can

view them online here: https://wisc.pb.unizin.org/agent-based-evolutionary-game-

dynamics/?p=40#video-40-1

Simulation run of Schelling-Sakoda model with %-similar-wanted = 60

As expected, the final outcome of the simulation shows clearly distinctive ghettos. To measure the

level of segregation of a certain spatial pattern we define a global variable named avg-%similar, which

is the average proportion (across agents) of an agent’s neighbors that are the same color as the agent.

Extensive Monte Carlo simulation shows that a good estimate of the expected avg-%similar is about

95.7% when %-similar-wanted is 60%.

What is really surprising is that even with only mild segregationist preferences, such as %-similar-

wanted = 40%, we still obtain fairly segregated spatial patterns (expected avg-%similar ≈ 82.7%). The

following video shows a representative run.

I-3. Introduction to agent-based modeling | 29

One or more interactive elements has been excluded from this version of the text. You can

view them online here: https://wisc.pb.unizin.org/agent-based-evolutionary-game-

dynamics/?p=40#video-40-2

Simulation run of Schelling-Sakoda model with %-similar-wanted = 40

And even with segregationist preferences as weak as %-similar-wanted = 30% (i.e. you are happy

unless strictly less than 30% of your neighbors are of the same color as you), the emergent spatial

patterns show significant segregation (expected avg-%similar ≈ 74.7%). The following video shows a

representative run.

One or more interactive elements has been excluded from this version of the text. You can

view them online here: https://wisc.pb.unizin.org/agent-based-evolutionary-game-

dynamics/?p=40#video-40-3

Simulation run of Schelling-Sakoda model with %-similar-wanted = 30

So this agent-based model illustrates how strong spatial segregation can result from only weakly

segregationist preferences (e.g. trying to avoid an acute minority status). This model has been

enriched in a number of directions (e.g. to include heterogeneity between and within groups),
7

but

the implementation discussed here is sufficient to illustrate a non-trivial phenomenon that emerges

from agents’ individual choices and their interactions.

4. Agent-based modeling and evolutionary game
theory

Given that models in Evolutionary Game Theory (EGT) comprise many individuals who repeatedly

interact among them and occasionally revise their individually-owned strategy, it seems clear that

agent-based modelling is certainly an appropriate methodology to build EGT models. Therefore, the

question is whether other approaches may be more appropriate or convenient. This is an important

issue, since nowadays most models in EGT are equation-based, and therefore –in general– more

amenable to mathematical analysis than agent-based models. This is a clear advantage for equation-

based models. Why bother with agent-based modeling then?

The reason is that mathematical tractability often comes at a price: equation-based models tend to

incorporate several assumptions that are made solely for the purpose of guaranteeing mathematical

tractability. Examples include assuming that the population is infinite, or assuming that revising

agents are able to evaluate strategies’ expected payoffs. These assumptions are clearly made for

7. See Aydinonat (2007).

30 | Part I. Introduction

mathematical convenience, since there are no infinite populations in the real world, and –in general–

it seems more natural to assume that agents’ choices are based on information obtained from

experiences with various strategies, or from observations of others’ experiences. Are assumptions

made for mathematical convenience harmless? We cannot know unless we study models where such

assumptions are not made. And this is where agent-based modelling can play an important role.

Agent-based modeling gives us the potential to build models closer to the real-world systems that

we want to study, because in an agent-based model we are free to choose the sort of assumptions

that we deem appropriate in purely scientific terms. We may not be able to fully analyze all aspects

of the resulting agent-based model mathematically, but we will certainly be able to explore it using

computer simulation, and this exploration can help us assess the impact of assumptions that are

made only for mathematical tractability. In this way, we will be able to shed light on questions

such as: how large must a population be for the mathematical model to be a good description of

the dynamics of the finite-population model? and, how much do dynamics change if agents cannot

evaluate strategies’ expected payoffs with infinite precision?

5. How can I learn about agent-based modeling?

A wonderful classic book to learn the fundamental concepts and appreciate the kind of models you

can build using ABM is Epstein and Axtell (1996). In this short book, the authors show how to build

an artificial society where agents, using extremely simple rules, are able to engage in a wide range of

activities such as sex, cultural exchange, trade, combat, disease transmission, etc. Epstein and Axtell’s

(1996) interdisciplinary book shows how complex patterns can emerge from very simple rules of

interaction.

Epstein and Axtell’s (1996) seminal book focuses on the fundamental concepts without discussing

any code whatsoever. The following books are also excellent introductions to scientific agent-

based modeling, and all of them make use of NetLogo: Gilbert (2007), Railsback and Grimm

(2019), Wilensky and Rand (2015), Janssen (2020) and Smaldino (2023). Hamill and Gilbert (2016)

discuss the implementation of several NetLogo models in the context of Economics. Most of these

models are significantly more sophisticated than the ones we implement and analyze in this book.

I-3. Introduction to agent-based modeling | 31

I-4. Introduction to NetLogo

This chapter gives an overview of NetLogo (Wilensky, 1999), the modeling platform that we use in

this book to implement agent-based evolutionary models. Here we explain that NetLogo:

• is easy to learn,

• powerful,

• very well documented,

• allows the user to interact with the model while it is running,

• includes a tool (i.e., BehaviorSpace) that makes the automatic exploration of the parameter

space of any model very easy,

• is open-source and free,

• can be run on multiple platforms and online,

• has an active and helpful community of users,

• there are excellent resources that can be used to learn it,

• includes several extensions that extend its basic functionalities,

• can be used to conduct experiments with real people, and

• can be linked with other software like R, Python, Mathematica or Matlab.

1. What is NetLogo?

NetLogo is a well-written, easy-to-install, easy-to-use, easy-to-extend, and easy-to-publish-

online environment. The entry level is simple enough and the tutorials provided in the package

are straightforward and clear enough that anyone who can read and is comfortable using a

keyboard and mouse could create their own models in a short time, with little or no additional

instruction. Sklar (2007, p. 7)

NetLogo is a modeling environment designed for coding and running agent-based simulations.
1

Nowadays, there are many languages and software platforms that can be employed to create agent-

1. NetLogo was created by Uri Wilensky and is under continuous development at the Northwestern's Center for
Connected Learning and Computer-Based Modeling. It is also important to acknowledge Seth Tisue, who "worked
meticulously to guarantee the quality of the NetLogo software" (Wilensky and Rand, 2015, p. xxii) as lead developer for
over a decade.

32 | Part I. Introduction

based models,
2

and at the time of writing NetLogo is the most widely used. We recommend NetLogo

and will use it throughout this book for the many reasons we outline below.

Easy to learn

NetLogo stands out as the quickest to learn and the easiest to use. Gilbert (2007, p. 49)

The language used to code models within NetLogo –which is also called NetLogo– has been designed

following a “Low Threshold, No Ceiling” philosophy (Wilensky and Rand, 2015). All reviews of the

software highlight how easy it is to learn. To be concrete, we would estimate that an average scholar

without previous coding experience can learn the basics of the language and be in a position to write

a simple agent-based model after 2-4 days of work. Someone with programming experience could

reduce the estimated time to 1-2 days.

One characteristic that makes the NetLogo language easy to learn is that it is remarkably close to

natural language. As a matter of fact, NetLogo language could perfectly be used as pseudo-code to

communicate algorithms implemented in other languages.

Since NetLogo was designed to be easily readable, we believe that NetLogo code is about as

easy to read as any pseudo-code we would have used. NetLogo also has the big advantage over

pseudo-code of being executable, so the user can run and test the examples. (Wilensky and

Rand, 2015, p. xiv)

NetLogo language is definitely simpler to use than e.g. Java or Objective-C, and can often reduce

programming efforts significantly when compared with other languages.

Powerful

NetLogo has become a standard platform for agent-based simulation, yet there appears to be

widespread belief that it is not suitable for large and complex models due to slow execution. Our

experience does not support that belief. Railsback et al. (2017, abstract)

2. To our knowledge, the most up-to-date and comprehensive review of agent-based simulation software has been
conducted by Abar et al. (2017), who compare 85 tools using a convenient tabular and chart format, and deem
NetLogo both easy to use and also appropriate to execute medium/large-scale simulations. Another recent review that
assesses and compares NetLogo with other platforms has been published by Kravari and Bassiliades (2015). There is
also a wikipedia page set up by Nikolai and Madey (2009) which provides an up-to-date comparison of agent-based
software toolkits. Finally, it is also possible to code agent-based models using general-purpose programming
languages directly. In the context of evolutionary game theory, Isaac (2008) convincingly demonstrates how this can
be easily done with Python.

I-4. Introduction to NetLogo | 33

NetLogo is powerful in that it can accommodate reasonably large and complex simulations, and its

execution speed is more than acceptable for most purposes. NetLogo can easily run simulations with

several tens of thousands of agents.

Excellent documentation

NetLogo is by far the most professional platform in its appearance and documentation. Railsback

et al. (2006, p. 613)

One of the reasons why NetLogo is so easy to learn is that it is very well documented. The user

manual includes three tutorials to help beginners get started, an excellent programming guide, and a

comprehensive dictionary with the definitions of all NetLogo primitives, including examples of how

to use them. NetLogo also comes with an extensive library of models from different disciplines (e.g.

art, biology, chemistry, computer science, mathematics, networks, philosophy, physics, psychology,

and other social sciences) and several code examples which succinctly illustrate particular features

and coding techniques.

Possibility to interact with the model at runtime

NetLogo is designed to allow the user to interact with the model during runtime in a variety of ways:

• By modifying parameter values at runtime, with immediate effect on the simulation. This

feature is very convenient to assess the impact of different assumptions in the model and

conduct exploratory work.

• By running commands in the middle of a run to e.g. create new agents, remove others, or make

a subset of them take some action.

• By probing agents to see –and potentially set– the value of any of their individually-owned

variables at any time.

Automatic exploration of parameter space

NetLogo includes a software tool named BehaviorSpace (Wilensky and Shargel, 2002) which

greatly facilitates running a model many times, systematically varying the desired parameter values,

and keeping a record of the results of each run. Besides, computational experiments set up

with BehaviorSpace can be run from the command line, i.e. without having to open NetLogo’s

graphical user interface. This feature is particularly useful for launching large-scale experiments

in computer clusters.

Open-source and free

NetLogo can be downloaded for free at http://ccl.northwestern.edu/netlogo/. Its source code is

publicly hosted on GitHub at https://github.com/NetLogo/NetLogo, where users can open issues to

request the implementation of new features or to report bugs.

34 | Part I. Introduction

Multiplatform and online execution of models

NetLogo can run on Windows, Mac or Linux. Most modern computers will run NetLogo without any

trouble. It can also be used online through NetLogo Web. NetLogo Web can also be used to create

stand-alone versions of NetLogo models in HTML format. These self-contained versions can be run

in any browser without having to install any software.
3

Great support and active user community

NetLogo developers are always happy to receive feedback and enhancement requests

(at feedback@ccl.northwestern.edu), and bug reports (at bugs@ccl.northwestern.edu). There is also

an active community of NetLogo users who post their questions and help each other at the NetLogo

Forum, the NetLogo-Users Google group and on StackOverflow.

Abundance of quality resources

At https://ccl.northwestern.edu/netlogo/resources.shtml you can find plenty of quality resources to

learn NetLogo. These include references to textbooks, papers that make use of NetLogo, courses

given at middle schools, high schools and Universities all around the world, competitions and

tutorials. There are also many video tutorials on YouTube.

This reviewer, who has used NetLogo for both research and teaching at several levels, highly

recommends it for instructors from elementary school to graduate school and for researchers

from a wide range of fields. Sklar (2007, p. 8)

Extensions to fulfill specialised needs

Extensions are add-ons that extend the NetLogo language with new primitives created to fulfill

specialised needs. Some of these extensions come bundled with NetLogo, some have been created

by NetLogo developers but must be downloaded separately, and others have been created by third

parties. Four representative examples of useful extensions that come with NetLogo are:

• The rnd extension, which provides efficient primitives to make random weighted selections,

with or without replacement.

• The nw extension, which adds many primitives to generate networks, compute several

network-related metrics, and import and export network data.

• The matrix extension, which adds a matrix data structure to NetLogo and several primitives to

operate with it.

• The GIS (Geographic Information Systems) extension.

3. This can be done by uploading any NetLogo model to NetLogo Web and exporting it as HTML.

I-4. Introduction to NetLogo | 35

Useful to conduct experiments with real people and for
participatory modeling

The NetLogo release includes HubNet (Wilensky and Stroup, 1999), a technology that enables users

to communicate and interact with each other through NetLogo. Thus, Hubnet can be very useful to

run participatory simulations and experiments, in which human users can be part of the simulation

and interact among themselves and with artificial agents.

Happy to link with other software

NetLogo is now a powerful tool widely used in science and we recommend it strongly, especially

for those new to modeling and programming but also for serious scientists with software

experience. Lytinen and Railsback (2012)

NetLogo can be linked with advanced software tools like R (R Core Team, 2019), Python (Python

Software Foundation, 2019), Mathematica (Wolfram Research, Inc., 2019) or Matlab (The

MathWorks, Inc., 2019). Specifically, using an R package called RNetLogo (Thiele (2014); Thiele et

al. (2012a, 2012b, 2014)), it is possible to run and control NetLogo models from R, execute NetLogo

commands, and obtain any information from a NetLogo model. The connector PyNetLogo (Jaxa-

Rozen and Kwakkel, 2018) provides the same functionalty for Python, and the so-called Mathematica

link (Bakshy and Wilensky, 2007) for Mathematica. The Mathematica link comes bundled as part of

the latest NetLogo releases.

Conversely, one can also call R, Python and Matlab commands from within NetLogo using the R-

Extension (Thiele and Grimm, 2010), the NetLogo Python extension (Head, 2018) and MatNet (Biggs

and Papin, 2013) respectively.

2. How to learn NetLogo

To make the most of this book, we recommend you get familiar with the NetLogo environment and

with NetLogo programming. This will normally take from a few hours to a couple of days, depending

on your programming skills, and can be accomplished doing the following tasks:

• Download and install NetLogo following the instructions at https://ccl.northwestern.edu/

netlogo/. In this book we will be using NetLogo version 6.4.0.
4

• Go through the three tutorials in the NetLogo user manual, i.e.

◦ Tutorial #1: Models

4. Please, make sure you download version 6.1.0 or greater. NetLogo syntax changed significantly in version 6.0, and a
little bit in 6.1.0. Version 6.4.0 introduced many new features in BehaviorSpace, but we will not be using these new
features in this book.

36 | Part I. Introduction

◦ Tutorial #2: Commands

◦ Tutorial #3: Procedures

After having gone through the previous material, you will have obtained the required NetLogo

background to follow this text without any problems. In the next chapter we review the main

concepts of NetLogo and give an overview of the structure of most NetLogo models, using the

Schelling-Sakoda model as an illustration.

I-4. Introduction to NetLogo | 37

I-5. The fundamentals of NetLogo

This chapter provides a succinct overview of the fundamentals of NetLogo. It is strongly based on the

excellent NetLogo user manual, version 6.4.0 (Wilensky, 2023). By no means do we claim originality

on the content of this chapter; all credit should go to Uri Wilensky and his team. The following table

provides links to the different aspects of NetLogo programming that we cover here.

Very basics More advanced Final polishing

The three tabs Ask Consistency within procedures

Types of agents Lists Breeds

Instructions Agentsets Ticks and Plotting

Variables Synchronization Skeleton of many NetLogo models

The code for Schelling-Sakoda model

Feel free to skip this chapter if you are already familiar with NetLogo. For future reference, you may

wish to download our NetLogo quick guide, which is a 6-page pdf file containing the main concepts

outlined here.

1. The three tabs

The main window of NetLogo contains three tabs, i.e. the interface tab, the info tab and the code tab

(see figure 1).

Figure 1. Top bar of the NetLogo Interface tab, where you can select the tab you want to see

The Interface tab is used to run the model. It often contains buttons, sliders, switches, plots… Most

models include a button labeled setup, which is used to initialize the model, and another button

labeled go, which is used to run the model.

The Info tab can be used to include the documentation of the model.

Finally, the Code tab contains most of the code of the model. We say most because in some models

part of the code is included within the plots in the interface tab.

38 | Part I. Introduction

2. Types of agents

Figure 2. The NetLogo world is made up of turtles, patches, links and the observer

The NetLogo world is made up by four types of agents (see figure 2), i.e.:

• Turtles. Turtles are agents that can move.

• Patches: The NetLogo world is two-dimensional and is divided up into a grid of patches. Each

patch is a square piece of “ground” over which turtles can move.

• Links: Links are agents that connect two turtles. Links can be directed (from one turtle to

another turtle) or undirected (one turtle with another turtle).

• The observer: There is only one observer and it does not have a location. You can think of the

observer as the conductor of the whole NetLogo orchestra.

Note that in many descriptions of agent-based models, the word agent is used only to refer to the

turtles (i.e. the mobile agents in NetLogo), while patches and links are not considered agents (and the

observer is not even mentioned). However, when reading NetLogo documentation, it is important to

remember that these four types of entities are all agents in NetLogo.

3. Instructions

Instructions tell agents what to do. Three characteristics are useful to remember about instructions:

• Whether the instruction is implemented by the user (procedures), or whether it is built into

NetLogo (primitives). Once you define a procedure, you can use it elsewhere in your

program. The NetLogo Dictionary has a complete list of built-in instructions (i.e. primitives).

The following code is an example of the implementation of procedure to setup:

I-5. The fundamentals of NetLogo | 39

to setup ;; comments are written after semicolon(s)
clear-all ;; clear everything
create-turtles 10 ;; make 10 new turtles

end ; (one semicolon is enough, but I like two)

The instruction to setup is a procedure (since it is implemented by us), whereas clear-all
and create-turtles are both primitives (they are built into NetLogo).

Note that primitives are nicely colored, and you can click on them and press F1 to see their

syntax, functionality, and examples. You may want to copy and paste the code above to see all

this for yourself.

• Whether the instruction produces an output (reporters) or not (commands).

◦ A reporter computes a result and reports it. Most reporters are nouns or noun phrases

(e.g. “average-wealth”, “most-popular-girl”). These names are preceded by the keyword

to-report. The keyword end marks the end of the instructions in the procedure.

to-report average-wealth ;; this reporter returns the
report mean [wealth] of turtles ;; average wealth in the

end ;; population of turtles

◦ A command is an action for an agent to carry out. Most commands begin with verbs (e.g.

“create”, “die”, “jump”, “inspect”, “clear”). These verbs are preceded by the keyword to
(instead of to-report). The keyword end marks the end of the procedure.

to go
ask turtles [

forward 1 ;; all turtles move forward one step
right random 360 ;; and turn a random amount

]
end

Note that primitive commands are colored in blue while primitive reporters are colored in

purple. Keywords are colored in green.

• Whether the instruction takes an input (or several inputs) or not. Inputs are values that the

instruction uses in carrying out its actions.

to-report absolute-value [number] ;; number is the input
ifelse number >= 0 ;; if number is already non-negative

[report number] ;; return number (a non-negative value).
[report (- number)] ;; Otherwise, return the opposite, which

end ;; is then necessarily positive.

40 | Part I. Introduction

4. Variables

Variables are places to store values (such as numbers). A variable can be a global variable, a turtle

variable, a patch variable, a link variable, or a local variable (local to a procedure). To change the value

of a variable you can use the set command. If you don’t set the variable to any value, it starts out

storing a value of zero.

• Global variables: If a variable is a global variable, there is only one value for the variable, and

every agent can access it. You can declare a new global variable either in the Interface tab –by

adding a switch, a slider, a chooser or an input box– or in the Code tab –by using the globals
keyword at the beginning of your code, like this:

globals [n-of-strategies]

• Turtle, patch, and link variables: Each turtle has its own value for every turtle variable, each

patch has its own value for every patch variable, and each link has its own value for every link

variable. Turtle, patch, and link variables can be built-in or defined by the user.

◦ Built-in variables: For example, all turtles and all links have a color variable, and all

patches have a pcolor variable. If you set this variable, the corresponding turtle, link or

patch changes color. Other built-in turtle variables are xcor, ycor, and heading. Other

built-in patch variables include pxcor and pycor. Other built-in link variables are end1,

end2, and thickness. You can find the complete list in the NetLogo Dictionary.

◦ User-defined turtle, patch and link variables: You can also define new turtle, patch

or link variables using the turtles-own, patches-own, and links-own keywords

respectively, like this:

turtles-own [energy] ;; each turtle has its own energy
patches-own [roughness] ;; each patch has its own roughness
links-own [weight] ;; each link has its own weight

• Local variables: A local variable is defined and used only in the context of a particular

procedure or part of a procedure. To create a local variable, use the let command. You can

use this command anywhere. If you use it at the top of a procedure, the variable will exist

throughout the procedure. If you use it inside a set of square brackets, for example inside an

ask, then it will exist only inside those brackets.

I-5. The fundamentals of NetLogo | 41

to swap-colors [turtle1 turtle2] ;; turtle1 and turtle2 are inputs
let temp ([color] of turtle1) ;; store the color of turtle1 in temp
ask turtle1 [set color ([color] of turtle2)]

;; set turtle1’s color to turtle2’s color
ask turtle2 [set color temp]

;; now set turtle2’s color to turtle1’s (original) color
end ;; (which was conveniently stored in local variable “temp”).

Setting and reading the value of variables

Global variables can be read and set at any time by any agent. Every agent has direct access to

her own variables, both for reading and setting. Sometimes you will want an agent to read or set a

different agent’s variable; to do that, you can use ask (which is explained in further detail later):

ask turtle 5 [show color] ;; turtle 5 shows its color
ask turtle 5 [set color blue] ;; turtle 5 becomes blue

You can also use of to make one agent read another agent’s variable. of is written in between the

variable name and the relevant agent (i.e. [reporter] of agent). Example:

show [color] of turtle 5 ;; observer shows turtle 5's color

Finally, a turtle can read and set the variables of the patch it is standing on directly, e.g.

ask turtles [set pcolor red]

The code above causes every turtle to make the patch it is standing on red. (Because patch variables

are shared by turtles in this way, you cannot have a turtle variable and a patch variable with the same

name –e.g. that is why we have color for turtles and pcolor for patches).

42 | Part I. Introduction

5. Ask

NetLogo uses the ask command to specify instructions that are to be run by turtles, patches or links.

Usually, the observer uses ask to ask all turtles or all patches to run commands. Here’s an example

of the use of ask syntax in a NetLogo procedure:

to setup
clear-all ;; clear everything
create-turtles 100 ;; create 100 new turtles with random heading
ask turtles [;; ask them

set color red ;; to turn red and
forward 50 ;; to move 50 steps forward

]
ask patches [;; ask patches

if (pxcor > 0) [;; with pxcor greater than 0
set pcolor green ;; to turn green

]
]

end

You can also use ask to have an individual turtle, patch or link run commands. The reporters turtle,

patch, link, and patch-at are useful for this technique. For example:

to setup
clear-all ;; clear the world
create-turtles 3 ;; make 3 turtles
ask turtle 0 [fd 10] ;; tell the first one to go forward 10 steps
ask turtle 1 [;; ask the second turtle (with who number 1)

set color green ;; ... to become green
]
ask patch 2 -2 [;; ask the patch at (2,-2)...

set pcolor blue ;; ... to become blue
]
ask turtle 0 [;; ask the first turtle (with who number 0)

create-link-to turtle 2 ;; to link to turtle with who number 2
]
ask link 0 2 [;; ask the link between turtle 0 and 2...

set color blue ;; ... to become blue
]
ask turtle 0 [;; ask the turtle with who number 0

ask patch-at 1 0 [;; ... to ask the patch to her east
set pcolor red ;; ... to become red

]
]

end

I-5. The fundamentals of NetLogo | 43

6. Lists

In the simplest models, each variable holds only one piece of information, usually a number or a

string. Lists let you store multiple pieces of information in a single variable by collecting those pieces

of information in a list. Each value in the list can be any type of value: a number, a string, an agent, an

agentset, or even another list.

Constant lists

You can make a list by simply putting the values you want in the list between brackets, e.g.:

set my-list [2 4 6 8]

Building lists on the fly

If you want to make a list in which the values are determined by reporters, as opposed to being

a series of constants, use the list reporter. The list reporter accepts two other reporters, runs

them, and reports the results as a list.

set my-random-list list (random 10) (random 20)

To make shorter or longer lists, you can use the list reporter with fewer or more than two inputs,

but in order to do so, you must enclose the entire call in parentheses, e.g.:

show (list random 10)
show (list (random 10) (turtle 3) "a" 30) ;; inner () are not necessary

The of primitive lets you construct a list from an agentset (i.e. a set of agents). It reports a list

containing each agent’s value for the given reporter (syntax: [reporter] of agentset).

set fitness-list ([fitness] of turtles)
;; list containing the fitness of each turtle (in random order)

show [pxcor * pycor] of patches

See also: n-values, range, sentence and sublist.

Reading and changing list items

List items can be accessed using first, last and item. The first element of a list is item 0.

Technically, lists cannot be modified, but you can construct new lists based on old lists. If you want

the new list to replace the old list, use set. For example:

44 | Part I. Introduction

set my-list [2 7 5 "Bob" [3 0 -2]]
;; my-list is now [2 7 5 "Bob" [3 0 -2]]

set my-list replace-item 2 my-list 10
;; my-list is now [2 7 10 "Bob" [3 0 -2]]

See also: but-first, but-last, fput, lput, length, shuffle, position and remove-item.

Iterating over lists

To apply a function (procedure) on each item in a list, you can use foreach or map. The function to

be applied is usually defined using anonymous procedures, with the following syntax:

[[input-1 input-2 ...] -> code of the procedure]
;; this syntax was different in versions before NetLogo 6.0

The names assigned to the inputs of the procedure (i.e. input-1 and input-2 above) may be used

within the code of the procedure just like you would use any other variable within scope. You can use

any name you like for these local variables (complying with the usual restrictions). An example of an

anonymous procedure that implements the absolute value is:

[[x] -> abs x] ;; you can use any symbol instead of x
[x -> abs x] ;; if there is just one input

;; you do not need the square brackets

foreach is used to run a command on each item in a list. It takes as inputs the list and the command

to be run on each element of the list, e.g.:

foreach [1.2 4.6 6.1] [n -> show (word n " rounded is " round n)]
;; output: "1.2 rounded is 1" "4.6 rounded is 5" "6.1 rounded is 6"

map is similar to foreach, but it is a reporter (it returns a list). It takes as inputs a list and a reporter;

and returns an output list containing the results of applying the reporter to each item in the input list.

As in foreach, procedures can be anonymous.

map [element -> round element] [1.2 2.2 2.7] ;; returns [1 2 3]

Simple uses of foreach, map, n-values, and related primitives can be written more concise.

map round [1.2 2.2 2.7]
;; (see Anonymous procedures in Programming Guide)

I-5. The fundamentals of NetLogo | 45

Both foreach and map can take multiple lists as input; in that case, the procedure is run once for

the first items of all input lists, once for the second items, and so on.

(map [[el1 el2] -> el1 + el2] [1 2 3] [10 20 30]) ;; returns [11 22 33]
(map + [1 2 3] [10 20 30]) ;; a shorter way of writing the same

See also: reduce, filter, sort-by, sort-on, and -> (anonymous procedure).

7. Agentsets

An agentset is a set of agents; all agents in an agentset must be of the same type (i.e. turtles, patches,

or links). An agentset is not in any particular order. In fact, it’s always in a random order.
1

What’s

powerful about the agentset concept is that you can construct agentsets that contain only some

agents. For example, all the red turtles, or the patches with positive pxcor, or all the links departing

from a certain agent. These agentsets can then be used by ask or by various reporters that take

agentsets as inputs, such as one-of, n-of, with, with-min, max-one-of, etc. The primitive with
and its siblings are very useful to build agentsets. Here are some examples:

turtles with [color = red] ;; all red turtles
patches with [pxcor > 0] ;; patches with positive pxcor
[my-out-links] of turtle 0 ;; all links outgoing from turtle 0
turtles in-radius 3 ;; all turtles three or fewer patches away
other turtles-here with-min [size] ;; other turtles with min size on my patch
(patch-set self neighbors4) ;; von Neumann neighborhood of a patch

Once you have created an agentset, here are some simple things you can do:

• Use ask to make the agents in the agentset do something.

• Use any? to see if the agentset is empty.

• Use all? to see if every agent in an agentset satisfies a condition.

• Use count to find out exactly how many agents are in the set.

Here are some more complex things you can do:

1. If you want agents to do something in a fixed order, you can make a list of the agents instead.

46 | Part I. Introduction

ask one-of turtles [set color green]
;; one-of reports a random agent from an agentset

ask (max-one-of turtles [wealth]) [donate]
;; max-one-of agentset [reporter] reports an agent in the
;; agentset that has the highest value for the given reporter

show mean ([wealth] of turtles with [gender = male])
;; Use of to make a list of values,
;; one for each agent in the agentset.

show (turtle-set turtle 0 turtle 2 turtle 9 turtles-here)
;; Use turtle-set, patch-set and link-set reporters to make new
;; agentsets by gathering together agents from a variety of sources

show (turtles with [gender = male]) = (turtles with [wealth > 10])
;; Check whether two agentsets are equal using = or !=

show member? (turtle 0) turtles with-min [wealth]
;; Use member? to see if an agent is a member of an agentset.

if all? turtles [color = red] ;; use all? to see if every agent in the
[show "every turtle is red!"] ;; agentset satisfies a certain condition

ask turtles [
create-links-to other turtles-here ;; on same patch as me, not me,

with [color = [color] of myself] ;; and with same color as me.
]
show [([color] of end1) - ([color] of end2)] of links

;; check everything’s OK

8. Synchronization

When you ask a set of agents to run more than one command, each agent must finish all the

commands in the block before the next agent starts. One agent runs all the commands, then the next

agent runs all of them, and so on. As mentioned before, the order in which agents are chosen to run

the commands is random. To be clear, consider the following code:

ask turtles [
forward random 10 ;; move forward a random number of steps (0–9)
wait 0.5 ;; wait half a second
set color blue ;; set your color to blue

]

The first (randomly chosen) turtle will move forward some steps, she will then wait half a second, and

she will finally set her color to blue. Then, and only then, another turtle will start doing the same;

and so on until all turtles have run the commands inside ask without being interrupted by any other

turtle. The order in which turtles are selected to run the commands is random. If you want all turtles

to move, and then all wait, and then all become blue, you can write it this way:

ask turtles [forward random 10]
ask turtles [wait 0.5] ;; note that you will have to wait
ask turtles [set color blue] ;; (0.5 * number-of-turtles) seconds

I-5. The fundamentals of NetLogo | 47

Finally, you can make agents execute a set of commands in a certain order by converting the agentset

into a list. There are three primitives that help you do this: sort, sort-by and sort-on.

set my-list-of-agents sort-by [[t1 t2] -> [size] of t1 < [size] of t2] turtles
;; This sets my-list-of-agents to a list of turtles sorted in
;; ascending order by their turtle variable size. For simple orderings
;; like this, you can use sort-on, e.g.: sort-on [size] turtles

foreach my-list-of-agents [ag ->
ask ag [;; each agent undertakes the list of commands
forward random 10 ;; (forward, wait, and set) without being
wait 0.5 ;; interrupted, i.e. the next agent does not
set color blue ;; start until the previous one has finished.

]
]

9. Consistency within procedures

Some primitives in NetLogo can only be run by a certain type of agent. For instance, forward can

only be run by turtles, since turtles are the only type of agent that can move. An easy way of knowing

which type of agent can run a certain primitive is to find the primitive in the NetLogo Dictionary and

look at the icon beneath the name of the primitive. If you click on forward, you will see the icon ,

which denotes turtles. The icons for the other types of agent are: for the observer, for patches,

and for links. There are primitives that can be run by more than one type of agent. For instance,

reporter turtles-here can be run by turtles and by patches.

The question that naturally comes to mind now is: How do we tell NetLogo what type of agent should

run a certain procedure (which we implement)? The answer is simple: we don’t. NetLogo infers that

from the code of the procedure; we just have to be consistent. An example of inconsistency would be

to code a procedure containing two primitives that can be run only by two different types of agents,

as in the following example:

to setup
create-turtles 10
forward 1

end

If we implement this code, we obtain the following error message: “You can’t use FORWARD in an

observer context, because FORWARD is turtle-only” (see figure 3).

48 | Part I. Introduction

Figure 3. Inconsistency error

The reason is that NetLogo reads the primitive create-turtles and, since it can only be run by the

observer, NetLogo infers that the procedure to setup will be run only by the observer, i.e. everything

inside is in an observer context. Then, NetLogo reads the primitive forward, which can only be run

by turtles, and throws the error.

We would obtain similar inconsistency errors if we tried to access individually-owned variables within

procedures that can only be run by a type of agent that cannot access those variables, as in the

following examples.

to setup
create-turtles 10
show xcor

end
;; Here we would obtain the error:
;; "You can't use XCOR in an observer context, because XCOR is turtle-only"

to setup
create-turtles 10
show pxcor

end
;; Here we would obtain the error:
;; "You can't use PXCOR in an observer context,
;; because PXCOR is turtle/patch-only"

Note that in the example above, NetLogo says that pxcor is “turtle/patch-only”. This is because all

patch variables can be directly accessed by any turtle standing on the patch (see section Variables

above).

to setup
create-turtles 10
show end1

end
;; Here we would obtain the error:
;; "You can't use END1 in an observer context, because END1 is link-only"

I-5. The fundamentals of NetLogo | 49

10. Breeds

NetLogo allows you to have different types of turtles and different types of links. There are called

breeds. Here we discuss breeds of turtles only, since breeds of links follow the same logic. Breeds are

defined with the syntax:

breed [plural-name singular-name]

For instance, to define a breed of sellers and a breed of buyers, we would type the following at the

top of our code:

breed [sellers seller]
breed [buyers buyer]

From then onwards, we could assign different individually-owned variables to each of the breeds,

using the keywords sellers-own and buyers-own. Also, there are a number of primitives that

are automatically added to the NetLogo language once you have defined a breed, such as create-
sellers, hatch-sellers, sprout-sellers, sellers-here, sellers-at, sellers-on,

and is-seller?.

11. Ticks and Plotting

In most NetLogo models, time passes in discrete steps called “ticks”. NetLogo includes a built-in tick

counter so you can keep track of how many ticks have passed. The current value of the tick counter

is shown above the view. Note that –since NetLogo 5.0– ticks and plots are closely related.

You can write code inside the plots. Every plot and each of its pens have setup and update code

fields where you can write commands. All these fields must be edited directly in each plot –i.e. in the

interface, not in the code tab. To execute the commands written inside the plots, you can use setup-
plots and update-plots, which run the corresponding fields in every plot and in every pen.

However, in models that use the tick counter, these two primitives are not normally used because

they are automatically triggered by tick-related commands, as explained below.

To use the tick counter, first you must reset-ticks; this command resets the tick counter to zero,

sets up all plots (i.e. triggers setup-plots), and then updates all plots (i.e. triggers update-plots);

thus, the initial state of the world is plotted. Then, you can use the tick command, which advances

the tick counter by one and updates all plots.

See also: plot, plotxy, and ticks.

50 | Part I. Introduction

12. Skeleton of many NetLogo models

In most NetLogo models there are two basic procedures that are run by the observer: to setup and to

go.

Procedure to setup is run just once at the beginning of the simulation, most often by clicking a button

in the interface tab. In this procedure:

• we initialize the model from scratch using the primitive clear-all,

• we set up all initial conditions (this often implies creating several agents), and

• we finish with the primitive reset-ticks.

Procedure to go contains all the actions that will be executed repeatedly in the model. Some of these

actions will be executed directly by the observer, while others will be run by the turtles, the patches

or the links. In any case, procedure to go is run by the observer, so it is the observer who must ask

the other agents to run the appropriate instructions, using the primitive ask. Most often, procedure

to go contains the primitive tick, which advances the (discrete) NetLogo clock in one unit.

globals […] ;; global variables (also defined with sliders, …)
turtles-own […] ;; user-defined turtle variables (also <breeds>-own)
patches-own […] ;; user-defined patch variables
links-own […] ;; user-defined link variables (also <link-breeds>-own)
…

to setup
clear-all
…
setup-patches ;; procedure where patches are initialized
…
setup-turtles ;; procedure where turtles are created
…
reset-ticks

end
…

to go
conduct-observer-procedure
…
ask turtles [conduct-turtle-procedure]
…
ask patches [conduct-patch-procedure]
…
tick ;; this will update every plot and every pen in every plot

end
…

to-report a-particular-statistic
…
report the-result-of-some-formula

end

I-5. The fundamentals of NetLogo | 51

13. The code for Schelling-Sakoda model

To conclude this chapter, we present some simple code that implements the Schelling-Sakoda model

described in chapter I-3 “Introduction to agent-based modeling”. The code we show here is simpler

than the one used for the videos in chapter I-3, which is more efficient but less readable.
2

In the

interface, we have used two sliders to define parameters number-of-agents and %-similar-wanted (see

figure 4).

Figure 4. Interface of a simple version of Schelling-Sakoda model

2. Both implementations lead to exactly the same dynamics.

52 | Part I. Introduction

Figure 5. Window that pops up when you inspect a
turtle. You can ask the turtle to execute instructions

by typing them on the bottom line

The code that goes in the code tab is shown below.

You can download the whole model here

(schelling-sakoda-simple.nlogo) and take this code

as a test to check whether you are ready to

proceed to the next chapter. If you can understand

most of it, you are definitely prepared!

To work your way through the code, you will most

likely have to use the NetLogo Dictionary

intensively, and run small pieces of code in the

Command Center (especially because the model

includes several NetLogo primitives that we have

not seen yet). You can also inspect individual

turtles and make them run (turtle) instructions

such as:

ask turtles-on neighbors [set label
"Hi!"]

You will have to type these instructions on the

bottom line of the window that pops up when you

inspect a turtle (see figure 5). To inspect a turtle,

right-click on it, select the name of the turtle (e.g.

turtle 21), and click on “inspect”. Alternatively, you

can just type the following instruction in the

command center:

inspect turtle 21

Developing these skills will be useful, since programming in NetLogo most often involves looking up

the dictionary very often and testing short snippets of code. Once you have understood most of the

code below we can start building our first agent-based evolutionary model in the next chapter!

I-5. The fundamentals of NetLogo | 53

;;;;;;;;;;;;;;;;;
;;; VARIABLES ;;;
;;;;;;;;;;;;;;;;;

turtles-own [
happy?

]

;;;;;;;;;;;;;;;;;;;;;;;;
;;; SETUP PROCEDURES ;;;
;;;;;;;;;;;;;;;;;;;;;;;;

to setup
clear-all
setup-agents
reset-ticks

end
to setup-agents

set-default-shape turtles "person"
ask n-of number-of-agents patches

[sprout 1 [set color cyan]]
ask n-of (number-of-agents / 2) turtles

[set color orange]
ask turtles [update-happiness]

end

;;;;;;;;;;;;;;;;;;;;;;
;;; MAIN PROCEDURE ;;;
;;;;;;;;;;;;;;;;;;;;;;

to go
if all? turtles [happy?] [stop]
ask one-of turtles with [not happy?] [move]
ask turtles [update-happiness]
tick

end

;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; TURTLES' PROCEDURES ;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;

to move
move-to one-of patches with [not any? turtles-here]

end
to update-happiness

let my-nbrs (turtles-on neighbors)
let n-of-my-nbrs (count my-nbrs)
let similar-nbrs (count my-nbrs with [color = [color] of myself])
set happy? similar-nbrs >= (%-similar-wanted * n-of-my-nbrs / 100)

end

54 | Part I. Introduction

PART II. OUR FIRST
AGENT-BASED
EVOLUTIONARY MODEL

Agent-Based Evolutionary Game Dynamics | 55

II-1. Our very first model

1. Goal

The goal of this chapter is to create our first agent-based evolutionary model in NetLogo. Being our

first model, we will keep it simple; nonetheless, the model will already contain the four building blocks

that define most models in agent-based evolutionary game theory, namely:

• a population of agents,

• a game that is recurrently played by the agents,

• a procedure that determines how strategy revision opportunities are assigned to agents, and

• a decision rule, which specifies how individual agents update their (pure) strategies when they

are given the opportunity to revise.

In particular, in our model the number of (individually-represented) agents in the population will be

chosen by the user. These agents will repeatedly play a symmetric 2-player 2-strategy game, each

time with a randomly chosen counterpart. The payoffs of the game will be determined by the user.

Agents will revise their strategy with a certain probability, also to be chosen by the user. The decision

rule these agents will use is called imitate-if-better, which dictates that a revising agent imitates the

strategy of a randomly chosen player, if this player obtained a payoff greater than the revising agent’s.

This fairly general model will allow us to explore a variety of specific questions, like the one we

outline next.

2. Motivation. Cooperation in social dilemmas

There are many situations in life where we have the option to make a personal effort that will benefit

others beyond the personal cost incurred. This type of behavior is often termed “to cooperate”,

and can take a myriad forms: from paying your taxes, to inviting your friends over for a home-

made dinner. All these situations, where cooperating involves a personal cost but creates net social

value, exhibit the somewhat paradoxical feature that individuals would prefer not to pay the cost of

cooperation, but everyone prefers the situation where everybody cooperates to the situation where

no one does. Such counterintuitive characteristic is the defining feature of social dilemmas, and life

is full of them (Dawes, 1980).

The essence of many social dilemmas can be captured by a simple 2-person game called the

Prisoner’s Dilemma. In this game, the payoffs for the players are: if both cooperate, R (Reward); if both

defect, P (Punishment); if one cooperates and the other defects, the cooperator obtains S (Sucker)

and the defector obtains T (Temptation). The payoffs satisfy the condition T > R > P > S. Thus, in

a Prisoner’s Dilemma, both players prefer mutual cooperation to mutual defection (R > P), but two

56 | Part II. Our first agent-based evolutionary model

motivations may drive players to behave uncooperatively: the temptation to exploit (T > R), and the

fear to be exploited (P > S).

Let us see a concrete example of a Prisoner’s Dilemma. Imagine that you have $1000, which you may

keep for yourself, or transfer to another person’s account. This other person faces the same decision:

she can transfer her $1000 money to you, or else keep it. Crucially, whenever money is transferred,

the money doubles, i.e. the recipient gets $2000.

Try to formalize this situation as a game, assuming you and the other person only care

about money.

The game can be summarized using the payoff matrix in Fig. 1. To see that this game is indeed

a Prisoner’s Dilemma, note that transferring the money would be what is often called “to

cooperate”, and keeping the money would be “to defect”.

Player 2

Keep Transfer

Player 1
Keep 1000 , 1000 3000 , 0

Transfer 0 , 3000 2000 , 2000

Figure 1. Payoff matrix of a Prisoner’s Dilemma game

To explore whether cooperation may be sustained in a simple evolutionary context, we can model

a population of agents who repeatedly play the Prisoner’s Dilemma. Agents are either cooperators

or defectors, but they can occasionally revise their strategy. A revising agent looks at another agent

in the population and, if the observed agent’s payoff is greater than the revising agent’s payoff, the

revising agent copies the observed agent’s strategy. Do you think that cooperation will be sustained

in this setting? Here we are going to build a model that will allow us to investigate this question… and

many others!

3. Description of the model

In this model, there is a population of n-of-players agents who repeatedly play a symmetric 2-player

2-strategy game. The two possible strategies are labeled 0 and 1. The payoffs of the game are

determined by the user in the form of a matrix [[A00 A01] [A10 A11]], where Aij is the payoff that an

agent playing strategy i obtains when meeting an agent playing strategy j (i, j ∈ {0, 1}).

Initially, the number of agents playing strategy 1 is a (uniformly distributed) random number between

0 and the number of players in the population. From then onwards, the following sequence of events

–which defines a tick– is repeatedly executed:

II-1. Our very first model | 57

1. Every agent obtains a payoff by selecting another agent at random and playing the game.

2. With probability prob-revision, individual agents are given the opportunity to revise their

strategies. The decision rule –called imitate if better– reads as follows:
1

Look at another (randomly selected) agent and adopt her strategy if and only if her payoff

was greater than yours.

The model shows the evolution of the number of agents choosing each of the two possible strategies

at the end of every tick.

4. Interface design

Figure 2. Interface design

The interface (see figure 2) includes:

• Three buttons:

1. One button named setup, which runs the procedure to setup.

2. One button named go once, which runs the procedure to go.

1. This rule has been studied by Izquierdo and Izquierdo (2013) and Loginov (2021). Loginov (2021) calls this rule "imitate-
the-better-realization".

58 | Part II. Our first agent-based evolutionary model

3. One button named go, which runs the procedure to go indefinitely.

In the Code tab, write the procedures to setup and to go, without including any code

inside for now.

to setup
;; empty for now

end

to go
;; empty for now

end

In the Interface tab, create a button and write setup in the “commands” box. This will

make the procedure to setup run whenever the button is pressed.

Create another button for the procedure to go (i.e., write go in the commands

box) with display name go once to emphasize that pressing the button will run the

procedure to go just once.

Finally, create another button for the procedure to go, but this time tick the “forever”

option. When pressed, this button will make the procedure to go run repeatedly until

the button is pressed again.

• A slider to let the user select the number of players.

Create a slider for global variable n-of-players. You can choose limit values 2 (as the

minimum) and 1000 (as the maximum), and an increment of 1.

• An input box where the user can write a string of the form [[A00 A01] [A10 A11]] containing

the payoffs Aij that an agent playing strategy i obtains when meeting an agent playing strategy

j (i, j ∈ {0, 1}).

Create an input box with associated global variable payoffs. Set the input box type to

“String (reporter)”. Note that the content of payoffs will be a string (i.e. a sequence of

characters) from which we will need to extract the payoff numeric values.

• A slider to let the user select the probability of revision.

II-1. Our very first model | 59

Create a slider with associated global variable prob-revision. Choose limit values 0 and

1, and an increment of 0.01.

• A plot that will show the evolution of the number of agents playing each strategy.

Create a plot and name it Strategy Distribution. Since we are not going to use the

2D view (i.e. the large black square in the interface) in this model, you may want to

overlay it with the newly created plot.

5. Code

5.1. Initial skeleton of the code

Figure 3 below provides a schematic view of the code. We will use these code skeletons in many

chapters of this book. You can find the legend for them in Appendix A-2.

Figure 3. Initial (and naive) skeleton of the code

5.2. Global variables and individually-owned variables

First we declare the global variables that we are going to use and we have not already declared in the

interface. We will be using a global variable named payoff-matrix to store the payoff values on a list,

so the first line of code in the Code tab will be:

globals [payoff-matrix]

Next we declare a breed of agents called “players”. If we did not do this, we would have to use the

default name “turtles”, which may be confusing to newcomers.

60 | Part II. Our first agent-based evolutionary model

breed [players player]

Individual players have their own strategy (which can be different from the other agents’ strategy)

and their own payoff, so we need to declare these individually-owned variables as follows:

players-own [
strategy
payoff

]

5.3. Setup procedures

In the setup procedure we want:

• To clear everything up. We initialize the model afresh using the primitive clear-all:

clear-all

• To transform the string of characters the user has written in the payoffs input box (e.g. “[[1 2][3

4]]”) into a list (of 2 lists) that we can use in the code (e.g. [[1 2][3 4]]). This list of lists will be

stored in the global variable named payoff-matrix. To do this transformation (from string to list,

in this case), we can use the primitive read-from-string as follows:

set payoff-matrix read-from-string payoffs

• To create n-of-players players and set their individually-owned variables to an appropriate initial

value. At first, we set the value of payoff and strategy to 0:
2

create-players n-of-players [
set payoff 0
set strategy 0

]

Note that the primitive create-players does not appear in the NetLogo dictionary; it has

been automatically created after defining the breed “players”. Had we not defined the breed

“players”, we would have had to use the primitive create-turtles instead.

Now we will ask a random number of players (between 0 and n-of-players) to set their strategy

to 1, using one of the most important primitives in NetLogo, namely ask. The instruction will

be of the form:

2. By default, user-defined variables in NetLogo are initialized with the value 0, so there is no actual need to explicitly
set the initial value of individually-owned variables to 0, but it does no harm either.

II-1. Our very first model | 61

ask AGENTSET [set strategy 1]

where AGENTSET should be a random subset of players.

To randomly select a certain number of agents from an agentset (such as players), we can use

the primitive n-of (which reports another –usually smaller– agentset):

ask (n-of SIZE players) [set strategy 1]

where SIZE is the number of players we would like to select.

Finally, to generate a random integer between 0 and n-of-players we can use the primitive

random:

random (n-of-players + 1)

The resulting instruction will be:

ask n-of (random (n-of-players + 1)) players [set strategy 1]

• To initialize the tick counter. At the end of the setup procedure, we should include the primitive

reset-ticks, which resets the tick counter to zero (and also runs the “plot setup commands”,

the “plot update commands” and the “pen update commands” in every plot, so the initial state

of the model is plotted):

reset-ticks

Thus, the code up to this point should be as follows:

globals [
payoff-matrix

]

breed [players player]

players-own [
strategy
payoff

]

to setup
clear-all
set payoff-matrix read-from-string payoffs
create-players n-of-players [

set payoff 0
set strategy 0

]
ask n-of random (n-of-players + 1) players [set strategy 1]
reset-ticks

62 | Part II. Our first agent-based evolutionary model

end

to go

end

5.4. Go procedure

The procedure to go contains all the instructions that will be executed in every tick. In this particular

model, these instructions include

1. asking all players to interact with another (randomly selected) player to obtain a payoff, and

2. asking all players to revise their strategy with probability prob-revision.

To keep things nice and modular, we will create two separate procedures to be run by players named

to update-payoff and to update-strategy. Procedure to update-payoff will update the payoff of the

player running the procedure, while procedure to update-strategy will be in charge of updating

her strategy. Writing short procedures with meaningful names will make our code elegant, easy to

understand, easy to debug, and easy to extend… so we should definitely aim for that.

We now have to think very carefully about the order in which we are going to ask the players

to update-payoff and to update-strategy. Should players update their strategies at the same time

(i.e. synchronously), or sequentially (i.e. asynchronously)? Arguably, this is something that is not

absolutely clear in the description of the model above. We chose to describe the model in that

(admittedly ambiguous) way because it is common that the relative order in which agents run their

actions is not absolutely clear in model descriptions. However, this is a very important issue with

significant consequences, and it already takes some expertise even to only notice that a model

description is ambiguous. The following sections will help us develop this expertise.

A naive implementation

Let us start with the implementation that seems to follow the model description most closely, and

which corresponds with the initial skeleton of the code shown in figure 3. First, all agents update

their payoff; then, all agents update their strategies with probability prob-revision. Procedure to go

would then look as follows:

ask players [update-payoff]
ask players [

if (random-float 1 < prob-revision) [update-strategy]
]

Note that condition

(random-float 1 < prob-revision)

will be true with probability prob-revision.

II-1. Our very first model | 63

The implementation of procedure to go shown above seems natural and straightforward. However,

it is faulty in a subtle but crucial way. The implementation above would do something that –most

likely– the designer of the model did not intend.

To see this, think of the first agent who revises her strategy and changes it (in procedure to update-

strategy). This agent would have her strategy changed, but her payoff would not change after the

revision (because payoffs are only modified in procedure to update-payoff). Thus, her payoff would

still correspond to a game played with her old strategy, i.e., her strategy before the revision took

place. If, after this first revision, a second agent runs procedure to update-strategy and –having

looked at the first agent’s payoff– decides to imitate the first agent, this second agent will imitate the

first agent’s new strategy, which is a strategy that was not used to obtain the payoff on which the

imitation is based.

Thus, with this first (and naive) implementation, some strategies may be imitated based on payoffs

that have not been obtained with those strategies. In the following section we propose an

implementation that solves this issue.

A more functional implementation. Synchronous updating within the tick

In this section we propose an implementation of procedure to go that:

• guarantees that any imitation of a strategy is based on the payoff obtained with that strategy,

and

• in our opinion, corresponds best with the description of the model above. Arguably, the

description above seems to imply that revising agents within the tick update their strategies

simultaneously.

To make sure that revising players within the tick update their strategies simultaneously, we need

players to be able to compute their revised strategy, but they also must be able to keep their old

one until all players have had the opportunity to revise their strategy. Therefore, we are going to

need two individually-owned variables: one named strategy (for the strategy used to compute the

payoffs), and another one named strategy-after-revision (for the strategy that agents will adopt after

their revision). Thus, we are going to have to add the following line:

players-own [
strategy
strategy-after-revision ;; <== new line
payoff

]

Similarly, we will also need two different procedures to be run by individual players: one named to

update-strategy-after-revision (where agents will update their strategy-after-revision), and another

one named to update-strategy (where agents will update their strategy, with the value of their

strategy-after-revision). Procedure to update-strategy should be executed only after all agents have

finished revising, to make sure that any imitation of any strategy is based on the payoff obtained with

that strategy.

64 | Part II. Our first agent-based evolutionary model

This is a major (and necessary) change to the skeleton of the code. The new skeleton of the code

is shown in figure 4, which we recommend comparing with the initial (and faulty) skeleton shown in

figure 3.

Figure 4. Skeleton of the code for synchronous updating within the tick

In terms of code, the implementation of procedure to go for synchronous updating within the tick

would be as follows:

ask players [update-payoff]
ask players [

if (random-float 1 < prob-revision) [
update-strategy-after-revision

]
]
ask players [update-strategy]

Note that the last line of code above (where players update their strategy with the value of their

strategy-after-revision and do nothing else in between) effectively implies that we update every

agent’s strategy at the same time within the tick, i.e., revisions are synchronous within the tick. Thus,

with this implementation, the value of prob-revision allows us to control the fraction of agents who

revise their strategies simultaneously, i.e. under exactly the same information.

Finally, having the agents go once through the code above will mark an evolution step (or generation),

so, to keep track of these cycles and have the plots in the interface automatically updated at the end

of each cycle, we include the primitive tick at the end of to go.

tick

5.5 Other procedures

to update-payoff

Procedure to update-payoff is the procedure where agents update their payoff. Importantly, note that

procedure to update-payoff will be run by a particular player. Thus, within the code of this procedure,

we can access and set the value of player-owned variables strategy and payoff.

II-1. Our very first model | 65

Here we want the player running this procedure (let us call her the running player) to play with some

other player and get the corresponding payoff.
3

First, we will (randomly) select a counterpart and

store it in a local variable named mate:

let mate one-of other players

Now we need to compute the payoff that the running player will obtain when she plays the game

with her mate. This payoff is an element of the payoff-matrix list, which is made up of two sublists

(e.g., [[1 2][3 4]]).

Note that the first sublist (i.e., item 0 payoff-matrix) corresponds to the case in which the running

player plays strategy 0. We want to consider the sublist corresponding to the player’s strategy, so we

type:

item strategy payoff-matrix

In a similar fashion, the payoff to extract from this sublist is determined by the strategy of the running

player’s mate (i.e., [strategy] of mate). Thus, the payoff obtained by the running agent is:

item ([strategy] of mate) (item strategy payoff-matrix)

Finally, to make the running agent store her payoff, we can write:

set payoff item ([strategy] of mate) (item strategy payoff-matrix)

This line of code concludes the definition of the procedure to update-payoff.

to update-strategy-after-revision

In this procedure, which is also to be run by individual players, we want the running player to look at

some other random player (which we will call the observed-agent) and, if the payoff of the observed-

agent is greater than her own payoff, set the value of her variable strategy-after-revision to the

observed-agent’s strategy. We do not want the revising agent to set the value of her variable strategy

yet because, as explained above, this would imply that some imitations could then be based on the

wrong payoffs.

To select a random player and store it in the local variable observed-agent, we can write:

let observed-agent one-of other players

3. In some evolutionary models, it is assumed that players are randomly matched in pairs to play the game. That would
lead to a slightly different distribution of payoffs (especially for low population sizes). In exercise 7, we ask you to
think about the changes we would have to make in our current code to model this random matching.

66 | Part II. Our first agent-based evolutionary model

To compare the payoffs and, if appropriate, set the value of the revising agent’s strategy-after-

revision to the observed-agent’s strategy, we can write:

if ([payoff] of observed-agent) > payoff [
set strategy-after-revision ([strategy] of observed-agent)

]

This concludes the definition of the procedure to update-strategy-after-revision.

to update-strategy

In this procedure, the running player will just update her variable strategy with the value of her

variable strategy-after-revision. The code is particularly simple:

to update-strategy
set strategy strategy-after-revision

end

5.6. Code in the plots

Finally, let us set up the plot to show the number of agents playing each strategy. This is something

that can be done directly on the plot, in the Interface tab.

Edit the plot by right-clicking on it, choose a color and a name for the pen showing the

number of agents with strategy 0, and in the “pen update commands” area write:

plot count players with [strategy = 0]

Add a second pen to show the number of players with strategy 1.

5.7. Final fix

In principle, we have finished our model but, unfortunately, we have a small mistake. If you run our

code now, you will see that something weird seems to happen on the first tick (see figure 5). Too

many agents seem to change their strategies on the first tick, even if prob-revision is set to 0! Can

you figure out what is going on? This is a tricky bug, but no-one said that the life of a rigorous agent-

based modeler was going to be easy. Here we do not give medals for free. You gotta earn them! 😀

II-1. Our very first model | 67

Fig. 5. Simulation run with the current code

What is going on?

Well done if you ventured an answer! (even if your answer was wrong).

The problem with the current code is that we did not explicitly initialize the agents’ variable

strategy-after-revision, and in NetLogo, by default, user-defined variables are initialized with

the value 0. Then, on the first tick, every agent will run procedure to update-strategy (even if

they do not happen to run procedure to update-strategy-after-revision before), so many agents

will (incorrectly) set their strategy to 0.

To fix this problem, we just have to properly initialize agents’ variable strategy-after-revision

when we create them, at procedure to setup:

to setup
clear-all
set payoff-matrix read-from-string payoffs
create-players n-of-players [

set payoff 0
set strategy 0

]
ask n-of random (n-of-players + 1) players [set strategy 1]
ask players [set strategy-after-revision strategy]

;; the line above is needed to guarantee that agents
;; keep their initial strategy until
;; they revise their strategy for the first time.
;; Note that all agents will set their strategy to
;; strategy-after-revision at the end of procedure to go.

reset-ticks
end

68 | Part II. Our first agent-based evolutionary model

This concludes the definition of all the code in the Code tab, which by now should look as shown

below.

5.8. Complete code in the Code tab

globals [
payoff-matrix

]

breed [players player]

players-own [
strategy
strategy-after-revision
payoff

]

to setup
clear-all
set payoff-matrix read-from-string payoffs
create-players n-of-players [

set payoff 0
set strategy 0

]
ask n-of random (n-of-players + 1) players [set strategy 1]
ask players [set strategy-after-revision strategy]
reset-ticks

end

to go
ask players [update-payoff]
ask players [

if (random-float 1 < prob-revision) [
update-strategy-after-revision

]
]
ask players [update-strategy]
tick

end

to update-payoff
let mate one-of other players
set payoff item ([strategy] of mate) (item strategy payoff-matrix)

end

to update-strategy-after-revision
let observed-player one-of other players
if ([payoff] of observed-player) > payoff [

set strategy-after-revision ([strategy] of observed-player)
]

end

to update-strategy

II-1. Our very first model | 69

set strategy strategy-after-revision
end

6. Sample runs

Now that we have the model, we can investigate the question we posed at the motivation above. Let

strategy 0 be “Defect” and let strategy 1 be “Cooperate”. We can use payoffs [[1 3][0 2]]. Note that

we could choose any other numbers (as long as they satisfy the conditions that define a Prisoner’s

Dilemma), since our decision rule only depends on ordinal properties of payoffs. Let us set n-of-

players = 100 and prob-revision = 0.1, but feel free to change these values.

If you run the model with these settings, you will see that in nearly all runs all agents end up defecting

in very little time.
4

The video below shows some representative runs.

One or more interactive elements has been excluded from this version of the text. You can

view them online here: https://wisc.pb.unizin.org/agent-based-evolutionary-game-

dynamics/?p=18#video-18-1

Note that at any population state, defectors will tend to obtain a greater payoff than cooperators,

so they will be preferentially imitated. Sadly, this drives the dynamics of the process towards overall

defection.

7. Exercises

You can use the following link to download the complete NetLogo model: 2×2-imitate-if-better.nlogo.

4. All simulations will necessarily end up in one of the two absorbing states where all agents are using the same strategy.
The absorbing state where everyone defects (henceforth D-state) can be reached from any state other than the
absorbing state where everyone cooperates (henceforth C-state). The C-state can be reached from any state with at
least two cooperators, so –in principle– any simulation with at least two agents using each strategy could end up in
either absorbing state. However, it is overwhelmingly more likely that the final state will be the D-state. As a matter of
fact, one single defector is extremely likely to be able to invade a whole population of cooperators, regardless of the
size of the population.

70 | Part II. Our first agent-based evolutionary model

Picture by Caleb Whiting

Picture by Ming Jun Tan

Exercise 1. Consider a coordination game with

payoffs [[3 0][0 2]] such that both players are

better off if they coordinate in one of the

actions (0 or 1) than if they play different

actions. Run several simulations with 1000

players and probability of revision 0.1. (You can

easily do that by leaving the button go pressed

down and clicking the setup button every time

you want to start again from random initial

conditions.)

Do simulations end up with all players choosing

the same action? Does the strategy with a

greater initial presence tend to displace the

other strategy? How does changing the payoff matrix to [[30 0][0 2]] make a difference on whether

agents coordinate on 0 or strategy 1?

P.S. You can explore this model’s (deterministic) mean dynamic approximation with this program.

Exercise 2. Consider a Stag hunt game (Skyrms, 2001) with payoffs [[3 0][2 1]] where strategy 0 is

“Stag” and strategy 1 is “Hare”. Does the strategy with greater initial presence tend to displace the

other strategy?

P.S. You can explore this model’s (deterministic) mean dynamic approximation with this program.

Exercise 3. Consider a Hawk-Dove game with

payoffs [[0 3][1 2]] where strategy 0 is “Hawk”

and strategy 1 is “Dove”. Do all players tend to

choose the same strategy? Reduce the number

of players to 100 and observe the difference in

behavior (press the setup button after changing

the number of players). Reduce the number of

players to 10 and observe the difference.

P.S. You can explore this model’s (deterministic)

mean dynamic approximation with this program.

Exercise 4. Create a stand-alone version of the model we have implemented in this chapter. To do

this, you will have to upload the model to NetLogo Web and then export it in HTML format.

Exercise 5. Reimplement the procedure to update-strategy-after-revision so the revising agent

uses the imitative pairwise-difference rule that we saw in chapter I-2.

Exercise 6. Reimplement the procedure to update-strategy-after-revision so the revising agent

uses the best experienced payoff rule that we saw in chapter I-2.

II-1. Our very first model | 71

Exercise 7. In our current model, agents compute their payoff by selecting another agent at

random and playing the game. Note that this other (randomly selected) agent does not store the

payoff of the interaction. By contrast, in some other evolutionary models, it is assumed that agents

are randomly matched in pairs to play the game (with both members of the pair keeping record of the

payoff obtained in the interaction). Can you think about how we could implement this alternative

way of computing payoffs? We provide a couple of hints below:

Hints to implement random matching

• Naturally, the main changes will take place in procedure to update-payoff, but some

other changes in the code may be necessary.

• In particular, we find it useful to define a new individually-owned variable named

played?. For us, this is a boolean variable that keeps track of whether the agent has

already played the game in the current tick or not. Thus, this variable would have to be

set to false at the beginning of the tick (in procedure to go).

• The built-in reporter myself will be useful at the time of asking your mate to set her

own payoff.

72 | Part II. Our first agent-based evolutionary model

II-2. Extension to any number of strategies

1. Goal

Our goal here is to extend the model we have created in the previous chapter –which accepted

games with 2 strategies only– to allow for (2-player symmetric) games with any number of strategies.

2. Motivation. Rock, paper, scissors

The model we will develop in this chapter will allow us to explore games such as Rock-Paper-Scissors.

Can you guess what will happen in our model if agents are matched to play Rock-Paper-Scissors and

they keep on using the imitate-if-better rule whenever they revise?

3. Description of the model

In this model, there is a population of n-of-players agents who repeatedly play a symmetric 2-player

game with any number of strategies. The payoffs of the game are determined by the user in the form

of a matrix [[A00 A01 … A0n] [A10 A11 … A1n] … [An0 An1 … Ann]] containing the payoffs Aij that an

agent playing strategy i obtains when meeting an agent playing strategy j (i, j ∈ {0, 1, …, n}). The

number of strategies is inferred from the number of rows in the payoff matrix.

Initially, players choose one of the available strategies at random (uniformly). From then onwards, the

following sequence of events –which defines a tick– is repeatedly executed:

1. Every agent obtains a payoff by selecting another agent at random and playing the game.

2. With probability prob-revision, individual agents are given the opportunity to revise their

strategies. The decision rule –called imitate if better– reads as follows:

Look at another (randomly selected) agent and adopt her strategy if and only if her payoff

was greater than yours.

All agents who revise their strategies within the same tick do it simultaneously (i.e.

synchronously).

The model shows the evolution of the number of agents choosing each of the possible strategies at

the end of every tick.

4. Interface design

We depart from the model we developed in the previous chapter (so if you want to preserve it, now

is a good time to duplicate it).

II-2. Extension to any number of strategies | 73

Figure 1. Interface design

The new interface (see figure 1 above) requires just two simple modifications:

• Make the payoffs input box bigger and let its input contain several lines.

In the Interface tab, select the input box (by right-clicking on it) and make it bigger.

Then edit it (by right-clicking on it) and tick the “Multi-Line” box.

• Remove the “pens” in the Strategy Distribution plot. Since the number of strategies is unknown

until the payoff matrix is read, we will need to create the required number of “pens” via code.

In the Interface tab, edit the Strategy Distribution plot and delete both pens.

74 | Part II. Our first agent-based evolutionary model

5. Code

5.1. Skeleton of the code

Figure 2. Skeleton of the code

5.2. Global variables and individually-owned variables

It will be handy to have a variable store the number of strategies. Since this information will likely be

used in various procedures, it makes sense to define the new variable as global. A natural name for

this new variable is n-of-strategies. The modified code will look as follows:

globals [
payoff-matrix
n-of-strategies

]

5.3. Setup procedures

The current setup procedure is the following:

to setup
clear-all
set payoff-matrix read-from-string payoffs
create-players n-of-players [

II-2. Extension to any number of strategies | 75

set payoff 0
set strategy 0

]
ask n-of random (n-of-players + 1) players [set strategy 1]
ask players [set strategy-after-revision strategy]
reset-ticks

end

Note that the code in the current setup procedure performs several unrelated tasks –namely clear

everything, set up the payoffs, set up the players, and set up the tick counter–, and now we will

need to set up the graph as well (since we have to create as many pens as strategies). Let us take

this opportunity to modularize our code and improve its readability by creating new procedures with

descriptive names for groups of related instructions, as follows:

to setup
clear-all
setup-payoffs
setup-players
setup-graph
reset-ticks
update-graph

end

to setup-payoffs

The procedure to setup-payoffs will include the instructions to read the payoff matrix, and will also

set the value of the global variable n-of-strategies. We will use the primitive length to obtain the

number of rows in the payoff matrix.

to setup-payoffs
set payoff-matrix read-from-string payoffs
set n-of-strategies length payoff-matrix

end

to setup-players

The procedure to setup-players will create the players and set the initial values for their individually-

owned variables. The initial payoff will be 0 and the initial strategy will be a random integer between

0 and (n-of-strategies – 1). We must not forget to initialize their strategy-after-revision too.

to setup-players
create-players n-of-players [

set payoff 0
set strategy (random n-of-strategies)
set strategy-after-revision strategy

]
end

76 | Part II. Our first agent-based evolutionary model

to setup-graph

The procedure to setup-graph will create the required number of pens –one for each strategy– in the

Strategy Distribution plot. To this end, we must first specify that we wish to work on the Strategy

Distribution plot, using the primitive set-current-plot.

set-current-plot "Strategy Distribution"

Then, for each strategy i ∈ {0, 1, …, (n-of-strategies – 1)}, we do the following tasks:

1. Create a pen with the name of the strategy. For this, we use the primitive create-
temporary-plot-pen to create the pen, and the primitive word to turn the strategy number

into a string.

create-temporary-plot-pen (word i)

2. Set the pen mode to 1 (bar mode) using set-plot-pen-mode. We do this because we plan

to create a stacked bar chart for the distribution of strategies.

set-plot-pen-mode 1

3. Choose a color for each pen. See how colors work in NetLogo.

set-plot-pen-color 25 + 40 * i

Now we have to actually loop through the number of each strategy, making i take the values 0, 1, …,

(n-of-strategies – 1). There are several ways we can do this. Here, we do it by creating a list [0 1 2

… (n-of-strategies – 1)] containing the strategy numbers and going through each of its elements. To

create the list, we use the primitive range.

range n-of-strategies

The final code for the procedure to setup-graph is then:

to setup-graph
set-current-plot "Strategy Distribution"
foreach (range n-of-strategies) [i ->

create-temporary-plot-pen (word i)
set-plot-pen-mode 1
set-plot-pen-color 25 + 40 * i

]
end

to update-graph

Procedure to update-graph will draw the strategy distribution using a stacked bar chart, like the one

shown in figure 3 below. This procedure is called at the end of setup to plot the initial distribution of

strategies, and then also at the end of procedure to go, to plot the strategy distribution at the end of

every tick.

II-2. Extension to any number of strategies | 77

Figure 3. Example of stacked bar chart showing the strategy distribution as ticks go by

We start by creating a list containing the strategy numbers [0 1 2 … (n-of-strategies – 1)], which we

store in local variable strategy-numbers.

let strategy-numbers (range n-of-strategies)

To compute the (relative) strategy frequencies, we apply to each element of the list strategy-numbers,

i.e. to each strategy number, the operation that calculates the fraction of players using that strategy.

To do this, we use primitive map. Remember that map requires as inputs a) the function to be applied

to each element of the list and b) the list containing the elements on which you wish to apply the

function. In this case, the function we wish to apply to each strategy number (implemented as an

anonymous procedure) is:

[n -> (count (players with [strategy = n])) / n-of-players]

In the code above, we first identify the subset of players that have a certain strategy (using with),

then we count the number of players in that subset (using count), and finally we divide by the

total number of players n-of-players. Thus, we can use the following code to obtain the strategy

frequencies, as a list:

map [n -> count players with [strategy = n] / n-of-players] strategy-numbers

Finally, to build the stacked bar chart, we begin by plotting a bar of height 1, corresponding to the

first strategy. Then we repeatedly draw bars on top of the previously drawn bars (one bar for each

of the remaining strategies), with the height diminished each time by the relative frequency of the

corresponding strategy. The final code of procedure to update-graph will look as follows:

to update-graph
let strategy-numbers (range n-of-strategies)
let strategy-frequencies map [n ->

count players with [strategy = n] / n-of-players
] strategy-numbers

78 | Part II. Our first agent-based evolutionary model

set-current-plot "Strategy Distribution"
let bar 1
foreach strategy-numbers [n ->

set-current-plot-pen (word n)
plotxy ticks bar
set bar (bar - (item n strategy-frequencies))

]
set-plot-y-range 0 1

end

5.4. Go procedure

The only change needed in the go procedure is the call to procedure to update-graph, which will draw

the fraction of agents using each strategy at the end of every tick:

to go
ask players [update-payoff]
ask players [

if (random-float 1 < prob-revision) [
update-strategy-after-revision

]
]
ask players [update-strategy]
tick
update-graph

end

5.5. Other procedures

Note that there is no need to modify the code of to update-payoff, to update-strategy-after-revision,

or to update-strategy.

5.6. Complete code in the Code tab

The Code tab is ready!

globals [
payoff-matrix
n-of-strategies

]

breed [players player]

players-own [
strategy
strategy-after-revision
payoff

]

II-2. Extension to any number of strategies | 79

to setup
clear-all
setup-payoffs
setup-players
setup-graph
reset-ticks
update-graph

end

to setup-payoffs
set payoff-matrix read-from-string payoffs
set n-of-strategies length payoff-matrix

end

to setup-players
create-players n-of-players [

set payoff 0
set strategy (random n-of-strategies)
set strategy-after-revision strategy

]
end

to setup-graph
set-current-plot "Strategy Distribution"
foreach (range n-of-strategies) [i ->

create-temporary-plot-pen (word i)
set-plot-pen-mode 1
set-plot-pen-color 25 + 40 * i

]
end

to go
ask players [update-payoff]
ask players [

if (random-float 1 < prob-revision) [
update-strategy-after-revision

]
]
ask players [update-strategy]
tick
update-graph

end

to update-payoff
let mate one-of other players
set payoff item ([strategy] of mate) (item strategy payoff-matrix)

end

to update-strategy-after-revision
let observed-player one-of other players
if ([payoff] of observed-player) > payoff [

set strategy-after-revision ([strategy] of observed-player)

80 | Part II. Our first agent-based evolutionary model

]
end

to update-strategy
set strategy strategy-after-revision

end

to update-graph
let strategy-numbers (range n-of-strategies)
let strategy-frequencies map [n ->

count players with [strategy = n] / n-of-players
] strategy-numbers

set-current-plot "Strategy Distribution"
let bar 1
foreach strategy-numbers [n ->

set-current-plot-pen (word n)
plotxy ticks bar
set bar (bar - (item n strategy-frequencies))

]
set-plot-y-range 0 1

end

5.7. Code inside the plots

Note that we take care of all plotting in the update-graph procedure. Thus there is no need to write

any code inside the plot. We could instead have written the code of procedure to update-graph inside

the plot, but given that it is somewhat lengthy, we find it more convenient to group it with the rest of

the code in the Code tab.

6. Sample run

Now that we have implemented the model, we can explore the behavior of a population who are

repeatedly matched to play a Rock-Paper-Scissors game. To do that, let us use payoff matrix [[0 -1

1][1 0 -1][-1 1 0]], a population of 500 agents and a 0.1 probability of revision. The following video

shows a representative run with these settings.

One or more interactive elements has been excluded from this version of the text. You can

view them online here: https://wisc.pb.unizin.org/agent-based-evolutionary-game-

dynamics/?p=98#video-98-1

Note that soon in the simulation run, one of the strategies will get a greater share by chance (due

to the inherent randomness of the model). Then, the next strategy (modulo 3) will enjoy a payoff

advantage, and thus will tend to be imitated. For example, if “Paper” is the most popular strategy,

then agents playing “Scissors” will tend to get higher payoffs, and thus be imitated. As the fraction

II-2. Extension to any number of strategies | 81

Picture by Liane Metzler

of agents playing “Scissors” grows, strategy “Rock” becomes more attractive… and so on and so

forth. These cycles get amplified until one of the strategies disappears. At that point, one of the two

remaining strategies is superior and finally prevails. The three strategies have an equal change of

being the “winner” in the end, since the whole model setting is symmetric.

7. Exercises

You can use the following link to download the complete NetLogo model: nxn-imitate-if-better.nlogo.

Exercise 1. Consider a Rock-Paper-Scissors

game with payoff matrix [[0 -1 1][1 0 -1][-1 1

0]]. Here we ask you to explore how the

dynamics are affected by the number of

players n-of-players and by the probability of

revision prob-revision. Explore simulations with

a small population (e.g. n-of-players = 50) and

with a large population (e.g. n-of-players =

1000). Also, for each case, try both a small

probability of revision (e.g. prob-revision = 0.01)

and a large probability of revision (e.g. prob-

revision = 0.5).

How do your insights change if you use payoff matrix [[0 -1 10][10 0 -1][-1 10 0]]?

Exercise 2. Consider a game with payoff matrix [[1 1 0][1 1 1][0 1 1]]. Set the probability of revision

to 0.1. Press the setup button and run the model for a while (then press the setup button again to

change the initial conditions). Can you explain what happens?

Exercise 3. How would you create the list [0 1 2 … (n-of-strategies – 1)] using n-values
instead of range?

Exercise 4. Implement the procedure to setup-graph:

1. using the primitive repeat instead of foreach.

2. using the primitive while instead of foreach.

3. using the primitive loop instead of foreach.

Exercise 5. Reimplement the procedure to update-strategy-after-revision so the revising agent

looks at five (randomly selected) other agents and copies the strategy of the agent with the highest

payoff (among these five observed agents). Resolve ties as you wish.

Exercise 6. Reimplement the procedure to update-strategy-after-revision so the revising agent

82 | Part II. Our first agent-based evolutionary model

selects the strategy that is the best response to (i.e. obtains the greatest payoff against) the strategy

of another (randomly) observed agent. This is an instance of the so-called sampling best response

decision rule (Sandholm (2001), Kosfeld et al. (2002), Oyama et al. (2015)). Resolve ties as you wish.

II-2. Extension to any number of strategies | 83

II-3. Noise and initial conditions

1. Goal

Our goal is to extend the model we have created in the previous chapter by adding two features that

will prove very useful:

• The possibility of setting initial conditions explicitly. This is an important feature because initial

conditions can be very relevant for the evolution of a system.

• The possibility that revising agents select a strategy at random with a small probability. This

type of noise in the revision process may account for experimentation or errors in economic

settings, or for mutations in biological contexts. The inclusion of noise in a model can

sometimes change its dynamic behavior dramatically, even creating new attractors. This is

important because dynamic features of a model –such as attractors, cycles, repellors, and other

patterns– that are not robust to the inclusion of small noise may not correspond to relevant

properties of the real-world system that we aim to understand. Besides, as a positive side-

effect, adding small amounts of noise to a model often makes the analysis of its dynamics easier

to undertake.

2. Motivation. Noise in rock, paper, scissors

In the previous chapter we saw that simulations of the Rock-Paper-Scissors game under the imitate-

if-better decision rule end up in a state where everyone is choosing the same strategy. Can you guess

what will happen in this model if we add a little bit of noise?

3. Description of the model

In this model, there is a population of n-of-players agents who repeatedly play a symmetric 2-player

game with any number of strategies. The payoffs of the game are determined by the user in the form

of a matrix [[A00 A01 … A0n] [A10 A11 … A1n] … [An0 An1 … Ann]] containing the payoffs Aij that

an agent playing strategy i obtains when meeting an agent playing strategy j (i, j ∈ {0, 1, …, n}). The

number of strategies is inferred from the number of rows in the payoff matrix.

Initial conditions are set with parameter n-of-players-for-each-strategy, using a list of the form [a0 a1

… an], where item ai is the initial number of agents with strategy i. Thus, the total number of agents

is the sum of all elements in this list. From then onwards, the following sequence of events –which

defines a tick– is repeatedly executed:

1. Every agent obtains a payoff by selecting another agent at random and playing the game.

2. With probability prob-revision, individual agents are given the opportunity to revise their

strategies. In that case, with probability noise, the revising agent will adopt a random

84 | Part II. Our first agent-based evolutionary model

strategy; and with probability (1 – noise), the revising agent will choose her strategy following

the imitate if better rule:

Look at another (randomly selected) agent and adopt her strategy if and only if her payoff

was greater than yours.

All agents who revise their strategies within the same tick do it simultaneously (i.e.

synchronously).

The model shows the evolution of the number of agents choosing each of the possible strategies at

the end of every tick.

4. Interface design

We depart from the model we developed in the previous chapter (so if you want to preserve it, now

is a good time to duplicate it).

Figure 1. Interface design

The new interface (see figure 1 above) requires a few simple modifications:

• Create an input box to let the user set the initial number of players using each strategy.

II-3. Noise and initial conditions | 85

In the Interface tab, add an input box with associated global variable n-of-players-for-

each-strategy. Set the input box type to “String (reporter)”.

• Note that the total number of players (which was previously set using a slider with associated

global variable n-of-players) will now be computed totaling the items of the list n-of-players-for-

each-strategy. Thus, we should remove the slider, and include the global variable n-of-players

in the Code tab.

globals [
payoff-matrix
n-of-strategies
n-of-players

]

• Add a monitor to show the total number of players. This number will be stored in the global

variable n-of-players, so the monitor must show the value of this variable.

In the Interface tab, create a monitor. In the “Reporter” box write the name of the

global variable n-of-players.

• Create a slider to choose the value of parameter noise.

In the Interface tab, create a slider with associated global variable noise. Choose limit

values 0 and 1, and an increment of 0.001.

86 | Part II. Our first agent-based evolutionary model

5. Code

5.1. Skeleton of the code

Figure 2. Skeleton of the code

5.2. Global variables and individually-owned variables

The only change required regarding user-defined variables is the inclusion of global variable n-of-

players in the Code tab, as explained in the previous section.

5.3. Setup procedures

To read the initial conditions specified with parameter n-of-players-for-each-strategy and set up the

players accordingly, it is clear that we only have to modify the code in procedure to setup-players.

Note that making our code modular, by implementing short procedures with specific tasks and

meaningful names, makes our life easy at the time of extending the model.

to setup-players

Since the content of parameter n-of-players-for-each-strategy is a string, the first we should do is to

turn it into a list that we can use in our code. To this end, we use the primitive read-from-string
and store its output in a new local variable named initial-distribution, as follows:

let initial-distribution
read-from-string n-of-players-for-each-strategy

II-3. Noise and initial conditions | 87

Next, we can check that the number of elements in the list initial-distribution matches the number

of possible strategies (i.e. the number of rows in the payoff matrix stored in payoff-matrix), and

issue a warning message otherwise, using primitive user-message. Naturally, this is by no means

compulsory, but it is a thoughtful touch that will make our program more user-friendly. To this end,

we can use the code below.

if length initial-distribution != length payoff-matrix [
user-message (word "The number of items in\n"

;; "\n" is used to jump to the next line
"n-of-players-for-each-strategy (i.e. "
length initial-distribution "):\n"
n-of-players-for-each-strategy
"\nshould be equal to the number of rows\n"
"in the payoff matrix (i.e. "
length payoff-matrix "):\n"
payoffs

)
]

;; It is not necessary to show the user
;; the value of n-of-players-for-each-strategy
;; and payoffs again,
;; but when creating an error message,
;; it is good practice to give the user
;; as much information as possible,
;; so the error can be easily corrected.

Now, let us create as many players using each strategy as indicated by the values in the list initial-

distribution. For instance, if initial-distribution is [5 10 15], we should create 5 players with strategy

0, 10 players with strategy 1, and 15 players with strategy 2. Since we want to perform a task for

each element of the list, primitive foreach will be handy.

Besides going through each element on the list using foreach, we would also like to keep track of

the position being read on the list, which is the corresponding strategy number. For this, we create a

counter i which we start at 0:

let i 0
foreach initial-distribution [j ->

create-players j [
set payoff 0
set strategy i
set strategy-after-revision strategy

]
set i (i + 1)

]

Finally, let us set the value of the global variable n-of-players:

88 | Part II. Our first agent-based evolutionary model

set n-of-players count players

The line above concludes the definition of procedure to setup-players, and the implementation of the

user-chosen initial conditions.

5.4. Go and other main procedures

To implement the choice of a random strategy with probability noise by revising agents, we have

to modify the code of procedure to update-strategy-after-revision. At present, the code of this

procedure looks as follows:

to update-strategy-after-revision
let observed-player one-of other players
if ([payoff] of observed-player) > payoff [

set strategy-after-revision ([strategy] of observed-player)
]

end

We can implement the noise feature using primitive ifelse, whose structure is

ifelse CONDITION
[COMMANDS EXECUTED IF CONDITION IS TRUE]
[COMMANDS EXECUTED IF CONDITION IS FALSE]

In our case, the CONDITION should be true with probability noise. Bearing all this in mind, the final

code for procedure to update-strategy-after-revision could be as follows:

to update-strategy-after-revision
ifelse random-float 1 < noise
;; the condition is true with probability noise

[;; code to be executed if there is noise
set strategy-after-revision (random n-of-strategies)

]
[;; code to be executed if there is no noise

let observed-player one-of other players
if ([payoff] of observed-player) > payoff [

set strategy-after-revision ([strategy] of observed-player)
]

]
end

5.5. Complete code in the Code tab

The Code tab is ready!

globals [
payoff-matrix

II-3. Noise and initial conditions | 89

n-of-strategies
n-of-players

]

breed [players player]

players-own [
strategy
strategy-after-revision
payoff

]

to setup
clear-all
setup-payoffs
setup-players
setup-graph
reset-ticks
update-graph

end

to setup-payoffs
set payoff-matrix read-from-string payoffs
set n-of-strategies length payoff-matrix

end

to setup-players
let initial-distribution

read-from-string n-of-players-for-each-strategy
if length initial-distribution != length payoff-matrix [

user-message (word "The number of items in\n"
"n-of-players-for-each-strategy (i.e. "
length initial-distribution "):\n"
n-of-players-for-each-strategy
"\nshould be equal to the number of rows\n"
"in the payoff matrix (i.e. "
length payoff-matrix "):\n"
payoffs

)
]

let i 0
foreach initial-distribution [j ->

create-players j [
set payoff 0
set strategy i
set strategy-after-revision strategy

]
set i (i + 1)

]

set n-of-players count players
end

90 | Part II. Our first agent-based evolutionary model

to setup-graph
set-current-plot "Strategy Distribution"
foreach (range n-of-strategies) [i ->

create-temporary-plot-pen (word i)
set-plot-pen-mode 1
set-plot-pen-color 25 + 40 * i

]
end

to go
ask players [update-payoff]
ask players [

if (random-float 1 < prob-revision) [
update-strategy-after-revision

]
]
ask players [update-strategy]
tick
update-graph

end

to update-payoff
let mate one-of other players
set payoff item ([strategy] of mate) (item strategy payoff-matrix)

end

to update-strategy-after-revision
ifelse random-float 1 < noise

[set strategy-after-revision (random n-of-strategies)]
[

let observed-player one-of other players
if ([payoff] of observed-player) > payoff [

set strategy-after-revision ([strategy] of observed-player)
]

]
end

to update-strategy
set strategy strategy-after-revision

end

to update-graph
let strategy-numbers (range n-of-strategies)
let strategy-frequencies map [n ->

count players with [strategy = n] / n-of-players
] strategy-numbers

set-current-plot "Strategy Distribution"
let bar 1
foreach strategy-numbers [n ->

set-current-plot-pen (word n)
plotxy ticks bar

II-3. Noise and initial conditions | 91

set bar (bar - (item n strategy-frequencies))
]
set-plot-y-range 0 1

end

6. Sample run

Now that we have implemented the model, we can use it to answer the question posed above: Will

adding a bit of noise change the dynamics of the Rock-Paper-Scissors game under the imitate-if-

better decision rule? To do that, let us use the same setting as in the previous chapter, i.e. payoffs = [[0

-1 1][1 0 -1][-1 1 0]] and prob-revision = 0.1. To have 500 agents and initial conditions close to

random, we can set n-of-players-for-each-strategy = [167 167 166]. Finally, let us use noise = 0.01. The

following video shows a representative run with these settings.

One or more interactive elements has been excluded from this version of the text. You can

view them online here: https://wisc.pb.unizin.org/agent-based-evolutionary-game-

dynamics/?p=103#video-103-1

As you can see, noise dampens the amplitude of the cycles, so the monomorphic states where only

one strategy is chosen by the whole population are not observed anymore.
1

Even if at some point

one strategy went extinct, noise would bring it back into existence. Thus, the model with noise =

0.01 exhibits an everlasting pattern of cycles of varying amplitudes. This contrasts with the model

without noise, which necessarily ends up in one of only three possible final states.

7. Exercises

You can use the following link to download the complete NetLogo model: nxn-imitate-if-better-

noise.nlogo.

1. In this model with noise, every state will be observed at some point if we wait for long enough, but long enough might
be a really long time (e.g. centuries).

92 | Part II. Our first agent-based evolutionary model

Picture by Danielle MacInnes

Exercise 1. Consider a Prisoner’s Dilemma with

payoffs [[2 4][1 3]] where strategy 0 is “Defect”

and strategy 1 is “Cooperate”. Set prob-revision

to 0.1 and noise to 0. Set the initial number of

players using each strategy, i.e. n-of-players-for-

each-strategy, to [0 200], i.e., everybody plays

“Cooperate”. Press the setup button and run the

model. While it is running, move the noise slider

slightly rightward to introduce some small noise.

Can you explain what happens?

Exercise 2. Consider a Rock-Paper-Scissors game with payoff matrix [[0 -1 1][1 0 -1][-1 1 0]]. Set

prob-revision to 0.1 and noise to 0. Set the initial number of players using each strategy, i.e. n-of-

players-for-each-strategy, to [100 100 100]. Press the setup button and run the model for a while.

While it is running, click on the noise slider to set its value to 0.001. Can you explain what happens?

Exercise 3. Consider a game with payoff matrix [[1 1 0][1 1 1][0 1 1]]. Set prob-revision to 0.1, noise to

0.05, and the initial number of players using each strategy, i.e. n-of-players-for-each-strategy, to [500

0 500]. Press the setup button and run the model for a while (then press the setup button again to

change the initial conditions). Can you explain what happens?

Exercise 4. Consider a game with n players and s strategies, with noise equal to 1. What is the infinite-

horizon probability distribution of the number of players using each strategy?

Exercise 5. Imagine that you’d like to run this model faster, and you are not interested in the

plot. This is a common scenario when you want to conduct large-scale computational experiments.

What lines of code could you comment out?

Exercise 6. Note that you can modify the values of parameters prob-revision and noise at runtime

with immediate effect on the dynamics of the model. How could you implement the possibility of

changing the number of players in the population with immediate effect on the model?

II-3. Noise and initial conditions | 93

II-4. Interactivity and efficiency

1. Goal

Our goal in this chapter is to improve the interactivity and the efficiency of our model.

By interactivity we mean the possibility of changing the value of parameters at runtime, with

immediate effect on the dynamics of the model. This feature is very convenient for exploratory work.

In this chapter, we will implement the necessary functionality to let the user change the number of

agents in the population at runtime.

By efficiency we mean implementing the model in such a way that it can be executed using as little

time and memory as possible. In this chapter, we will modify the code of our model slightly to make

it run significantly faster.

Oftentimes there is a trade-off between interactivity and efficiency: making the model more

interactive generally implies some loss of efficiency. Nonetheless, sometimes we can find ways of

implementing a model more efficiently without compromising its interactivity.

It is also important to be aware that –most often– there is also a trade-off between efficiency

and code readability. The changes required to make our model run faster will frequently make our

code somewhat less readable too. Uri Wilensky –the creator of NetLogo– and William Rand do not

recommend making such comprises:

However, it is important that your code be readable, so others can understand it. In the end,

computer time is cheap compared to human time. Therefore, it should be noted that, whenever

there is a possibility of trade-off, clarity of code should be preferred over efficiency. Wilensky

and Rand (2015, pp 219–20)

Our personal opinion is that this decision is best made case by case, taking into account the

objectives and constraints of the whole modelling exercise in the specific context at hand. Our hope

is that, after reading this book, you will be prepared to make these decisions by yourself in any

specific situation you may encounter.

2. Motivation. The impact of population size

The dynamics of many evolutionary models strongly depend on the number of agents in the

population. Can you guess how the population size affects the dynamics of the imitate-if-better

decision rule with noise in the Rock-Paper-Scissors game? In this chapter we will implement the

possibility of changing the population size at runtime, a feature that will greatly facilitate the

exploration of this question.

94 | Part II. Our first agent-based evolutionary model

3. Description of the model

We will not make any modification on the formal model our program implements. Thus, we refer to

the previous chapter to read the description of the model. The only paragraph we add (about the

program itself) is the following:

The number of players in the simulation can be changed at runtime with immediate effect

on the dynamics of the model, using parameter n-of-players:

• If n-of-players is reduced, the necessary number of (randomly selected) players are

killed.

• If n-of-players is increased, the necessary number of (randomly selected) players are

cloned.

Thus, the proportions of agents playing each strategy remain the same on average (although

the actual effect of this change is stochastic).

4. Interactivity

Note that we can already modify the value of parameters prob-revision and noise at runtime, with

immediate effect on the dynamics of the model. This is so because the values of these variables are

used directly in the code. Parameter prob-revision is used only in procedure to go, in the following

line:

if (random-float 1 < prob-revision) [update-strategy-after-revision]

And parameter noise is used only in procedure to update-strategy-after-revision, in the following line:

ifelse (random-float 1 < noise)

Whenever NetLogo reads the two lines of code above, it uses the current values of the two

parameters. Because of this, we can modify the parameters’ values on the fly and immediately see

how that change affects the dynamics of the model.

By contrast, changing the value of parameter n-of-players-for-each-strategy at runtime will have

no effect whatsoever. This is so because parameter n-of-players-for-each-strategy is only used in

procedure to setup-players, which is executed at the beginning of the simulation –triggered by

procedure to setup– and never again.

To enable the user to modify the population size at runtime, we should create a slider for the new

parameter n-of-players. Before doing so, we have to remove the declaration of the global variable n-

of-players in the Code tab, since the creation of the slider implies the definition of the variable as

global.

II-4. Interactivity and efficiency | 95

globals [
payoff-matrix
n-of-strategies
;; n-of-players <== we remove this line

]

After creating the slider for parameter n-of-players, we could also remove the monitor showing n-

of-players from the interface, since it is no longer needed. Another option (see figure 1 below) is to

use that same monitor to display the value of the ticks that have gone by since the beginning of

the simulation. To do this, we just have to write the primitive ticks (instead of n-of-players) in the

“Reporter” box of the monitor.

Figure 1. Interface design

The next step is to implement a separate procedure to check whether the value of parameter n-of-

players differs from the current number of players in the simulation and, if it does, act accordingly. We

find it natural to name this new procedure to update-n-of-players, and one possible implementation

would be the following:

to update-n-of-players
let diff (n-of-players - count players)

96 | Part II. Our first agent-based evolutionary model

if diff != 0 [
ifelse diff > 0
[repeat diff [ask one-of players [hatch-players 1]]]
[ask n-of (- diff) players [die]]

]
end

Note the use of primitives hatch-players and die to clone and kill agents respectively. The

difference between primitives hatch-players and create-players is important. Hatching is

an action that only individual agents (i.e. “turtles” and breeds of “turtles”, in NetLogo parlance)

can execute. By contrast, only the observer can run create-turtles and create-<breeds>
primitives.

Finally, we should include the call to the new procedure at the beginning of to go.

to go
update-n-of-players ;; <== new line
ask players [update-payoff]
ask players [

if (random-float 1 < prob-revision) [
update-strategy-after-revision

]
]
ask players [update-strategy]

tick
update-graph

end

And with this, we’re ready to go! Give it a try, and enjoy the good progress you are making!

Figure 2 below shows the skeleton of our current procedure to go, highlighting the only substantial

change we have made so far.

II-4. Interactivity and efficiency | 97

Figure 2. Skeleton of procedure to go in model nxn-imitate-if-better-noise-interactive-profiler.nlogo.
The dashed green rectangle highlights the main addition

5. Efficiency

Naturally, to make a model run faster, one can always untick the “view updates” box on the Interface

tab. The same effect can be achieved by pushing the speed slider –situated in the middle of the

interface toolbar– to its rightmost position, or by using primitive no-display in the code. This is

a must in models that do not make use of the view, like the ones we are programming here, since

it implies a significant speed-up at no cost. Thus, in our model, we should include the primitive no-
display in procedure to setup, right after clear-all.

to setup
clear-all
no-display ;; <== new line
setup-payoffs
setup-players
setup-graph
reset-ticks
update-graph

end

But beyond this simple piece of advice, in general, how can we make our model run faster? In our

view, the very first thing we have to do is to find out where our model spends most of the time. The

following section shows how to do this.

5.1. Measuring execution speed of different parts of the code

There are two simple ways to measure execution speed in NetLogo. One is using primitives reset-
timer and timer. For instance, to time how long it takes to have every agent carry out the

operation:

98 | Part II. Our first agent-based evolutionary model

other players

we could write the following reporter:

to-report time-other-players
reset-timer
ask players [let temporary-var other players]
report timer

end

The second –more advanced– way of measuring execution speed involves the Profiler Extension,

which comes bundled with NetLogo. This extension allows us to see how many times each procedure

in our model is called during a run and how long each call takes. The extension is simple to use and it

is well documented at its own website. To use it in our model, we should include the extension at the

beginning of our code, as follows:

extensions [profiler]

Then we could execute the following procedure, borrowed from the Profiler Extension

documentation page. (Please, remember that we have to include the new procedure after the

declaration of variables.)

to show-profiler-report
setup ;; set up the model
profiler:start ;; start profiling
repeat 1000 [go] ;; run something you want to measure
profiler:stop ;; stop profiling
print profiler:report ;; print the results
profiler:reset ;; clear the data

end

Once the procedure is implemented, you can run it by typing its name in the Command Center.

The profiler report includes the inclusive time and the exclusive time for each procedure. Inclusive

time is the time the simulation spends running the procedure, i.e. since the procedure is entered until

it finishes. Exclusive time is the time passed since the procedure is entered until it finishes, but does

not include any time spent in other user-defined procedures which it calls.

Let us see an example of the output printed by show-profiler-report with our current model (nxn-

imitate-if-better-noise-interactive-profiler.nlogo). We model Rock-Paper-Scissors game (payoffs = [[0

-1 1][1 0 -1][-1 1 0]]), initial distribution n-of-players-for-each-strategy = [200 200 200], prob-revision

= 0.1 and noise = 0.01.

II-4. Interactivity and efficiency | 99

BEGIN PROFILING DUMP
Sorted by Exclusive Time
Name Calls Incl T(ms) Excl T(ms) Excl/calls
UPDATE-PAYOFF 600000 13569.169 13569.169 0.023
UPDATE-STRATEGY 600000 7745.460 7745.460 0.013
UPDATE-STRATEGY-AFT... 60179 796.219 796.219 0.013
GO 1000 22746.879 462.636 0.463
UPDATE-GRAPH 1000 170.606 170.606 0.171
UPDATE-N-OF-PLAYERS 1000 2.788 2.788 0.003

Sorted by Inclusive Time
GO 1000 22746.879 462.636 0.463
UPDATE-PAYOFF 600000 13569.169 13569.169 0.023
UPDATE-STRATEGY 600000 7745.460 7745.460 0.013
UPDATE-STRATEGY-AFT... 60179 796.219 796.219 0.013
UPDATE-GRAPH 1000 170.606 170.606 0.171
UPDATE-N-OF-PLAYERS 1000 2.788 2.788 0.003

Sorted by Number of Calls
UPDATE-PAYOFF 600000 13569.169 13569.169 0.023
UPDATE-STRATEGY 600000 7745.460 7745.460 0.013
UPDATE-STRATEGY-AFT... 60179 796.219 796.219 0.013
GO 1000 22746.879 462.636 0.463
UPDATE-GRAPH 1000 170.606 170.606 0.171
UPDATE-N-OF-PLAYERS 1000 2.788 2.788 0.003
END PROFILING DUMP

In the example above we can see –among other things– that:

• Simulations spend most of the time executing procedure to update-payoff (13 569 / 22 746 ≈

60%). This procedure is fairly simple (it only takes 0.023 ms each time it is executed), but the

problem is that it is called 600 000 times. This makes sense, since there are 600 agents in this

simulation, each of them runs to update-payoff once every tick, and we ran the model for 1000

ticks (600 × 1 × 1000 = 600 000).

• After procedure to update-payoff, simulations spend most of the time running procedure to

update-strategy. This procedure is extremely simple, but it is also called 600 000 times. All in

all, this procedure takes 7 745 / 22 746 ≈ 34% of simulation time.

• Our implementation to allow the user to modify the number of agents at runtime hardly takes

any computing time (just 2.788 ms, i.e., 2.788 / 22 746 ≈ 0.01% of simulation time).

With this information in mind, our next step is to try to identify inefficiencies in our code. These

inefficiencies often take one of two possible forms:

• Computations that we conduct but we do not use at all.

• Computations that we conduct several times despite knowing that their outputs will not

change.

Let us see an example of each of these inefficiencies in our current code.

100 | Part II. Our first agent-based evolutionary model

5.2. Example of computations that we conduct but do not use

Note that in this model we make all agents update their payoff in every tick, but we only use the

payoffs obtained by the revising agents and by the agents they observe. Thus, we can make the

model run faster by asking only revising and observed agents to update their payoff. One way of

implementing this efficiency improvement would be to modify the code of procedures to go and to

update-strategy-after-revision as follows:

to go
update-n-of-players
;; ask players [update-payoff] <== We remove this line
ask players [

if (random-float 1 < prob-revision) [
update-strategy-after-revision

]
]
ask players [update-strategy]
tick
update-graph

end

to update-strategy-after-revision
ifelse random-float 1 < noise

[set strategy-after-revision (random n-of-strategies)]
[

let observed-player one-of other players

update-payoff ;; <== new line
ask observed-player [update-payoff] ;; <== new line

if ([payoff] of observed-player) > payoff [
set strategy-after-revision ([strategy] of observed-player)

]
]

end

These changes, which are summarized in Figure 3 below, will make simulations with low prob-revision

run much faster.

II-4. Interactivity and efficiency | 101

Figure 3. Skeleton of procedure to go in model
nxn-imitate-if-better-noise-efficient-but-more-than-once-profiler.nlogo. The dashed red rectangle

highlights the code that has been removed. The dashed green rectangle highlights the addition

In any case, we should double check that we have made our model faster using the profiler extension.

The output for the new model (nxn-imitate-if-better-noise-efficient-but-more-than-once-

profiler.nlogo) is:

BEGIN PROFILING DUMP
Sorted by Exclusive Time
Name Calls Incl T(ms) Excl T(ms) Excl/calls
UPDATE-STRATEGY 600000 8056.915 8056.915 0.013
UPDATE-PAYOFF 118634 3013.853 3013.853 0.025
UPDATE-STRATEGY-AFT... 59894 4866.334 1852.482 0.031
GO 1000 13623.073 373.725 0.374
UPDATE-GRAPH 1000 320.337 320.337 0.320
UPDATE-N-OF-PLAYERS 1000 5.762 5.762 0.006

Sorted by Inclusive Time
GO 1000 13623.073 373.725 0.374
UPDATE-STRATEGY 600000 8056.915 8056.915 0.013
UPDATE-STRATEGY-AFT... 59894 4866.334 1852.482 0.031
UPDATE-PAYOFF 118634 3013.853 3013.853 0.025
UPDATE-GRAPH 1000 320.337 320.337 0.320
UPDATE-N-OF-PLAYERS 1000 5.762 5.762 0.006

Sorted by Number of Calls
UPDATE-STRATEGY 600000 8056.915 8056.915 0.013
UPDATE-PAYOFF 118634 3013.853 3013.853 0.025
UPDATE-STRATEGY-AFT... 59894 4866.334 1852.482 0.031
GO 1000 13623.073 373.725 0.374
UPDATE-GRAPH 1000 320.337 320.337 0.320
UPDATE-N-OF-PLAYERS 1000 5.762 5.762 0.006
END PROFILING DUMP

102 | Part II. Our first agent-based evolutionary model

From the report, we can draw the following inferences:

• We have significantly reduced the number of calls to procedure to update-payoff, from 600

000 down to 118 634. This number makes sense, since there were 600 agents in this

simulation, prob-revision was 0.1, noise was 0.01, each revision without noise makes two calls

to the procedure, and we ran the model 1000 ticks (600 × 0.1 × 0.99 × 2 × 1000 = 118 800).

Note, however, that for prob-revision greater than 0.5, the number of calls would be greater

with the new implementation. In general, the expected number of calls to procedure to update-

payoff in the new model will be (2 × prob-revision × n-of-players × ticks).

• Our change in the code has reduced the simulation time considerably, from 22 746 down to

13 623 ms.

• Now simulations spend most of the time running procedure to update-strategy. This procedure

is extremely simple, but it is called 600 000 times. All in all, this procedure takes 8 056 / 13

623 ≈ 59% of simulation time.

The changes we conducted have made our model run much faster (since prob-revision was 0.1 <

0.5). However, note that, by making these changes, we have implemented a slightly different model.

In the original implementation, agents would only update their payoff once every tick, but in the

new implementation, the same agent could update her payoff several times in the same tick (if, for

instance, she is observed several times). This leads to a (very slightly) different distribution of payoffs.

Whether this is crucial or not is a matter that would depend on the scientific question we want to

answer. In any case, do not worry! We can fix this problem and, at the same time, make our model

even more efficient! Let us see how!

Our goal then is to make sure that agents execute procedure to update-payoff at most once in each

tick. To make that happen, we have to keep track of whether each individual agent has already

executed the procedure in the current tick or not. To that end, we could define a new player-owned

variable named played? that will equal true if the agent has already executed procedure to update-

payoff in the current tick and false otherwise. We would also have to set the every players’ value of

this new variable played? to false at the beginning of the tick. The changes we have to implement in

the model to make this work are highlighted below:

players-own [
strategy
strategy-after-revision
payoff
played? ;; <== new line

]

to setup-players
;; ... some lines of code ... ;;

let i 0
foreach initial-distribution [j ->

create-players j [
set payoff 0

II-4. Interactivity and efficiency | 103

set strategy i
set strategy-after-revision strategy
set played? false ;; <== new line

]
set i (i + 1)

]
set n-of-players count players

end

to go
update-n-of-players
ask players [set played? false] ;; <== new line
ask players [

if (random-float 1 < prob-revision) [
update-strategy-after-revision

]
]
ask players [update-strategy]
tick
update-graph

end

to update-payoff
let mate one-of other players
set payoff item ([strategy] of mate) (item strategy payoff-matrix)
set played? true ;; <== new line

end

to update-strategy-after-revision
ifelse (random-float 1 < noise)

[set strategy (random n-of-strategies)]
[

let observed-player one-of other players
if not played? [update-payoff] ;; <== modified lines
ask observed-player [if not played? [update-payoff]] ;; <==
if ([payoff] of observed-player) > payoff [

set strategy ([strategy] of observed-player)
]

]
end

The changes implemented above are summarized in Figure 4 below.

104 | Part II. Our first agent-based evolutionary model

Figure 4. Skeleton of procedure to go in model nxn-imitate-if-better-noise-efficient-played-profiler.nlogo.
The dashed green rectangle highlights the main addition in the code. The dashed blue rectangle highlights the

main modification in the code

With this new implementation, the expected number of calls to procedure to update-payoff will

be less than (2 × prob-revision × n-of-players × ticks) –especially so if prob-revision is high– and

never more than (n-of-players × ticks). Thus, the new implementation reduces the number of calls to

procedure to update-payoff regardless of the value of prob-revision, and it implements the original

model precisely. Thus, one would think that we have made our model even faster but… is that true?

Let us check with the profiler extension.

The output for the new model (nxn-imitate-if-better-noise-efficient-played-profiler.nlogo) is:

BEGIN PROFILING DUMP
Sorted by Exclusive Time
Name Calls Incl T(ms) Excl T(ms) Excl/calls
GO 1000 21457.028 8050.356 8.050
UPDATE-STRATEGY 600000 7716.470 7716.470 0.013
UPDATE-PAYOFF 110916 3871.700 3871.700 0.035
UPDATE-STRATEGY-AFT... 60322 5557.386 1685.686 0.028
UPDATE-GRAPH 1000 127.998 127.998 0.128
UPDATE-N-OF-PLAYERS 1000 4.817 4.817 0.005

Sorted by Inclusive Time
GO 1000 21457.028 8050.356 8.050
UPDATE-STRATEGY 600000 7716.470 7716.470 0.013
UPDATE-STRATEGY-AFT... 60322 5557.386 1685.686 0.028
UPDATE-PAYOFF 110916 3871.700 3871.700 0.035
UPDATE-GRAPH 1000 127.998 127.998 0.128
UPDATE-N-OF-PLAYERS 1000 4.817 4.817 0.005

Sorted by Number of Calls
UPDATE-STRATEGY 600000 7716.470 7716.470 0.013
UPDATE-PAYOFF 110916 3871.700 3871.700 0.035
UPDATE-STRATEGY-AFT... 60322 5557.386 1685.686 0.028
GO 1000 21457.028 8050.356 8.050
UPDATE-GRAPH 1000 127.998 127.998 0.128

II-4. Interactivity and efficiency | 105

UPDATE-N-OF-PLAYERS 1000 4.817 4.817 0.005
END PROFILING DUMP

The following table shows the simulation times and the number of calls to procedure to update-

payoff of the different models we have programmed in this chapter up until now, in chronological

order:

Model’s name Summary

Number of
calls to

procedure to
update-payoff

Simulation
time (ms)

nxn-imitate-if-better-noise-
interactive-profiler.nlogo

Baseline. All players update their payoff in
every tick

600 000 22 746

nxn-imitate-if-better-noise-
efficient-but-more-than-
once-profiler.nlogo

Only revisers and the players they observe
update their payoff. Some players may update

their payoff more than once in one tick
118 634 13 623

nxn-imitate-if-better-noise-
efficient-played-
profiler.nlogo

The number of times that procedure to
update-payoff is executed is minimal.

Implementation with boolean variable named
played?

110 916 21 457

Table 1. Simulation times and number of calls to procedure to update-payoff of all the models implemented in
this chapter up until now

It may come as a surprise that the last changes we made, which ensure that the model calls procedure

to update-payoff as few times as possible, actually make the model much slower, from 13 623 ms up

to 21 457 ms! Oh, no! How is that possible? We are calling procedure to update-payoff fewer times!

(We went from 118 634 down to 110 916.) Take a look at the profiler report above and try to come

up with an answer… This is a tricky one…

Why is the last model so slow?

As you can see in the report, the exclusive time spent in procedure to go each time it is

executed has increased a lot: from 0.374 to 8.050 ms. The only change we have made in this

procedure has been to include the following line:

ask players [set played? false] ;; <== new line

This line is not as harmless as it seems in current versions of NetLogo, and it is the main

responsible for the increase in simulation time.

106 | Part II. Our first agent-based evolutionary model

Our goal now is to implement the same model, but without having to explicitly tell every agent at the

beginning of every tick that they have not played yet.

One way we can do this is by using a player-owned variable named tick-I-played-last (instead of

boolean variable played?) that will store the tick number at which the player updated her payoff

for the last time. Then, we would ask players to update their payoff only if the value of their tick-I-

played-last is less than the current tick. The key difference with the previous model is that we do not

have to set the value of this new variable tick-I-played-last every tick for every player.

Model nxn-imitate-if-better-noise-efficient-tick-I-played-last-profiler.nlogo implements these

changes, which are summarized in Figure 5 below.

Figure 5. Skeleton of procedure to go in model
nxn-imitate-if-better-noise-efficient-tick-I-played-last-profiler.nlogo. The dashed red rectangle highlights

the code that has been removed. The dashed blue rectangle highlights the main modification in the code

All the necessary changes in the code are highlighted below:

players-own [
strategy
strategy-after-revision
payoff
;; played? <== deleted line
tick-I-played-last ;; <== new line

]

to setup-players

;; ... some lines of code ... ;;

let i 0
foreach initial-distribution [j ->

create-players j [
set payoff 0
set strategy i

II-4. Interactivity and efficiency | 107

set strategy-after-revision strategy
;; set played? false <== deleted line
set tick-I-played-last -1 ;; <== new line

]
set i (i + 1)

]

set n-of-players count players
end

to go
update-n-of-players
;; ask players [set played? false] <== deleted line
ask players [

if (random-float 1 < prob-revision) [
update-strategy-after-revision

]
]
ask players [update-strategy]
tick
update-graph

end

to update-payoff
let mate one-of other players
set payoff item ([strategy] of mate) (item strategy payoff-matrix)
;; set played? true <== deleted line
set tick-I-played-last ticks ;; <== new line

end

to update-strategy-after-revision
ifelse random-float 1 < noise

[set strategy-after-revision (random n-of-strategies)]
[

let observed-player one-of other players
;; vvv modified lines below vvv
if (tick-I-played-last < ticks) [update-payoff]
ask observed-player [

if (tick-I-played-last < ticks) [update-payoff]
]

if ([payoff] of observed-player) > payoff [
set strategy-after-revision ([strategy] of observed-player)

]
]

end

The output of profiler for the new model (nxn-imitate-if-better-noise-efficient-tick-I-played-last-

profiler.nlogo) is:

BEGIN PROFILING DUMP

108 | Part II. Our first agent-based evolutionary model

Sorted by Exclusive Time
Name Calls Incl T(ms) Excl T(ms) Excl/calls
UPDATE-STRATEGY 600000 7462.968 7462.968 0.012
UPDATE-PAYOFF 110211 3927.434 3927.434 0.036
UPDATE-STRATEGY-AFT... 59846 5527.475 1600.041 0.027
GO 1000 13416.363 279.186 0.279
UPDATE-GRAPH 1000 144.769 144.769 0.145
UPDATE-N-OF-PLAYERS 1000 1.964 1.964 0.002

Sorted by Inclusive Time
GO 1000 13416.363 279.186 0.279
UPDATE-STRATEGY 600000 7462.968 7462.968 0.012
UPDATE-STRATEGY-AFT... 59846 5527.475 1600.041 0.027
UPDATE-PAYOFF 110211 3927.434 3927.434 0.036
UPDATE-GRAPH 1000 144.769 144.769 0.145
UPDATE-N-OF-PLAYERS 1000 1.964 1.964 0.002

Sorted by Number of Calls
UPDATE-STRATEGY 600000 7462.968 7462.968 0.012
UPDATE-PAYOFF 110211 3927.434 3927.434 0.036
UPDATE-STRATEGY-AFT... 59846 5527.475 1600.041 0.027
GO 1000 13416.363 279.186 0.279
UPDATE-GRAPH 1000 144.769 144.769 0.145
UPDATE-N-OF-PLAYERS 1000 1.964 1.964 0.002
END PROFILING DUMP

It is then corroborated that this last version is the most efficient (comparable to the second one

if prob-revision is low) and it implements the original model exactly. The table below shows the

simulation times and the number of calls to procedure to update-payoff of all the models

implemented in this chapter up until now:

Model’s name Summary

Number of
calls to

procedure to
update-payoff

Simulation
time (ms)

nxn-imitate-if-better-noise-
interactive-profiler.nlogo

Baseline. All players update their payoff in
every tick

600 000 22 746

nxn-imitate-if-better-noise-
efficient-but-more-than-
once-profiler.nlogo

Only revisers and the players they observe
update their payoff. Some players may update

their payoff more than once in one tick
118 634 13 623

nxn-imitate-if-better-noise-
efficient-played-
profiler.nlogo

The number of times that procedure to
update-payoff is executed is minimal.

Implementation with boolean variable named
played?

110 916 21 457

nxn-imitate-if-better-noise-
efficient-tick-I-played-last-
profiler.nlogo

The number of times that procedure to
update-payoff is executed is minimal.
Implementation with variable named

tick-I-played-last

110 211 13 416

Table 2. Simulation times and number of calls to procedure to update-payoff of all the models implemented in
this chapter up until now

II-4. Interactivity and efficiency | 109

Finally, note that, looking at the output printed by show-profiler-report, it still seems wasteful to

make all agents update their strategies, even when they do not revise them. In exercise 5 below, we

ask you to think about how you would make only revising agents call procedure to update-strategy.

5.3. Example of computations that we conduct several times
when once would do

Let us now focus on the second type of inefficiency pointed out above. Can you identify any

computations that we repeatedly conduct in every tick, even though its result does not change?

Note that we undertake the computation:

other players

several times in every tick, but we could conduct it just once for each agent in each simulation. To be

sure, we conduct that operation every time an agent computes her payoff in to update-payoff:

let mate one-of other players

And also every time an agent revises her strategy in to update-strategy-after-revision:

let observed-agent one-of other players

This computation may not sound very expensive, but if the number of agents is large, it may well be

(see exercise 3 below). To make the model run faster, we could create an individually-owned variable

named e.g. other-players, as follows

players-own [
strategy
strategy-after-revision
payoff
tick-I-played-last
other-players

]

And then we should set the new individually-owned variable other-players to the appropriate value

only once at the beginning of each simulation (at the end of procedure to setup-players).

ask players [set other-players other players]

Since we may change the number of players at runtime, we should also include the line above in the

block of code where we clone or kill agents in procedure to update-n-of-players, i.e.

to update-n-of-players
let diff (n-of-players - count players)
if diff != 0 [

ifelse diff > 0
[repeat diff [ask one-of players [hatch-players 1]]]

110 | Part II. Our first agent-based evolutionary model

[ask n-of (- diff) players [die]]
ask players [set other-players other players]

]
end

Once we have done that, in the two lines of code where we had the reporter

other players

we should write other-players instead. These changes will make simulations with many players run

faster. To find out how much faster, we should use the profiler extension again. The report of

profiler for the new model (nxn-imitate-if-better-noise-efficient-tick-I-played-last-and-other-players-

profiler.nlogo) is:

BEGIN PROFILING DUMP
Sorted by Exclusive Time
Name Calls Incl T(ms) Excl T(ms) Excl/calls
UPDATE-STRATEGY 600000 7923.625 7923.625 0.013
UPDATE-PAYOFF 110079 3063.731 3063.731 0.028
UPDATE-STRATEGY-AFT... 59798 4255.300 1191.569 0.020
GO 1000 12607.398 283.696 0.284
UPDATE-GRAPH 1000 141.295 141.295 0.141
UPDATE-N-OF-PLAYERS 1000 3.482 3.482 0.003

Sorted by Inclusive Time
GO 1000 12607.398 283.696 0.284
UPDATE-STRATEGY 600000 7923.625 7923.625 0.013
UPDATE-STRATEGY-AFT... 59798 4255.300 1191.569 0.020
UPDATE-PAYOFF 110079 3063.731 3063.731 0.028
UPDATE-GRAPH 1000 141.295 141.295 0.141
UPDATE-N-OF-PLAYERS 1000 3.482 3.482 0.003

Sorted by Number of Calls
UPDATE-STRATEGY 600000 7923.625 7923.625 0.013
UPDATE-PAYOFF 110079 3063.731 3063.731 0.028
UPDATE-STRATEGY-AFT... 59798 4255.300 1191.569 0.020
GO 1000 12607.398 283.696 0.284
UPDATE-GRAPH 1000 141.295 141.295 0.141
UPDATE-N-OF-PLAYERS 1000 3.482 3.482 0.003
END PROFILING DUMP

We can see that the execution time of procedures to update-payoff and to update-strategy-after-

revision has been reduced, as expected, but the overall simulation time has not decreased

substantially. The table below summarizes the simulation times and the number of calls to procedure

to update-payoff of all the models implemented in this chapter:

II-4. Interactivity and efficiency | 111

Model’s name Summary

Number of
calls to

procedure to
update-payoff

Simulation
time (ms)

nxn-imitate-if-better-noise-
interactive-profiler.nlogo

Baseline. All players update their payoff in
every tick

600 000 22 746

nxn-imitate-if-better-noise-
efficient-but-more-than-
once-profiler.nlogo

Only revisers and the players they observe
update their payoff. Some players may

update their payoff more than once in one
tick

118 634 13 623

nxn-imitate-if-better-noise-
efficient-played-
profiler.nlogo

The number of times that procedure to
update-payoff is executed is minimal.
Implementation with boolean variable

named played?

110 916 21 457

nxn-imitate-if-better-noise-
efficient-tick-I-played-last-
profiler.nlogo

The number of times that procedure to
update-payoff is executed is minimal.
Implementation with variable named

tick-I-played-last

110 211 13 416

nxn-imitate-if-better-noise-
efficient-tick-I-played-last-
and-other-players-
profiler.nlogo

We also use variable other-players 110 079 12 607

Table 3. Simulation times and number of calls to procedure to update-payoff of all the models implemented
in this chapter

5.4. Other tips to improve the efficiency of NetLogo code

Railsback et al. (2017) give several guidelines to identify slow parts of NetLogo code and make them

run faster, providing specific examples for agent-based models written in NetLogo.

5.5. Take-home message

The main lesson we would like you to take home from this chapter is methodological: if you want to

make a model run faster, you should definitely use the profiler extension, i.e. start by looking at the

data. This is because NetLogo, like any other programming language, has been optimized to compute

things in a certain way, and this way may be different from other programming languages you may

be familiar with, and may even change from one version of NetLogo to the next. Thus, our most

important piece of advice is: look at the evidence by using the profiler extension and try different

ways of coding. By doing so, you will develop skills that will help you implement your models more

efficiently.

112 | Part II. Our first agent-based evolutionary model

6. Complete code in the Code tab

extensions [profiler]

globals [
payoff-matrix
n-of-strategies

]

breed [players player]

players-own [
strategy
strategy-after-revision
payoff
tick-I-played-last
other-players

]

to show-profiler-report
setup ;; set up the model
profiler:start ;; start profiling
repeat 1000 [go] ;; run something you want to measure
profiler:stop ;; stop profiling
print profiler:report ;; print the results
profiler:reset ;; clear the data

end

to setup
clear-all
no-display
setup-payoffs
setup-players
setup-graph
reset-ticks
update-graph

end

to setup-payoffs
set payoff-matrix read-from-string payoffs
set n-of-strategies length payoff-matrix

end

to setup-players
let initial-distribution read-from-string n-of-players-for-each-strategy

if length initial-distribution != length payoff-matrix [
user-message (word "The number of items in\n"

"n-of-players-for-each-strategy (i.e. "
length initial-distribution "):\n"
n-of-players-for-each-strategy
"\nshould be equal to the number of rows\n"

II-4. Interactivity and efficiency | 113

"in the payoff matrix (i.e. "
length payoff-matrix "):\n"
payoffs

)
]

let i 0
foreach initial-distribution [j ->

create-players j [
set payoff 0
set strategy i
set strategy-after-revision strategy
set tick-I-played-last -1

]
set i (i + 1)

]

set n-of-players count players
ask players [set other-players other players]

end

to setup-graph
set-current-plot "Strategy Distribution"
foreach (range n-of-strategies) [i ->

create-temporary-plot-pen (word i)
set-plot-pen-mode 1
set-plot-pen-color 25 + 40 * i

]
end

to go
update-n-of-players
ask players [

if (random-float 1 < prob-revision) [
update-strategy-after-revision

]
]
ask players [update-strategy]
tick
update-graph

end

to update-payoff
let mate one-of other-players
set payoff item ([strategy] of mate) (item strategy payoff-matrix)
set tick-I-played-last ticks

end

to update-strategy-after-revision
ifelse random-float 1 < noise

[set strategy-after-revision (random n-of-strategies)]
[

let observed-player one-of other-players

114 | Part II. Our first agent-based evolutionary model

if (tick-I-played-last < ticks) [update-payoff]
ask observed-player [

if (tick-I-played-last < ticks) [update-payoff]
]

if ([payoff] of observed-player) > payoff [
set strategy-after-revision ([strategy] of observed-player)

]
]

end

to update-strategy
set strategy strategy-after-revision

end

to update-graph
let strategy-numbers (range n-of-strategies)
let strategy-frequencies map [n ->

count players with [strategy = n] / n-of-players
] strategy-numbers

set-current-plot "Strategy Distribution"
let bar 1
foreach strategy-numbers [n ->

set-current-plot-pen (word n)
plotxy ticks bar
set bar (bar - (item n strategy-frequencies))

]
set-plot-y-range 0 1

end

to update-n-of-players
let diff (n-of-players - count players)
if diff != 0 [

ifelse diff > 0
[repeat diff [ask one-of players [hatch-players 1]]]
[ask n-of (- diff) players [die]]
ask players [set other-players other players]

]
end

II-4. Interactivity and efficiency | 115

Picture by Romain Peli

7. Sample run

Now that we can change the population size at runtime, we can easily explore the question

posed above: How does population size affect the dynamics of the imitate-if-better decision rule with

noise in the Rock-Paper-Scissors game? To do that, let us use the same setting as in the previous

chapters (i.e. payoffs = [[0 -1 1][1 0 -1][-1 1 0]] and prob-revision = 0.1), start with a small population

of 60 agents (n-of-players-for-each-strategy = [20 20 20]), and then, increase n-of-players up to 2000

at runtime. The following video shows a representative run with these settings, where we increased

the population size from 60 to 2000 at tick 4000.

One or more interactive elements has been excluded from this version of the text. You can

view them online here: https://wisc.pb.unizin.org/agent-based-evolutionary-game-

dynamics/?p=1061#video-1061-1

As you can see, when the number of agents is small, the population consistently follows cycles of

large amplitude among the three strategies. The cycles are so wide that sometimes one or even

two strategies go extinct for a while. In stark contrast, when the population is large, the cycles get

much smaller and the population tends to linger around the state where each strategy is used by

approximately a third of the population.
1

8. Exercises

You can use the following link to download the last NetLogo model we implemented in this chapter:

nxn-imitate-if-better-noise-efficient-tick-I-played-last-and-other-players-profiler.nlogo.

Exercise 1. In this chapter we have

improved both the interactivity and the

efficiency of our model. Can you quantify how

much faster the last version of our code runs

compared to the previous one (nxn-imitate-if-

better-noise)? For the sake of concreteness, use

1000-tick simulations with payoffs = [[0 -1 1][1

0 -1][-1 1 0]], initial distribution n-of-players-for-

each-strategy = [300 300 300], prob-revision =

0.1 and noise = 0.01.

1. The state where all strategies are equally represented is a globally asymptotically stable state of the mean dynamics
of this model (which provides a good approximation for models with large populations). See solution to Exercise 2.3.2.

116 | Part II. Our first agent-based evolutionary model

Exercise 2. In this chapter we have drastically reduced the number of times that procedure to

update-payoff is called. Can you derive an analytical approximation to the percentage of calls to this

procedure that the new implementation is expected to save, as a function of prob-revision and n-of-

players? (You may consider noise = 0 initially).

Plot of an approximation to the expected percentage of calls to procedure to update-

payoff that are saved

The plot below shows an approximation to the expected percentage of calls to procedure to

update-payoff that the last three NetLogo models implemented in this chapter save (i.e., the

efficient models that guarantee that players execute this procedure at most once in each tick),

as a function of prob-revision, for different values of the number of players n-of-players. It is

interesting to see that this function is not very sensitive to the number of players n-of-players.

It is assumed that noise = 0.

II-4. Interactivity and efficiency | 117

Exercise 3. In this chapter we have reduced the number of times the computation other
players is conducted by creating an individually-owned variable (named other-players). To compare

these two approaches, write a short NetLogo program where 10000 agents conduct this operation.

Exercise 4. What changes would you have to make in the code so revising agents within the tick

update their strategies sequentially (in random order), rather than simultaneously?

Hint to implement asynchronous strategy updating

It is possible to do this by making a minor change in procedure to go, without touching the rest

of the code.

Exercise 5. What changes would you have to make in the code so it is only revising agents that

call procedure to update-strategy? Use the profiler extension to find out whether the new model is

faster. To facilitate the comparison, use the same parameter settings as in Table 3.

Hint to implement a version where only revising agents call procedure to update-

strategy

let revising-players players with [random-float 1 < prob-revision]

118 | Part II. Our first agent-based evolutionary model

II-5. Analysis of these models

1. Two complementary approaches

Agent-based models are usually analyzed using computer simulation and/or mathematical analysis.

• The computer simulation approach consists in running many simulations –i.e. sampling the

model many times– and then, with the data thus obtained, trying to infer general patterns and

properties of the model.

• Mathematical approaches do not look at individual simulation runs, but instead analyze the

rules that define the model directly, and try to derive their logical implications. Mathematical

approaches use deductive reasoning only, so their conclusions follow with logical necessity

from the assumptions embedded in the model (and in the mathematics employed).

These two approaches are complementary, in that they can provide fundamentally different insights

on the same model. Furthermore, there are synergies to be exploited by using the two approaches

together (see e.g. Izquierdo et al. (2013, 2019), Seri (2016), Hilbe and Traulsen (2016), García and

van Veelen (2016, 2018) and Hindersin et al. (2019)).

Here we provide several references to material that is helpful to analyze the agent-based models we

have developed in this Part II of the book, and illustrate its usefulness with a few examples. Section

2 below deals with the computer simulation approach, while section 3 addresses the mathematical

analysis approach.

2. Computer simulation approach

The task of running many simulation runs –with the same or different combinations of parameter

values– is greatly facilitated by a tool named BehaviorSpace, which is included within NetLogo and is

very well documented at NetLogo website. Here we provide an illustration of how to use it.

Consider a coordination game defined by payoffs [[1 0][0 2]], played by 1000 agents who

simultaneously revise their strategies with probability 0.01 in every tick, following the imitate if

better rule without noise. This is the model implemented in the previous chapter, and it can be

downloaded here (nxn-imitate-if-better-noise-efficient.nlogo). This model is stochastic and we wish

to study how it usually behaves, departing from a situation where both strategies are equally

represented. To that end, we could run several simulation runs (say 1000) and plot the average

fraction of 1-strategists in every tick, together with the minimum and the maximum values observed

across runs in every tick. An illustration of this type of graph is shown in figure 1. Recall that strategies

are labeled 0 and 1, so strategy 1 is the one that can get a payoff of 2.

II-5. Analysis of these models | 119

Figure 1. Average proportion of 1-strategists in an experiment of 1000 simulation runs. Orange error bars
show the minimum and maximum values observed across the 1000 runs. Payoffs [[1 0][0 2]]; prob-revision

0.01; noise 0; initial conditions [500 500]

To set up the computational experiment that will produce the data required to draw figure 1, we

just have to go to Tools (in the upper menu of NetLogo) and then click on BehaviorSpace. The new

experiment can be set up as shown in figure 2.

120 | Part II. Our first agent-based evolutionary model

Figure 2. Experiment setup in BehaviorSpace

In this particular experiment, we are not changing the value of any parameter, but doing so is

straightforward. For instance, if we wanted to run simulations with different values of prob-

revision –say 0.01, 0.05 and 0.1–, we would just write:

["prob-revision" 0.01 0.05 0.1]

If, in addition, we would like to explore the values of noise 0, 0.01, 0.02 … 0.1, we could use the

syntax for loops, [start increment end], as follows:

["noise" [0 0.01 0.1]] ;; note the additional brackets

II-5. Analysis of these models | 121

If we made the two changes described above, then the new computational experiment would

comprise 33000 runs, since NetLogo would run 1000 simulations for each combination of parameter

values (i.e. 3 × 11).

The original experiment shown in figure 2, which consists of 1000 simulation runs only, takes a

couple of minutes to run. Once it is completed, we obtain a .csv file with all the requested data, i.e.

the fraction of 1-strategists in every tick for each of the 1000 simulation runs – a total of 1001000

data points. Then, with the help of a pivot table (within e.g. an Excel spreadsheet), it is easy to plot

the graph shown in figure 1. A similar graph that can be easily plotted is one that shows the standard

error of the average computed in every tick (see figure 3).
1

Figure 3. Average proportion of 1-strategists in an experiment of 1000 simulation runs. Orange error bars
show the standard error. Payoffs: [[1 0][0 2]]; prob-revision: 0.01; noise 0; initial conditions [500 500]

3. Mathematical analysis approach. Markov chains

From a mathematical point of view, agent-based models can be usefully seen as time-homogeneous

Markov chains (see Gintis (2013) and Izquierdo et al. (2009) for several examples). Doing so can

make evident many features of the model that are not apparent before formalizing the model as

a Markov chain. Thus, our first recommendation is to learn the basics of this theory. Karr (1990),

Kulkarni (1995, chapters 2-4), Norris (1997), Kulkarni (1999, chapter 5), and Janssen and Manca

(2006, chapter 3) are all excellent introductions to the topic.

All the models developed in this Part II can be seen as time-homogeneous Markov chains on the

finite space of possible strategy distributions. This means that the number of agents that are using

1. The standard error of the average equals the standard deviation of the sample divided by the square root of the
sample size. In our example, the maximum standard error was well below 0.01.

122 | Part II. Our first agent-based evolutionary model

each possible strategy is all the information we need to know about the present –and the past– of

the stochastic process in order to be able to –probabilistically– predict its future as accurately as it is

possible. Thus, the number of possible states in these models is , where is the number of

agents and the number of strategies.
2

In some simple cases, a full Markov analysis can be conducted by deriving the transition probabilities

of the Markov chain and operating directly with them. Section 3.1 illustrates how this type of analysis

can be undertaken on models with 2 strategies where agents revise their strategies sequentially.

However, in many other models a full Markov analysis is unfeasible because the exact formulas can

lead to very cumbersome expressions, or may even be too complex to evaluate. This is often the

case if the number of states is large.
3

In such situations, one can still take advantage of powerful

approximation results, which we introduce in section 3.2.

3.1. Markov analysis of 2-strategy evolutionary processes where
agents switch strategies sequentially

In this section we study 2-strategy evolutionary processes where agents switch strategies

sequentially. For simplicity, we will asume that there is one revision per tick, but several revisions

could take place in the same tick as long as they occurred sequentially. These processes can be

formalized as birth-death chains, a special type of Markov chains for which various analytical results

can be derived.

Note that, in the model implemented in the previous chapter (and simulated in section 2 above),

agents do not revise their strategies sequentially, but simultaneously within the tick. The difference

between these two updating schemes are small for low probabilities of revision, so the formal

analysis presented here will be useful to analyze the computer model as long prob-revision is not too

high.

3.1.1. Markov chain formulation

Consider a population of agents who repeatedly play a symmetric 2-player 2-strategy game. The

two possible strategies are labeled 0 and 1. In every tick, one random agent is given the opportunity

to revise his strategy, and he does so according to a certain decision rule (such as the imitate if better

rule, the imitative pairwise-difference rule or the best experienced payoff rule).

Let be the proportion of the population using strategy 1 at tick . The evolutionary process

described above induces a Markov chain on the state space . We do not

have to keep track of the proportion of agents using strategy 0 because there are only two strategies,

so the two proportions must add up to one. Since there is only one revision per tick, note that there

are only three possible transitions: one implies increasing by , another one implies decreasing

2. This result can be easily derived using a "stars and bars" analogy.
3. As an example, in a 4-strategy game with 1000 players, the number of possible states (i.e. strategy distributions) is

.

II-5. Analysis of these models | 123

by , and the other one leaves the state unchanged. Let us denote the transition probabilities as

follows:

Thus, the probability of staying at the same state after one tick is:

This Markov chain has two important properties: the state space is endowed

with a linear order and all transitions move the state one step to the left, one step to the right, or

leave the state unchanged. These two properties imply that the Markov chain is a birth-death chain.

Figure 4 below shows the transition diagram of this birth-death chain, ignoring the self-loops.

Figure 4. Transition diagram of a birth-death chain

The transition matrix of a Markov chain gives us the probability of going from one state to another.

In our case, the elements of the transition matrix are:

In our evolutionary process, the transition probabilities and are determined by the

decision rule that agents use. Let us see how this works with a specific example. Consider

124 | Part II. Our first agent-based evolutionary model

the coordination game defined by payoffs [[1 0][0 2]], played by agents who sequentially revise their

strategies according to the imitate if better rule (without noise). This is very similar to the model

we have simulated in section 2 above. The only difference is that now we are assuming revisions

take place sequentially, while in the model simulated in section 2 agents revise their strategies

simultaneously within the tick (with probability 0.01). Assuming that the fraction of agents that revise

their strategies simultaneously is low (in this case, about 1%), the difference between the formal

model and the computer model will be small.
4

Let us derive . Note that the state increases by if and only

if the revising agent is using strategy 0 and he switches to strategy 1. In the game with payoffs [[1

0][0 2]], this happens if and only if the following conditions are satisfied:

• the agent who is randomly drawn to revise his strategy is playing strategy 0 (an event which

happens with probability),

• the agent that is observed by the revising agent is playing strategy 1 (an event which happens

with probability ; note that there are agents using strategy 1 and the revising agent

observes another agent, thus the divisor), and

• the observed agent’s payoff is 2, i.e. the observed agent –who is playing strategy 1– played

with an agent who was also playing strategy 1 (an event which happens with probability

; note that the observed agent plays with another agent who is also playing strategy 1).

Therefore:

Note that, in this case, the payoff obtained by the revising agent is irrelevant.

We can derive in a similar fashion. Do you want to give it a

try before reading the solution?

Computation of

Note that the state decreases by if and only if the revising agent is using strategy 1 and he

switches to strategy 0. In the game with payoffs [[1 0][0 2]], this happens if and only if the

following conditions are satisfied:

• the agent who is randomly drawn to revise his strategy is playing strategy 1 (an event

which happens with probability),

4. We give you a hint to program the asynchronous model in exercise 4 of chapter II-4.

II-5. Analysis of these models | 125

• the agent that is observed by the revising agent is playing strategy 0 (an event which

happens with probability ; note that there are 0-strategists and the

revising agent observes another agent, thus the divisor),

• the revising agent’s payoff is 0, i.e. the revising agent played with an agent who was

playing strategy 0 (an event which happens with probability ; note that the

revising agent plays with another agent, thus the divisor).

• the observed agent’s payoff is 1, i.e. the observed agent, who is playing strategy 0, played

with an agent who was also playing strategy 0 (an event which happens with probability

; note that the observed agent plays with another agent who is also playing

strategy 0).

Therefore:

With the formulas of and in place, we can write the transition matrix of this model for any

given . As an example, this is the transition matrix for :

And here’s a little Mathematica® script that can be used to generate the transition matrix for any :

n = 10;
p[x_] := (1 - x) (x n/(n - 1)) ((x n - 1)/(n - 1))
q[x_] := x (((1 - x)n)/(n - 1))^2 ((1 - x)n - 1)/(n - 1)

P = SparseArray[{

126 | Part II. Our first agent-based evolutionary model

{i_, i_} -> (1 - p[(i - 1)/n] - q[(i - 1)/n]),
{i_, j_} /; i == j - 1 -> p[(i - 1)/n],
{i_, j_} /; i == j + 1 -> q[(i - 1)/n]
}, {n + 1, n + 1}];

MatrixForm[P]

3.1.2. Transient dynamics

In this section, we use the transition matrix we have just derived to compute the transient

dynamics of our two-strategy evolutionary process, i.e. the probability distribution of at a certain

. Naturally, this distribution generally depends on initial conditions.

To be concrete, imagine we set some initial conditions, which we express as a (row) vector

containing the initial probability distribution over the states of the system at tick , i.e.

, where . If initial conditions are

certain, i.e. if , then all elements of are 0 except for , which would be equal to 1.

Our goal is to compute the vector , which contains

the probability of finding the process in each of the possible states at tick (i.e. after

revisions), having started at initial conditions . This is a row vector representing the probability

mass function of .

To compute , it is important to note that the -step transition probabilities

are given by the entries of the th power of the transition matrix, i.e.:

Thus, we can easily compute the transient distribution simply by multiplying the initial conditions

by the th power of the transition matrix :

As an example, consider the evolutionary process we formalized as a Markov chain in the previous

section, with imitate if better agents playing the coordination game [[1 0][0 2]]. Let us

start at initial state , i.e. , where the solitary 1 lies exactly

at the middle of the vector (i.e. at position). Figure 5 shows the distributions

and .

II-5. Analysis of these models | 127

Figure 5. Probability mass function of at different ticks. Number of agents . Initial conditions

To produce figure 5, we have computed the transition matrix with the previous Mathematica® script

(having previously set the number of agents to 100) and then we have run the following two lines:

a0 = UnitVector[n + 1, 1 + n/2];
ListPlot[Table[a0.MatrixPower[N@P, i], {i, 100, 500, 100}], PlotRange -> All]

Looking at the probability distribution of , it is clear that, after 500 revisions, the evolutionary

process is very likely to be at a state where most of the population is using strategy 1. There is

even a substantial probability (~6.66%) that the process will have reached the absorbing state where

everyone in the population is using strategy 1. Note, however, that all the probability distributions

shown in figure 5 have full support, i.e. the probability of reaching the absorbing state where no one

uses strategy 1 after 100, 200, 300, 400 or 500 is very small, but strictly positive. As a matter of fact,

it is not difficult to see that, given that and (i.e. initially there are 50 agents

using strategy 1), for any .

Finally, to illustrate the sensitivity of transient dynamics to initial conditions, we replicate the

computations shown in figure 5, but with initial conditions (figure 6) and

(figure 7).

128 | Part II. Our first agent-based evolutionary model

Figure 6. Probability mass function of at different ticks. Number of agents . Initial conditions

Figure 7. Probability mass function of at different ticks. Number of agents . Initial conditions

Besides the probability distribution of at a certain , we can analyze many other interesting

properties of a Markov chain, such as the expected hitting time (or first passage time) of a certain

state , which is the expected time at which the process first reaches state . For general

Markov chains, this type of results can be found in any of the references mentioned at the beginning

of section 3. For birth-death chains specifically, Sandholm (2010a, section 11.A.3) provides

simple formulas to compute expected hitting times and hitting probabilities (i.e. the probability that

the birth-death chain reaches state before state).

II-5. Analysis of these models | 129

3.1.3. Infinite-horizon behavior

In this section we wish to study the infinite-horizon behavior of our evolutionary process, i.e. the

distribution of when the number of ticks tends to infinity. This behavior generally depends on

initial conditions, but we focus here on a specific type of Markov chain (irreducible and aperiodic)

whose limiting behavior does not depend on initial conditions. To understand the concepts of

irreducibility and aperiodicity, we recommend you read any of the references on Markov chains

provided at the beginning of section 3. Here we just provide sufficient conditions that guarantee that

a (time-homogeneous) Markov chain is irreducible and aperiodic:

Sufficient conditions for irreducibility and aperiodicity of time-homogeneous

Markov chains

• If it is possible to go from any state to any other state in one single step (

for all) and there are more than 2 states, then the Markov

chain is irreducible and aperiodic.

• If it is possible to go from any state to any other state in a finite number

of steps, and there is at least one state in which the system may stay

for two consecutive steps (for some), then the Markov chain is

irreducible and aperiodic.

• If there exists a positive integer such that for all and ,

then the Markov chain is irreducible and aperiodic.

If one sees the transition diagram of a Markov chain (see e.g. Figure 4 above) as a directed graph (or

network), the conditions above can be rewritten as:

• The network contains more than two nodes and there is a directed link from every node to

every other node.

• The network is strongly connected and there is at least one loop.

• There exists a positive integer such that there is at least one walk of length

from any node to every node (including itself).

The 2-strategy evolutionary process we are studying in this section is not necessarily irreducible if

there is no noise. For instance, the coordination game played by imitate-if-better agents analyzed in

section 3.1.2 is not irreducible. That model will eventually reach one of the two absorbing states

where all the agents are using the same strategy, and stay in that state forever. The probability of

ending up in one or the other absorbing state depends on initial conditions (see Figure 8).
5

5. These probabilities are sometimes called "fixation probabilities".

130 | Part II. Our first agent-based evolutionary model

Figure 8. Probability of ending up in each of the two absorbing states for different initial states , in
the coordination game [[1 0][0 2]] played by imitate-if-better agents

However, if we add noise in the agents’ decision rule –so there is always the possibility that

revising agents choose any strategy–, then it is easy to see that the second sufficient condition for

irreducibility and aperiodicity above is fulfilled.
6

Generally, in irreducible and aperiodic Markov chains with state space (henceforth IAMCs),

the probability mass function of approaches a limit as tends to infinity. This limit is called the

limiting distribution, and is denoted here by , a vector with components which denote the

probability of finding the system in state in the long run. Formally, in IAMCs the following limit

exists and is unique (i.e. independent of initial conditions):

Thus, in IAMCs the probability of finding the system in each of its states in the long run is strictly

positive and independent of initial conditions. Importantly, in IAMCs the limiting distribution

coincides with the occupancy distribution , which is the long-run fraction of the time that the

IAMC spends in each state.
7

This means that we can estimate the limiting distribution of a IAMC

using the computer simulation approach by running just one simulation for long enough (which

enables us to estimate).

6. In terms of the transition probabilities and , adding noise implies that for (i.e. you
can always move one step to the right unless already equals 1), for (i.e. you can always move
one step to the left unless already equals 0) and for all (i.e. you can always stay
where you are).

7. Formally, the occupancy of state is defined as:

where denotes the number of times that the Markov chain visits state over the time span .

II-5. Analysis of these models | 131

In any IAMC, the limiting distribution can be computed as the left eigenvector of the transition

matrix corresponding to eigenvalue 1.
8

Note, however, that computing eigenvectors is

computationally demanding when the state space is large. Fortunately, for irreducible and aperiodic

birth-death chains (such as our 2-strategy evolutionary process with noise), there is an analytic

formula for the limiting distribution that is easy to evaluate:
9

where the value of is derived by imposing that the elements of

must add up to 1. This formula can be easily implemented in Mathematica®:

μ = Normalize[FoldList[Times, 1, Table[p[(j-1)/n]/q[j/n],{j, n}]], Total]

Note that the formula above is only valid for irreducible and aperiodic birth-death chains. An example

of such a chain would be the model where a number of imitate if better agents are playing the

coordination game [[1 0][0 2]] with noise. Thus, for this model we can easily analyze the impact of

noise on the limiting distribution. Figure 9 illustrates this dependency.

Figure 9. Limiting distribution for different values of noise in the coordination game [[1 0][0 2]] played by
imitate-if-better agents

Figure 9 has been created by running the following Mathematica® script:

8. The second-largest eigenvalue modulus of the transition matrix determines the rate of convergence to the limiting
distribution.

9. For the derivation of this formula, see e.g. Sandholm (2010a, example 11.A.10, p. 443).

132 | Part II. Our first agent-based evolutionary model

n = 100;

p[x_, noise_]:= (1-x)((1-noise)(x n/(n-1))((x n - 1)/(n-1)) + noise/2)
q[x_, noise_]:= x((1-noise)(((1-x)n)/(n-1))^2 ((1-x)n-1)/(n-1) + noise/2)

μs = Map[Normalize[
FoldList[Times, 1, Table[p[(j-1)/n, #] / q[j/n, #], {j, n}]]
, Total]&, {0.01, 0.1, 0.2, 0.3, 0.4, 0.5}];

ListPlot[μs, DataRange->{0, 1}, PlotRange->{0, All}, Filling -> Axis]

The limiting distribution of birth-death chains can be further characterized using results in Sandholm

(2007).

3.2. Approximation results

In many models, a full Markov analysis cannot be conducted because the exact formulas are too

complicated or because they may be too computationally expensive to evaluate. In such cases, we

can still apply a variety of approximation results. This section introduces some of them.

3.2.1. Deterministic approximations of transient dynamics when the population is
large. The mean dynamic

When the number of agents is sufficiently large, the mean dynamic of the process provides a good

deterministic approximation to the dynamics of the stochastic evolutionary process over finite time

spans. In this section we are going to analyze the behavior of our evolutionary process as the

population size becomes large, so we make this dependency on explicit by using superscripts

for , and .

Let us start by illustrating the essence of the mean dynamic approximation with our running example

where imitate-if-better agents are playing the coordination game [[1 0][0 2]] without noise. Initially,

half the agents are playing strategy 1 (i.e.). Figures 10, 11 and 12 show the expected

proportion of 1-strategists against the number of revisions (scaled by),

together with the 95% band for , for different population sizes.
10

Figure 10 shows the transient

dynamics for , figure 11 for and figure 12 for . These figures show

exact results, computed as explained in section 3.1.2.

10. For each value of , the band is defined by the smallest interval that leaves less than 2.5% probability at both
sides, i.e. and , with

.

II-5. Analysis of these models | 133

Figure 10. Expected proportion of agents playing strategy 1 and its 95% band (in yellow). Model: coordination
game [[1 0][0 2]] played by imitate-if-better agents. Initially, half the population is using strategy

1

Figure 11. Expected proportion of agents playing strategy 1 and its 95% band (in yellow). Model: coordination
game [[1 0][0 2]] played by imitate-if-better agents. Initially, half the population is using

strategy 1

134 | Part II. Our first agent-based evolutionary model

Figure 12. Expected proportion of agents playing strategy 1 and its 95% band (in yellow). Model: coordination
game [[1 0][0 2]] played by imitate-if-better agents. Initially, half the population is using

strategy 1

Looking at figures 10, 11 and 12 it is clear that, as the number of agents gets larger, the stochastc

evolutionary process gets closer and closer to its expected motion. The intuition is that, as the

number of agents gets large, the fluctuations of the evolutionary process around its expected motion

tend to average out. In the limit when goes to infinity, the stochastic evolutionary process is very

likely to behave in a nearly deterministic way, mirroring a solution trajectory of a certain ordinary

differential equation called the mean dynamic.

To derive the mean dynamic of our 2-strategy evolutionary process, we consider the behavior of

the process over the next time units, departing from state . We define one unit of clock

time as ticks, i.e. the time over which every agent is expected to receive exactly one revision

opportunity. Thus, over the time interval , the number of agents who are expected to receive

a revision opportunity is Of these agents who revise their strategies, are

expected to switch from strategy 0 to strategy 1 and are expected to switch from

strategy 1 to strategy 0. Hence, the expected change in the number of agents that are using

strategy 1 over the time interval is . Therefore, the expected change in

the proportion of agents using strategy 1, i.e. the expected change in state at , is

Note that the transition probabilities and may depend on . This does not represent

a problem as long as this dependency vanishes as gets large. In that case, to deal with that

dependency, we take the limit of and as goes to infinity since, after all, the mean

dynamic approximation is only valid for large . Thus, defining

and

II-5. Analysis of these models | 135

we arrive at the mean dynamic equation:

As an illustration of the usefulness of the mean dynamic to approximate transient dynamics, consider

the simulations of the coordination game example presented in section 2. We already computed the

transition probabilities and in section 3.1.1:

Thus, the mean dynamic reads:

where stands for the fraction of 1-strategists. The solution of the mean dynamic with initial

condition is shown in figure 13 below. It is clear that the mean dynamic provides a

remarkably good approximation to the average transient dynamics plotted in figures 1 and 3.
11

And,

as we have seen, the greater the number of agents, the closer the stochastic process will get to its

expected motion.

Figure 13. Trajectory of the mean dynamic of the example in section 2, showing the proportion of
1-strategists as a function of time (rescaled to match figures 1 and 3)

11. Note that one unit of clock time in the mean dynamic is defined in such a way that each player expects to receive one
revision opportunity per unit of clock time. In the model simulated in section 2, prob-revision = 0.01, so one unit of
clock time corresponds to 100 ticks (i.e. 1 / prob-revision).

136 | Part II. Our first agent-based evolutionary model

Naturally, the mean dynamic can be solved for many different initial conditions, providing an overall

picture of the transient dynamics of the model when the population is large. Figure 14 below shows

an illustration, created with the following Mathematica® code:

Plot[
Evaluate[
Table[
NDSolveValue[{x'[t] == x[t] (x[t] - 1) (x[t]^2 - 3 x[t] + 1),

x[0] == x0}, x, {t, 0, 10}][ticks/100]
, {x0, 0, 1, 0.01}]

], {ticks, 0, 1000}]

Figure 14. Trajectories of the mean dynamic of the example in section 2, showing the proportion of
1-strategists as a function of time (rescaled to match figures 1 and 3) for different initial conditions

The cut-off point that separates the set of trajectories that go towards state from those that

will end up in state is easy to derive, by finding the rest points of the mean dynamic:

The three solutions in the interval are , and .

In this section we have derived the mean dynamic for our 2-strategy evolutionary process where

agents switch strategies sequentially. Note, however, that the mean dynamic approximation is valid

for games with any number of strategies and even for models where several revisions take place

simultaneously (as long as the number of revisions is fixed as goes to infinity or the probability of

revision is).

It is also important to note that, even though here we have presented the mean dynamic

approximation in informal terms, the link between the stochastic process and its relevant mean

II-5. Analysis of these models | 137

dynamic rests on solid theoretical grounds (see Benaïm & Weibull (2003), Sandholm (2010a, chapter

10) and Roth & Sandholm (2013)).

Finally, to compare agent-based simulations of the imitate-if-better rule and its mean dynamics in

2×2 symmetric games, you may want to play with the purpose-built demonstration titled Expected

Dynamics of an Imitation Model in 2×2 Symmetric Games. And to solve the mean dynamic of the

imitate-if-better rule in 3-strategy games, you may want to use this demonstration. In chapter V-3,

we derive the mean dynamic for many other decision rules besides imitate-if-better, and we provide a

NetLogo model that numerically solves the mean dynamic for different settings at runtime.

3.2.2. Diffusion approximations to characterize dynamics around equilibria

“Equilibria” in finite population dynamics are often defined as states where the expected motion of

the (stochastic) process is zero. Formally, these equilibria correspond to the rest points of the mean

dynamic of the original stochastic process. At some such equilibria, agents do not switch strategies

anymore. Examples of such static equilibria would be the states where all agents are using the same

strategy under the imitate-if-better rule. However, at some other equilibria, the expected flows of

agents switching between different strategies cancel one another out (so the expected motion is

indeed zero), but agents keep revising and changing strategies, potentially in a stochastic fashion. To

characterize the dynamics around this second type of “equilibria”, which are most often interior, the

diffusion approximation is particularly useful.

As an example, consider a Hawk-Dove game with payoffs [[2 1][3 0]] and the imitate-if-better decision

rule without noise. The mean dynamic of this model is:

where stands for the fraction of 1-strategists, i.e. “Hawk” agents.
12

Solving the mean dynamic

reveals that most large-population simulations starting with at least one “Hawk” and at least one

“Dove” will tend to approach the state where half the population play “Hawk” and the other play

“Dove”, and stay around there for long. Figure 15 below shows several trajectories for different initial

conditions.

12. For details, see Izquierdo and Izquierdo (2013) and Loginov (2021).

138 | Part II. Our first agent-based evolutionary model

Figure 15. Trajectories of the mean dynamic of an imitate-if-better Hawk-Dove game, showing the
proportion of “Hawks” as a function of time for different initial conditions. One unit of time corresponds to

revisions

Naturally, simulations do not get stuck in the half-and-half state, since agents keep revising their

strategy in a stochastic fashion (see figure 16). To understand this stochastic flow of agents between

strategies near equilibria, it is necessary to go beyond the mean dynamic. Sandholm (2003) shows

that –under rather general conditions– stochastic finite-population dynamics near rest points can be

approximated by a diffusion process, as long as the population size is large enough. He also shows

that the standard deviations of the limit distribution are of order .

To illustrate this order , we set up one simulation run starting with 10 agents playing “Hawk” and

10 agents playing “Dove”. This state constitutes a so-called “Equilibrium”, since the expected change

in the strategy distribution is zero. However, the stochasticity in the decision rule and in the matching

process imply that the strategy distribution is in perpetual change. In the simulation shown in figure

16, we modify the number of players at runtime. At tick 10000, we increase the number of players

by a factor of 10 up to 200 and, after 10000 more ticks, we set n-of-players to 2000 (i.e., a factor of

10, again). The standard deviation of the fraction of players using strategy “Hawk” (or “Dove”) during

each of the three stages in our simulation run was: 0.1082, 0.0444 and 0.01167 respectively. As

expected, these numbers are related by a factor of approximately .

II-5. Analysis of these models | 139

Figure 16. A simulation run of an imitate-if-better Hawk-Dove game, set up with 20 agents during the first
10000 ticks, then 200 agents during the following 10000 ticks, and finally 2000 agents during the last 10000

ticks. Payoffs: [[2 1][3 0]]; prob-revision: 0.01; noise 0; initial conditions [10 10]

As a matter of fact, Izquierdo et al. (2019, example 3.1) use the diffusion approximation to show

that in the large limit, fluctuations of this process around its unique interior rest point are

approximately Gaussian with standard deviation .

3.2.3. Stochastic stability analyses

In the last model we have implemented, if noise is strictly positive, the model’s infinite-horizon

behavior is characterized by a unique stationary distribution regardless of initial conditions (see

section 3.1 above). This distribution has full support (i.e. all states will be visited infinitely often) but,

naturally, the system will spend much longer in certain areas of the state space than in others. If the

noise is sufficiently small (but strictly positive), the infinite-horizon distribution of the Markov chain

tends to concentrate most of its mass on just a few states. Stochastic stability analyses are devoted

to identifying such states, which are often called stochastically stable states (Foster and Young, 1990),

and are a subset of the absorbing states of the process without noise.
13

To learn about this type of analysis, the following references are particularly useful: Vega-Redondo

(2003, section 12.6), Fudenberg and Imhof (2008), Sandholm (2010a, chapters 11 and 12) and

Wallace and Young (2015).

To illustrate the applicability of stochastic stability analyses, consider our imitate-if-better model

13. There are a number of different definitions of stochastic stability, depending on which limits are taken and in what
order. For a discussion of different definitions, see Sandholm (2010a, chapter 12).

140 | Part II. Our first agent-based evolutionary model

where agents play the Hawk-Dove game analyzed in section 3.2.2 with some strictly positive noise.

It can be proved that the only stochastically stable state in this model is the state where everyone

chooses strategy Hawk.
14

This means that, given a certain population size, as noise tends to 0, the

infinite-horizon dynamics of the model will concentrate on that single state.

An important concern in stochastic stability analyses is the time one has to wait until the prediction

of the analysis becomes relevant. This time can be astronomically long, as the following example

illustrates.

3.2.4 A final example

A fundamental feature of these models, but all too often ignored in applications, is that the

asymptotic behavior of the short-run deterministic approximation need have no connection to

the asymptotic behavior of the stochastic population process. Blume (1997, p. 443)

Consider the Hawk-Dove game analyzed in section 3.2.2, played by imitate-if-better agents

with noise = 10-10, departing from an initial state where 28 agents are playing Hawk. Even though the

population size is too modest for the mean dynamic and the diffusion approximations to be accurate,

this example will clarify the different time scales at which each of the approximations is useful.

Let us review what we can say about this model using the three approximations discussed in the

previous sections:

• Mean dynamic. Figure 15 shows the mean dynamic of this model without noise. The noise we

are considering here is so small that the mean dynamic looks the same in the time interval

shown in figure 15.
15

So, in our model with small noise, for large , the process will tend

to move towards state , a journey that will take about revisions for our initial

conditions . The greater the , the closer the stochastic process will be to

the solution trajectory of its mean dynamic.

• Diffusion approximation. Once in the vicinity of the unique interior rest point , the

diffusion approximation tells us that –for large – the dynamics are well approximated by a

Gaussian distribution with standard deviation .

• Stochastic stability. Finally, we also know that, for a level of noise low enough (but strictly

positive), the limiting distribution is going to place most of its mass on the unique stochastically

stable state, which is . So, eventually, the dynamics will approach its limiting distribution,

14. To be precise, here we are considering stochastic stability in the small noise limit, where we fix the population size
and take the limit of noise to zero (Sandholm, 2010a, section 12.1.1). The proof can be conducted using the concepts
and theorems put forward by Ellison (2000). Note that the radius of the state where everyone plays Hawk is 2 (i.e. 2
mutations are needed to leave its basin of attraction), while its coradius is just 1 (one mutation is enough to go from
the state where everyone plays Dove to the state where everyone plays Hawk).

15. The only difference is that, in the model with noise, the two trajectories starting at the monomorphic states
eventually converge to the state , but this convergence cannot be appreciated in the time interval shown in
figure 15.

II-5. Analysis of these models | 141

which –assuming the noise is low enough– places most of its mass on the monomorphic state

.
16

Each of these approximations refers to a different time scale. In this regard, we find the classification

made by Binmore and Samuelson (1994) and Binmore et al. (1995) very useful (see also Samuelson

(1997) and Young (1998)). These authors distinguish between the short run, the medium run, the long

run and the ultralong run:

By the short run, we refer to the initial conditions that prevail when one begins one’s

observation or analysis. By the ultralong run, we mean a period of time long enough for the

asymptotic distribution to be a good description of the behavior of the system. The long run

refers to the time span needed for the system to reach the vicinity of the first equilibrium in

whose neighborhood it will linger for some time. We speak of the medium run as the time

intermediate between the short run [i.e. initial conditions] and the long run, during which the

adjustment to equilibrium is occurring. Binmore et al. (1995, p. 10)

Let us see these different time scales in our Hawk-Dove example. The following video shows the

exact transient dynamics of this model, computed as explained in section 3.1.2. Note that the video

shows all the revisions up until , but then it moves faster and faster. The blue progress bar

indicates the number of revisions already shown.

One or more interactive elements has been excluded from this version of the text. You can

view them online here: https://wisc.pb.unizin.org/agent-based-evolutionary-game-

dynamics/?p=105#video-105-1

Transient dynamics of a model where imitate-if-better agents are playing a Hawk-Dove game,
with noise= . Each iteration corresponds to one revision

In the video we can distinguish the different time scales:

• The short run, which is determined by the initial conditions .

• The medium run, which in this case spans roughly from to . The

dynamics of this adjustment process towards the equilibrium can be characterized by

the mean dynamic, especially for large .

• The long run, which in this case refers to the dynamics around the equilibrium ,

spanning roughly from to . These dynamics are well described by

the diffusion approximation, especially for large .

16. Using the analytic formula for the limiting distribution of irreducible and aperiodic birth-death chains provided in
section 3.1.3, we have checked that for and noise = 10-10.

142 | Part II. Our first agent-based evolutionary model

• The ultra long run, which in this case is not really reached until . It is not until then

that the limiting distribution becomes a good description of the dynamics of the model.

It is remarkable how long it takes for the infinite horizon prediction to hold force. Furthermore, the

wait grows sharply as increases and also as the level of noise decreases.
17

These long waiting times

are typical of stochastic stability analyses, so care must be taken when applying the conclusions of

these analyses to real world settings.

In summary, as grows, both the mean dynamic and the difussion approximations become better.

For any fixed , eventually, the behavior of the process will be well described by its limiting

distribution. If the noise is low enough (but strictly positive), the limiting distribution will place most

of its mass on the unique stochastically stable state . But note that, as grows, it will take

exponentially longer for the infinite-horizon prediction to kick in (see Sandholm and Staudigl (2018)).

Note also that for the limiting distribution to place most of its mass on the stochastically stable state,

the level of noise has to be sufficiently low, and if the population size increases, the maximum

level of noise at which the limiting distribution concentrates most of its mass on the stochastically

stable state decreases. As an example, consider the same setting as the one shown in the video, but

with . In this case, the limiting distribution is completely different (see figure 17). A noise

level of 10-10 is not enough for the limiting distribution to place most of its mass on the stochastically

stable state when .

Figure 17. Limiting distribution of a model where imitate-if-better agents are playing a
Hawk-Dove game, with noise = 10-10

Figure 17 has been created by running the following Mathematica® script:

17. Using tools from large deviations theory, Sandholm and Staudigl (2018) show that –for large population sizes – the
time required to reach the boundary is of an exponential order in .

II-5. Analysis of these models | 143

n = 50;
noise = 10^-10;

p[x_, noise_] := (1-x)((1-noise)((x n)/(n-1))((1-x)n/(n-1)) + noise/2)
q[x_, noise_] := x((1-noise)(((1-x)n)/(n-1))(x n - 1)/(n-1) + noise/2)

μ = Normalize[
FoldList[Times, 1,

Table[p[(j-1)/n, noise] / q[j/n, noise],{j, n}]]
, Total];

ListPlot[μ, DataRange->{0, 1}, PlotRange->{0, All}, Filling -> Axis]

To conclude, Figure 18 and Figure 19 below show the transient distributions of this model with

and respectively, for different levels of noise μ, and at different ticks . The

distributions at the far right, for , are effectively equal to the asymptotic ones.

Figure 18. Distributions of a model where imitate-if-better agents are playing a Hawk-Dove game,
with different levels of noise μ, and at different ticks

144 | Part II. Our first agent-based evolutionary model

Figure 19. Distributions of a model where imitate-if-better agents are playing a Hawk-Dove game,
with different levels of noise μ, and at different ticks

Figure 18 and Figure 19 have been created by running the following Mathematica® script:

n = 30;

noiseLevels = Table[10^(-i), {i, 6, 11}];
ticks = Join[{0}, Table[10^i, {i, 7, 11}]];

initialDistribution = UnitVector[n + 1, Round[0.93*n] + 1];

p[x_, noise_] := (1-x)((1-noise)((x n)/(n-1))((1-x)n/(n-1)) + noise/2)
q[x_, noise_] := x((1-noise)(((1-x)n)/(n-1))(x n - 1)/(n-1) + noise/2)

P[noise_] := SparseArray[{
{i_, i_} -> (1 - p[(i - 1)/n, noise] - q[(i - 1)/n, noise]),
{i_, j_} /; i == j - 1 -> p[(i - 1)/n, noise],
{i_, j_} /; i == j + 1 -> q[(i - 1)/n, noise]},
{n + 1, n + 1}];

FormatNice[i_]:=
If[i == 0., 0, ScientificForm[N@i, NumberFormat -> (10^#3 &)]];

TableForm[
Table[
ListPlot[
initialDistribution . MatrixPower[N@P[noise], finalTimestep],

II-5. Analysis of these models | 145

Filling -> Axis, PlotRange -> All, ImageSize -> Tiny, Axes -> False],
{noise, noiseLevels}, {finalTimestep, ticks}
],

TableHeadings -> {
Map[Row[{"μ = ", FormatNice[#]}] &, noiseLevels],
Map[Row[{"k = ", FormatNice[#]}] &, ticks]},

TableAlignments -> Center, TableSpacing -> {3, 1}]

4. Exercises

Exercise 1. Consider the evolutionary process analyzed in section 3.1.2. Figure 5 shows that, if we

start with half the population using each strategy, the probability that the whole population will be

using strategy 1 after 500 revisions is about 6.66%. Here we ask you to use the NetLogo model

implemented in the previous chapter to estimate that probability. To do that, you will have to set up

and run an experiment using BehaviorSpace.

Exercise 2. Derive the mean dynamic of a Prisoner’s Dilemma game for the imitate if better rule.

Exercise 3. Derive the mean dynamic of the coordination game discussed in chapter I-2 (with payoffs

[[1 0][0 2]]) for the imitative pairwise-difference rule.

Exercise 4. Derive the mean dynamic of the coordination game discussed in chapter I-2 (with payoffs

[[1 0][0 2]]) for the best experienced payoff rule.

Exercise 5. For the best experienced payoff rule, derive the mean dynamic of the 2-player n-strategy

(single-optimum) coordination game with the following payoff matrix:

Exercise 6. Once you have done exercise 5 above, prove that, in the derived mean dynamics, the

state where every player chooses the efficient strategy (which provides a payoff of n) attracts all

trajectories except possibly those starting at the other monomorphic states in which all players use

the same strategy.

146 | Part II. Our first agent-based evolutionary model

PART III. SPATIAL
INTERACTIONS ON A GRID

Agent-Based Evolutionary Game Dynamics | 147

III-1. Spatial chaos in the Prisoner's Dilemma

1. Goal

The goal of this chapter is to learn how to build agent-based models with spatial structure. In models

with spatial structure, agents do not interact with all other agents with the same probability, but they

interact preferentially with those who are nearby.
1

More generally, populations where some pairs of agents are more likely to interact with each other

than with others are called structured populations. This contrasts with the models developed in the

previous Part, where all members of the population were equally likely to interact with each other.
2

The dynamics of an evolutionary process under random matching can be very different from the

dynamics of the same process in a structured population. In social dilemmas in particular, population

structure can play a crucial role (Gotts et al. (2003), Hauert (2002,
3

2006), Roca et al. (2009a,

2009b)).
4

2. Motivation. Cooperation in spatial settings

In the previous Part, we saw that if agents play the Prisoner’s Dilemma in a population where

all members are equally likely to interact with each other, then defection prevails. Here we want

to explore whether adding spatial structure may affect that observation. Could cooperation be

sustained if we removed the unrealistic assumption that all members of the population are equally

likely to interact with each other? To shed some light on this question, in this chapter we will

implement a model analyzed by Nowak and May (1992, 1993).

3. Description of the model

In this model, there is a population of agents arranged on a 2-dimensional lattice of “patches”. There

is one agent in each patch. The size of the lattice, i.e. the number of patches in each of the two

1. Note that in most evolutionary models there are two types of neighborhoods for each individual agent A:

• the set of agents with whom agent A plays the game, and

• the set of agents that agent A may observe at the time of revising his strategy.

Most often these two sets coincide for each individual agent, but that is not necessarily the case (see e.g. Ohtsuki et
al. (2007a, 2007b)).

2. Populations where all members are equally likely to interact with each other are sometimes called well-mixed
populations.

3. See Roca et al. (2009b) for an important and illuminating discussion of this paper.
4. Christoph Hauert has an excellent collection of interactive tutorials on this topic at his site EvoLudo (Hauert 2018).

148 | Part III. Spatial interactions on a grid

dimensions, can be set by the user. Each patch has eight neighboring patches (i.e. the eight cells

which surround it), except for the patches at the boundary, which have five neighbors if they are on

a side, or three neighbors if they are at one of the four corners.

Agents repeatedly play a symmetric 2-player 2-strategy game, where the two possible strategies

are labeled C (for Cooperate) and D (for Defect). The payoffs of the game are determined using

four parameters: CC-payoff, CD-payoff, DC-payoff, and DD-payoff, where XY-payoff denotes the payoff

obtained by an X-player who meets a Y-player.

The initial percentage of C-players in the population is initial-%-of-C-players, and they are randomly

distributed in the grid. From then onwards, the following sequence of events –which defines a tick–

is repeatedly executed:

1. Every agent plays the game with all his neighbors (once with each neighbor) and with himself

(Moore neighborhood). The total payoff for the player is the sum of the payoffs in these

encounters.

2. All agents simultaneously revise their strategy according to the imitate the best

neighbor decision rule, which reads as follows:

Consider the set of all your neighbors plus yourself; then adopt the strategy of one of the

agents in this set who has obtained the greatest payoff. If there is more than one agent

with the greatest payoff, choose one of them at random to imitate.

4. Interface design

Figure 1. Interface design

III-1. Spatial chaos in the Prisoner's Dilemma | 149

To define each agent’s neighborhood, in this chapter we will use the 2-dimensional grid already built

in NetLogo, often called “the world”. This will make our code simpler and the visualizations nicer.

The interface (see figure 1 above) includes:

• The 2D view of the NetLogo world (i.e. the large black square in the interface), which is made

up of patches. This view is already on the interface by default when creating a new NetLogo

model.

Choose the dimensions of the world by clicking on the “Settings…” button on the

top bar, or by right-clicking on the 2D view and choosing Edit. A window will pop

up, which allows you to choose the number of patches by setting the values of

min-pxcor, max-pxcor, min-pycor and max-pycor. You can also determine the

patches’ size in pixels, and whether the grid wraps horizontally, vertically, both or

none (see Topology section). You can choose these parameters as in figure 2 below:

150 | Part III. Spatial interactions on a grid

Figure 2. Model settings

• Three buttons:

1. One button named setup, which runs the procedure to setup.

2. One button named go once, which runs the procedure to go.

3. One button named go, which runs the procedure to go indefinitely.

In the Code tab, write the procedures to setup and to go, without including any code

inside for now. Then, create the buttons, just like we did in previous chapters.

Note that the interface in figure 1 has an extra button labeled make agent at 0 0 play

III-1. Spatial chaos in the Prisoner's Dilemma | 151

D. You may wish to include it now. The code that goes inside this button is proposed

as Exercise 2.

• Four sliders, to choose the payoffs for each possible outcome (CC, CD, DC, DD).

Create the four sliders with global variable names CC-payoff, CD-payoff, DC-payoff,

and DD-payoff. Remember to choose a range, an interval and a default value for each

of them. You can choose minimum 0, maximum 2 and increment 0.01.

• A slider to let the user select the initial percentage of C-players.

Create a slider for global variable initial-%-of-C-players. You can choose limit values 0

(as the minimum) and 100 (as the maximum), and an increment of 1.

• A plot that will show the evolution of the number of agents playing each strategy.

Create a plot and name it Strategy Distribution.

5. Code

5.1. Skeleton of the code

Figure 3 below provides a schematic view of the code. You can find the legend for code skeletons in

Appendix A-2.

152 | Part III. Spatial interactions on a grid

Figure 3. Skeleton of the code

5.2. Global variables and individually-owned variables

We will not need any global variables besides those defined with the sliders in the interface.

Note that in this model there is a one-to-one correspondence between our immobile players and the

patches they live in. Thus, there is no need to create any turtles (i.e. NetLogo mobile agents) in our

model. We can work only with patches, and our code will be much simpler and readable.

Thus, we can make the built-in “patches” be the players, identifying each patch with one player. These

patches already exist in NetLogo, making up the world, so we do not need to create them. Having

said that, we do need to associate with each patch all the information that we want it to carry. This

information will be:

• Whether the patch is a C-player or D-player. For efficiency and code readability we can use a

boolean variable to this end, which we can call C-player? and which will take the value true or

false.

• Whether the patch will be a C-player or a D-player after its revision. For this purpose, we may

use the boolean variable C-player?-after-revision. This is needed because we want to model

synchronous updating, i.e. we want all patches to change their strategy at the same time. To do

this, first we will ask all patches to compute the strategy they will adopt after the revision and,

once all patches have computed their next strategy, we will ask them all to switch to it at the

same time.

• The total payoff obtained by the patch playing with its neighbours. We can call this variable

payoff.

• For efficiency, it will also be useful to endow each patch with the set of neighbouring patches

plus itself. The reason is that this set will be used many times, and it never changes, so it can be

III-1. Spatial chaos in the Prisoner's Dilemma | 153

computed just once at the beginning and stored in memory. We will store this set in a variable

named my-nbrs-and-me.

• The following variable is also defined for efficiency reasons. Note that the payoff of a patch

depends on the number of C-players and D-players in its set my-nbrs-and-me. To spare the

operation of counting D-players, we can calculate it as the number of players in my-nbrs-

and-me (which does not change in the whole simulation) minus the number of C-players. To

this end, we can store the number of players in the set my-nbrs-and-me of each patch as an

individually-owned variable that we naturally name n-of-my-nbrs-and-me.

Thus, this part of the code looks as follows:

patches-own [
C-player?
C-player?-after-revision
payoff
my-nbrs-and-me
n-of-my-nbrs-and-me

]

5.3. Setup procedures

In the setup procedure we will:

1. Clear everything up, so we initialize the model afresh, using the primitive clear-all:

clear-all

2. Set initial values for the variables that we have associated to each patch. We can set the payoff

to 0,
5

and both C-player? and C-player-last? to false (later we will ask some patches to set

these values to true). To set the value of my-nbrs-and-me, NetLogo primitives neighbors and

patch-set are really handy.

ask patches [
set payoff 0
set C-player? false
set C-player?-after-revision false
set my-nbrs-and-me (patch-set neighbors self)
set n-of-my-nbrs-and-me (count my-nbrs-and-me)

]

3. Ask a certain number of randomly selected patches to be C-players. That number depends on

the percentage initial-%-of-C-players chosen by the user and on the total number of patches,

5. By default, user-defined variables in NetLogo are initialized with the value 0, so there is no actual need to explicitly
set the initial value of individually-owned variables to 0, but it does no harm either.

154 | Part III. Spatial interactions on a grid

and it must be an integer, so we can calculate it as:

round (initial-%-of-C-players * count patches / 100)

To randomly select a certain number of agents from an agentset (such as patches), we can

use the primitive n-of (which reports another –usually smaller– agentset). Thus, the resulting

instruction will be:

ask n-of (round (initial-%-of-C-players * count patches / 100)) patches [
set C-player? true
set C-player?-after-revision true

]

4. Color patches according to the four possible combinations of values of C-player? and C-

player?-after-revision. The color of a patch is controled by the NetLogo built-in patch

variable pcolor. A first (and correct) implementation of this task could look like:

ask patches [
ifelse C-player?-after-revision
[

ifelse C-player?
[set pcolor blue]
[set pcolor lime]

]
[

ifelse C-player?
[set pcolor yellow]
[set pcolor red]

]
]

However, the following implementation, which makes use of NetLogo primitive ifelse-
value is more readable, as one can clearly see that the only thing we are doing is to set the

patch’s pcolor.

ask patches [
set pcolor

ifelse-value C-player?-after-revision
[ifelse-value C-player? [blue] [lime]]
[ifelse-value C-player? [yellow] [red]]

]

5. Reset the tick counter using reset-ticks.

Note that:

• Points 2 and 3 above are about setting up the players, so, to keep our code nice and modular,

we could group them into a new procedure called to setup-players. This will make our code

III-1. Spatial chaos in the Prisoner's Dilemma | 155

more elegant, easier to understand, easier to debug and easier to extend, so let us do it!

• The operation described in point 4 above will be conducted every tick, so we should create a

separate procedure to this end that we can call to update-color, to be run by individual patches.

Since this procedure is rather secondary (i.e. our model could run without this), we have a slight

preference to place it at the end of our code, but feel free to do it as you like, since the order

in which NetLogo procedures are written in the Code tab is immaterial.

Thus, the code up to this point should be as follows:

patches-own [
C-player?
C-player?-after-revision
payoff
my-nbrs-and-me
n-of-my-nbrs-and-me

]

to setup
clear-all
setup-players
ask patches [update-color]
reset-ticks

end

to setup-players
ask patches [

set payoff 0
set C-player? false
set C-player?-after-revision false
set my-nbrs-and-me (patch-set neighbors self)
set n-of-my-nbrs-and-me (count my-nbrs-and-me)

]
ask n-of (round (initial-%-of-C-players * count patches / 100)) patches [

set C-player? true
set C-player?-after-revision true

]
end

to go

end

to update-color
set pcolor

ifelse-value C-player?-after-revision
[ifelse-value C-player? [blue] [lime]]
[ifelse-value C-player? [yellow] [red]]

end

156 | Part III. Spatial interactions on a grid

5.4. Go procedure

The procedure to go contains all the instructions that will be executed in every tick. In this particular

model, we will ask each player (i.e. patch):

1. To play with its neighbours in order to calculate its payoff. For modularity and clarity purposes,

we should do this in a new procedure named to play.

2. To compute the value of its next strategy and store it in the variable C-player?-after-revision.

In this way, the variable C-player? will keep the strategy with which the current payoff has

been obtained, and we can update the value of C-player?-after-revision without losing that

information, which will be required by neighboring players when they compute their next

strategy. To keep our code nice and modular, we will do this computation in a new procedure

called to update-strategy-after-revision.

3. To update its color according to their C-player? and C-player?-after-revision values, using the

procedure to update-color.

4. To update its strategy (i.e. the value of C-player?). We will do this in a separate new procedure

called to update-strategy.

We should also mark the end of the round, or tick, after all players have updated their strategies,

using the primitive tick, which increases the tick counter by one, and updates the graph on the

interface. Thus, by now the code of procedure to go should look as follows:

to go
ask patches [play]
ask patches [

update-strategy-after-revision
;; here we are not updating the agent's strategy yet

update-color
]
ask patches [update-strategy]

;; now we update every agent's strategy at the same time
tick

end

5.5 Other procedures

to play

In procedure to play we want patches to calculate their payoff. This payoff will be the number of

C-players in the set my-nbrs-and-me times the payoff obtained with a C-player, plus the number of

D-players in the set times the payoff obtained with a D-player.

We will store the number of C-players in the set my-nbrs-and-me in a local variable that we can name

n-of-C-players. The number can be computed as follows:

let n-of-C-players count my-nbrs-and-me with [C-player?]

Note that if the calculating patch is a C-player, the payoff obtained when playing with another C-

III-1. Spatial chaos in the Prisoner's Dilemma | 157

player is CC-payoff, and if the calculating patch is a D-player, the payoff obtained when playing with

a C-player is DC-payoff. Thus, in general, the payoff obtained when playing with a C-player can then

be obtained using the following code:

ifelse-value C-player? [CC-payoff] [DC-payoff]

Similarly, the payoff obtained when playing with a D-player is:

ifelse-value C-player? [CD-payoff] [DD-payoff]

Taking all this into account, we can implement procedure to play as follows:
6

to play
let n-of-C-players count my-nbrs-and-me with [C-player?]
set payoff n-of-C-players *

(ifelse-value C-player? [CC-payoff] [DC-payoff]) +
(n-of-my-nbrs-and-me - n-of-C-players) *

(ifelse-value C-player? [CD-payoff] [DD-payoff])
end

to update-strategy-after-revision

In this procedure, which will be run by individual patches, we want the patch to compute its next

strategy, which will be the strategy used by one of the patches with the maximum payoff in the set

my-nbrs-and-me. To select one of these maximum-payoff patches, we may use primitives one-of
and with-max as follows:

one-of (my-nbrs-and-me with-max [payoff])

Now remember that strategy updating in this model is synchronous, i.e. every player revises his

strategy at the same time. Thus, we want each patch to adopt the strategy that was used by the

selected maximum-payoff patch when it played the game, i.e. before any strategy revision may

have taken place. This strategy is stored in variable C-player?. With this, we conclude the code of

procedure to update-strategy-after-revision.

to update-strategy-after-revision
set C-player?-after-revision

[C-player?] of one-of my-nbrs-and-me with-max [payoff]
end

Another (equivalent) implementation of this procedure, which makes use of primitive max-one-of
is the following.

6. The parentheses around the first ifelse-value block are necessary since NetLogo 6.1.0 (see
https://ccl.northwestern.edu/netlogo/docs/transition.html#changes-for-netlogo-610).

158 | Part III. Spatial interactions on a grid

to update-strategy-after-revision
set C-player?-after-revision

[C-player?] of max-one-of my-nbrs-and-me [payoff]
end

to update-strategy

This is a very simple procedure where the patch just updates its strategy (stored in variable C-player?)

with the value of C-player?-after-revision. This update is not conducted right after having computed

the value of C-player?-after-revision to make the strategy updating synchronous.

to update-strategy
set C-player? C-player?-after-revision

end

5.6. Complete code in the Code tab

The Code tab is ready!

patches-own [
C-player?
C-player?-after-revision
payoff
my-nbrs-and-me
n-of-my-nbrs-and-me

]

to setup
clear-all
setup-players
ask patches [update-color]
reset-ticks

end

to setup-players
ask patches [

set payoff 0
set C-player? false
set C-player?-after-revision false
set my-nbrs-and-me (patch-set neighbors self)
set n-of-my-nbrs-and-me (count my-nbrs-and-me)

]
ask n-of (round (initial-%-of-C-players * count patches / 100)) patches [

set C-player? true
set C-player?-after-revision true

]
end

to go
ask patches [play]

III-1. Spatial chaos in the Prisoner's Dilemma | 159

ask patches [
update-strategy-after-revision

;; here we are not updating the agent's strategy yet
update-color

]
ask patches [update-strategy]

;; now we update every agent's strategy at the same time
tick

end

to play
let n-of-C-players count my-nbrs-and-me with [C-player?]
set payoff n-of-C-players *

(ifelse-value C-player? [CC-payoff] [DC-payoff]) +
(n-of-my-nbrs-and-me - n-of-C-players) *

(ifelse-value C-player? [CD-payoff] [DD-payoff])
end

to update-strategy-after-revision
set C-player?-after-revision

[C-player?] of one-of my-nbrs-and-me with-max [payoff]
end

to update-strategy
set C-player? C-player?-after-revision

end

to update-color
set pcolor

ifelse-value C-player?-after-revision
[ifelse-value C-player? [blue] [lime]]
[ifelse-value C-player? [yellow] [red]]

end

5.7. Code in the plots

We will use blue color for the number of C-players and red for the number of D-players.

To complete the Interface tab, edit the graph and create the pens as in the image below:

160 | Part III. Spatial interactions on a grid

Figure 4. Plot settings

6. Sample runs

We can use the model we have implemented to shed some light on the question that we posed at

the motivation above. We will use the same parameter values as Nowak and May (1992), so we can

replicate their results: CD-payoff = DD-payoff = 0, CC-payoff = 1, DC-payoff = 1.85, and initial-%-of-C-

players = 90.
7

An illustration of the sort of patterns that this model generates is shown in the video

below.

One or more interactive elements has been excluded from this version of the text. You can

view them online here: https://wisc.pb.unizin.org/agent-based-evolutionary-game-

dynamics/?p=108#video-108-1

7. Some authors make CD-payoff = DD-payoff, so they can parameterize the game with just one parameter, i.e. DC-
payoff. Note, however, that the resulting game lies at the border between a Prisoner's Dilemma and a Hawk-Dove (aka
Chicken or Snowdrift) game. Making CD-payoff = DD-payoff is by no means a normalization of the Prisoner's
Dilemma, but a restriction which reduces the range of possibilities that can be studied.

III-1. Spatial chaos in the Prisoner's Dilemma | 161

As you can see, both C-players and D-players coexist in this spatial environment, with clusters of both

types of players expanding, colliding and fragmenting. The overall fraction of C-players fluctuates

around 0.318 for most initial conditions (Nowak and May, 1992). Thus, we can see that adding spatial

structure can make cooperation be sustained even in a population where agents can only play C or D

(i.e. they cannot condition their actions on previous moves).

Incidentally, this model is also useful to see that a simple 2-player 2-strategy game in a two-

dimensional spatial setting can generate chaotic and kaleidoscopic patterns (Nowak and May, 1993).

To illustrate this, let us use the same payoff values as before, but let us start with all agents playing C,

i.e. initial-%-of-C-players = 100.

When you click on setup, the whole world should look blue, since all agents are C-players. If you now

click on go, nothing should happen, since all agents are playing the same strategy and the strategy

updating is imitative. To make things interesting, let us ask the agent at the center to play D. You

can do this by typing the following code at the Command Center (i.e. the line at the bottom of the

NetLogo screen) after clicking on setup:

ask patch 0 0 [set C-player? false]

If you now click on go, you should see the following beautiful patterns:

One or more interactive elements has been excluded from this version of the text. You can

view them online here: https://wisc.pb.unizin.org/agent-based-evolutionary-game-

dynamics/?p=108#video-108-2

7. Exercises

You can use the following link to download the complete NetLogo model: 2×2-imitate-best-

nbr.nlogo.

Exercise 1. Let us run a (weak) Prisoner’s Dilemma game with payoffs DD-payoff = CD-payoff = 0,

CC-payoff = 1 and DC-payoff = 1.7. Set the initial-%-of-cooperators to 90. Run the model and observe

the evolution of the system as you gradually increase the value of DC-payoff from 1.7 to 2. If at any

point all the players adopt the same strategy, press the setup button again to start a new simulation.

Compare your observations with those in fig. 1 of Nowak and May (1992). Note: To use the same

dimensions as Nowak and May (1992), you can change the location of the NetLogo world’s origin to

the bottom left corner, and set both the max-pxcor and the max-pycor to 199. You may also want to

change the patch size to 2.

Exercise 2. Create a button to make the patch at 0 0 be a D-player. You may want to label it

make agent at 0 0 play D. This button will be useful to replicate some of the experiments in Nowak

and May (1992, 1993).

162 | Part III. Spatial interactions on a grid

Exercise 3. Replicate the experiment shown in figure 3 of Nowak and May (1992). Note that you

will have to make the NetLogo world be a 99 × 99 square lattice.

Exercise 4. Implement the following extension to Nowak and May (1992)‘s model, proposed by

Mukherji et al. (1996):

With a small probability ε, each player errs and chooses evenly between strategies C and D; with

probability 1-ε, the player follows the Nowak and May update rule.

You may wish to rerun the sample run above with a small value for ε. You may also want to replicate

the experiment shown in Mukherji et al. (1996, fig. 1).

Exercise 5. Implement the following extension to Nowak and May (1992)‘s model, proposed by

Mukherji et al. (1996):

During each period, players fail to update their previous strategy with a small probability, θ.

You may wish to rerun the sample run above with a small value for θ. You may also want to replicate

the experiment shown in Mukherji et al. (1996, fig. 1).

Exercise 6. Implement the following extension to Nowak and May (1992)‘s model, proposed by

Mukherji et al. (1996):

After following the Nowak and May update rule, each cooperator has a small independent

probability, ϕ, of cheating by switching to defection.

You may wish to rerun the sample run above with a small value for ϕ. You may also want to replicate

the experiment shown in Mukherji et al. (1996, fig. 1).

III-1. Spatial chaos in the Prisoner's Dilemma | 163

III-2. Robustness and fragility

1. Goal

Our goal in this chapter is to extend the model we have created in the previous chapter by adding

three features that will prove very useful:

• Noise, i.e. the possibility that revising agents select a strategy at random with a small

probability.

• Self-matching, i.e. the possibility to choose whether agents are matched with themselves to

play the game or not.

• Asynchronous strategy updating, i.e. the possibility that agents revise their strategies

sequentially –rather than simultaneously– within the same tick.
1

These three features will allow us to assess the robustness of our previous computational results.

2. Motivation. Robustness of cooperation in spatial
settings

In the previous chapter, we saw that spatial structure can induce significant levels of cooperation

in the Prisoner’s Dilemma, at least for some parameter settings. In particular, we saw that with CD-

payoff = DD-payoff = 0, CC-payoff = 1, DC-payoff = 1.85, the overall fraction of C-players fluctuates

around 0.318 for most initial conditions (Nowak and May, 1992). Here we wonder how robust this

result is to changes in some of the model assumptions. In particular, we would like to study what

happens…

• if we add a bit of noise,

• if agents do not play the game with themselves,

• if strategy updating is asynchronous, rather than synchronous, or

• if we use DD-payoff = 0.1 (rather than DD-payoff = 0), making the game a true Prisoner’s

Dilemma.

3. Description of the model

The model we are going to develop here is a generalization of the model implemented in the previous

chapter. In particular, we are going to add the following three parameters:

1. There are different ways one can implement asynchronicity. Here we implement what Cornforth et al. (2005) call
"Random Asynchronous Order". Under this scheme, at each tick all agents revise their strategy in a random order.

164 | Part III. Spatial interactions on a grid

• noise. With probability noise, the revising agent will adopt a random strategy; and with

probability (1 – noise), the revising agent will choose her strategy following the imitate the best

neighbor rule. Thus, if noise = 0, we recover the model implemented in the previous chapter.

• self-matching?. If self-matching? is true, agents play the game with themselves, just like before.

On the other hand, if self-matching? is false, agents do not play the game with themselves.

• synchronous-updating?. If synchronous-updating? is true, agents update their strategies

simultaneously, just like before. On the other hand, if synchronous-updating? is false, agents play

and update their strategies sequentially, i.e. one after another. In this latter case, all agents

revise their strategies in every tick in a random order.

Everything else stays as described in the previous chapter.

4. Interface design

We depart from the model we developed in the previous chapter (so if you want to preserve it, now

is a good time to duplicate it).

Figure 1. Interface design

In the new interface (see figure 1 above), we just have to add one slider for the new parameter noise,

and two switches: one for parameter synchronous-updating? and another one for parameter self-

matching?. We have added these elements at the bottom of the interface, but feel free to place them

wherever you like.

III-2. Robustness and fragility | 165

5. Code

5.1. Skeleton of the code

Figure 2. Skeleton of the code

5.2. Extension I. Adding noise to the decision rule

Recall that the implementation of the decision rule is conducted in procedure to update-strategy-

after-revision. At present, the code of this procedure looks as follows:

166 | Part III. Spatial interactions on a grid

to update-strategy-after-revision
set C-player?-after-revision

[C-player?] of one-of my-nbrs-and-me with-max [payoff]
end

To implement the choice of a random strategy with probability noise by revising agents, we can use

NetLogo primitive ifelse-value as follows:
2

to update-strategy-after-revision
set C-player?-after-revision ifelse-value (random-float 1 < noise)

[one-of [true false]] ;; this is run with probability noise
[[C-player?] of one-of (my-nbrs-and-me with-max [payoff])]

end

The noise extension is now ready, so you may want to explore the impact of noise in this model.

5.3. Extension II. Playing the game with yourself or not

Whether it is natural to include self-interactions in the theory depends on the biological

assumptions underlying the model. In general, if each cell is viewed as being occupied by a single

individual adopting a given strategy then it is natural to exclude self-interaction. However, if

each cell is viewed as being occupied by a population, all of whose members are adopting a

given strategy, then it may be more natural to include self-interaction. Killingback and Doebeli

(1996, p. 1136)

In our model, agents will play the game with themselves or not depending on the value of the new

parameter self-matching?. To implement this extension elegantly, we find it convenient to define a

new patch variable named my-coplayers, which will store the agentset with which the patch will play.

Thus, if self-matching? is true, my-coplayers will include the patch’s neighbors plus the patch itself,

while if self-matching? is false, my-coplayers will include only the patch’s neighbors.

It will also be convenient to define another patch variable named n-of-my-coplayers, which will

store the cardinality of my-coplayers for each patch. This is just for the same (efficiency) reasons we

defined n-of-my-nbrs-and-me in the previous model. Now that we have variables my-coplayers and

n-of-my-coplayers, patch variable n-of-my-nbrs-and-me will no longer be needed. Thus, the

definition of patch-own variables in the Code tab will look as follows:

2. We could also implement the noise extension using the NetLogo primitive ifelse, but the use of ifelse-value
makes it clear that the only thing we are doing in this procedure is to set the value of the patch variable C-player?-
after-revision.

III-2. Robustness and fragility | 167

patches-own [
C-player?
C-player?-after-revision
payoff
my-nbrs-and-me
my-coplayers ;; <== new variable
n-of-my-coplayers ;; <== new variable
;; n-of-my-nbrs-and-me <== not needed anymore

]

Now we have to set the value of the two new patch-own variables. Since these values will not change

during the course of the simulation and they pertain to the individual players, the natural place to set

them is in procedure to setup-players.

to setup-players
ask patches [

set payoff 0
set C-player? false
set C-player?-after-revision false
set my-nbrs-and-me (patch-set neighbors self)

;; set n-of-my-nbrs-and-me (count my-nbrs-and-me) <== not needed anymore
;; the following two lines are new
set my-coplayers ifelse-value self-matching? [my-nbrs-and-me] [neighbors]
set n-of-my-coplayers (count my-coplayers)

]
ask n-of (round (initial-%-of-C-players * count patches / 100)) patches [

set C-player? true
set C-player?-after-revision true

]
end

Finally, we have to modify procedure to play so patches play with agentset my-coplayers, rather than

with agentset my-nbrs-and-me.

to play
let n-of-C-players count my-coplayers with [C-player?]
set payoff

n-of-C-players * (ifelse-value C-player? [CC-payoff] [DC-payoff]) +
(n-of-my-coplayers - n-of-C-players) *

ifelse-value C-player? [CD-payoff] [DD-payoff]
end

Note also that we have to replace the variable n-of-my-nbrs-and-me with n-of-my-coplayers when

computing the payoff. You can now explore the consequences of not forcing agents to play the game

with themselves!

168 | Part III. Spatial interactions on a grid

5.4. Extension III. Asynchronous strategy updating

To implement asynchronous updating we will have to modify procedure to go. If synchronous-

updating? is true, updating takes place just like before, so we can wrap the code we had in to

go within an ifelse statement whose condition is the boolean variable synchronous-updating? , i.e.:

to go
ifelse synchronous-updating?

[
ask patches [play]
ask patches [

update-strategy-after-revision
;; here we are not updating the agent's strategy yet

update-color
]
ask patches [update-strategy]

;; now we update every agent's strategy at the same time
]
[

;; this is where we have to place the code
;; for asynchronous strategy updating

]
tick

end

The implementation of sequential updating requires that every patch (in a random order) goes

through the whole cycle of playing and updating its strategy without being interrupted. Note that,

at the time of revising the strategy, agents will compare their payoff with their coplayers’ payoffs, so

before calling procedure update-strategy-after-revision we have to make sure that all these payoffs

have been properly computed, i.e. we must ask the revising agent and her coplayers to play the game.

So basically, each patch, in sequential order, must:

• play the game,

• ask its coplayers to play the game (so their payoffs are updated),

• run update-strategy-after-revision to compute its next strategy (C-player?-after-revision),

• update its color (now that we have access both to the current strategy C-player? and to the

next strategy C-player?-after-revision)

• update its strategy, i.e. set the value of C-player? to C-player?-after-revision. This is done in

procedure update-strategy.

Taking all this into account, the code in the procedure to go looks as follows:

III-2. Robustness and fragility | 169

to go
ifelse synchronous-updating?

[
ask patches [play]
ask patches [

update-strategy-after-revision
;; here we are not updating the agent's strategy yet

update-color
]
ask patches [update-strategy]

;; now we update every agent's strategy at the same time
]
[

ask patches [
play
ask my-coplayers [play]

;; since your coplayers' strategies or
;; your coplayers' coplayers' strategies
;; could have changed since the last time
;; your coplayers played

update-strategy-after-revision
update-color
update-strategy

]
]

tick
end

5.5. Complete code in the Code tab

The Code tab is ready! Congratulations! You have implemented three important generalizations of

the model in very little time.

patches-own [
C-player?
C-player?-after-revision
payoff
my-nbrs-and-me
my-coplayers
n-of-my-coplayers

]

to setup
clear-all
setup-players
ask patches [update-color]
reset-ticks

end

to setup-players
ask patches [

170 | Part III. Spatial interactions on a grid

set payoff 0
set C-player? false
set C-player?-after-revision false
set my-nbrs-and-me (patch-set neighbors self)
set my-coplayers ifelse-value self-matching? [my-nbrs-and-me] [neighbors]
set n-of-my-coplayers (count my-coplayers)

]
ask n-of (round (initial-%-of-C-players * count patches / 100)) patches [

set C-player? true
set C-player?-after-revision true

]
end

to go
ifelse synchronous-updating?

[
ask patches [play]
ask patches [

update-strategy-after-revision
;; here we are not updating the agent's strategy yet

update-color
]
ask patches [update-strategy]

;; now we update every agent's strategy at the same time
]
[

ask patches [
play
ask my-coplayers [play]

;; since your coplayers' strategies or
;; your coplayers' coplayers' strategies
;; could have changed since the last time
;; your coplayers played

update-strategy-after-revision
update-color
update-strategy

]
]

tick
end

to play
let n-of-cooperators count my-coplayers with [C-player?]
set payoff

n-of-cooperators * (ifelse-value C-player? [CC-payoff] [DC-payoff]) +
(n-of-my-coplayers - n-of-cooperators) *

ifelse-value C-player? [CD-payoff] [DD-payoff]
end

to update-strategy-after-revision
set C-player?-after-revision ifelse-value (random-float 1 < noise)

[one-of [true false]]
[[C-player?] of one-of (my-nbrs-and-me with-max [payoff])]

III-2. Robustness and fragility | 171

end

to update-strategy
set C-player? C-player?-after-revision

end

to update-color
set pcolor

ifelse-value C-player?-after-revision
[ifelse-value C-player? [blue] [lime]]
[ifelse-value C-player? [yellow] [red]]

end

6. Sample runs

Now that we have implemented the extended model, we can use it to answer the questions posed

in the motivation above. Let us see how the simulation we ran in the previous chapter (with CD-

payoff = DD-payoff = 0, CC-payoff = 1, DC-payoff = 1.85, and initial-%-of-C-players = 90 in a 81×81

grid) is affected by each of the changes outlined in the motivation, one by one. We will refer to this

parameterization as the baseline setting.

What happens if we add a bit of noise?

If you run the model with noise, you will see that the level of cooperation diminishes drastically.

Using BehaviorSpace, we have estimated that the percentage of cooperators in the regime where

cooperators and defectors coexist drops from ~32% in the model without noise to ~15% if noise =

0.04. If noise = 0.05, the long-run fraction of cooperation is just ~3%, so nearly all cooperation

is coming from the random strategy updates (which accounts for 2.5% of the cooperation).
3

The

influence of noise in the baseline setting was pointed out by Mukherji et al. (1996).

What happens if agents do not play the game with themselves?

The impact of self-matching? is also clear. When agents do not play the game with themselves, no

cooperation can emerge in the baseline setting. If the initial fraction of cooperators is high, some

small clusters of initial cooperators may survive, but these clusters disappear if we add a tiny bit of

noise. As an illustration, the video below shows a simulation with self-matching? = false, initial-%-of-

C-players = 99 and noise = 0.01.

3. The model with low noise seems to have two regimes, one where most agents are defecting and another one where
cooperators and defectors coexist. Simulations that start with a low percentage of initial cooperators tend to move
first to the mostly-defection regime, while simulations that start with higher proportions of initial cooperators tend
to move to the coexistence regime. Note, however, that transitions from one regime to the other are always possible
with noise, and therefore they will occur if we wait for long enough. Having said that, the time we would have to wait
to actually see these transitions may be extremely long in some settings. Note also that the model with noise can be
seen as an irreducible and aperiodic Markov chain (see sufficient conditions for irreducibility and aperiodicity). This
means that the long-run dynamics of this model are independent of initial conditions.

172 | Part III. Spatial interactions on a grid

One or more interactive elements has been excluded from this version of the text. You can

view them online here: https://wisc.pb.unizin.org/agent-based-evolutionary-game-

dynamics/?p=110#video-110-1

Therefore, it turns out that playing with oneself is a necessary condition to obtain some cooperation

in the baseline setting.

What happens if strategy updating is asynchronous, rather than synchronous?

The impact of synchronous-updating? on cooperation is also clear. If agents update their strategies

sequentially, rather than simultaneously, no cooperation whatsoever can be sustained in the

baseline setting. This observation was pointed out by Huberman and Glance (1993). As a matter of

fact, to eliminate cooperation in this setting, it is sufficient that only a small fraction of the population

(~15%) do not synchronize (Mukherji et al., 1996).
4

What happens if we use DD-payoff = 0.1?

Increasing the value of DD-payoff to 0.1 (so the game becomes a real Prisoner’s Dilemma) also

eliminates the emergence of cooperation. If the initial fraction of cooperators is high, some small

clusters of initial cooperators may survive, but these clusters disappear if we add some noise.
5

As an

illustration, the video below shows a simulation with DD-payoff = 0.1, initial-%-of-C-players = 99 and

noise = 0.01.

One or more interactive elements has been excluded from this version of the text. You can

view them online here: https://wisc.pb.unizin.org/agent-based-evolutionary-game-

dynamics/?p=110#video-110-2

Discussion

In this chapter we have discovered that the emergence of cooperation observed in the sample

run of the previous chapter is not robust at all. Any of the four modifications we have explored

is sufficient to destroy cooperation altogether. Having said that, the emergence of cooperation in

the spatially embedded Prisoner’s Dilemma is much more robust for lower values of DC-payoff (see

Nowak et al. (1994a, 1994b, 1996)). As an example, consider a simulation with DC-payoff = 1.3,

where we include the four modifications we have investigated, i.e. noise = 0.05, self-matching? = false,

synchronous-updating? = false, and DD-payoff = 0.1. The other parameter values are the same as in

our baseline simulation, i.e. CD-payoff = 0, CC-payoff = 1, and the grid is 81×81. Cooperation in this

setting can indeed emerge and be sustained. The video below shows an illustrative run with initial

4. Newth and Cornforth (2009) analyze various other updating schemes in this model.
5. If DD-payoff 0.58, no clusters of initial cooperators can survive, even in the absence of noise.

III-2. Robustness and fragility | 173

conditions initial-%-of-C-players = 25. The long-run proportion of cooperators in this setting is greater

than 50%.

One or more interactive elements has been excluded from this version of the text. You can

view them online here: https://wisc.pb.unizin.org/agent-based-evolutionary-game-

dynamics/?p=110#video-110-3

In chapter III-4 we will see that there is another assumption in this model that has a very important

(positive) influence in the emergence of cooperation: the use of the imitate the best neighbor rule.

But for now, let us take a step back and think about what we have learned in this chapter in general

terms, i.e. beyond the specifics of this particular model.

In this chapter we have learned that assumptions that may seem irrelevant at first sight can actually

play a crucial role in the dynamics of our models. Furthermore, there are often complex interactions

between the effects of different assumptions. We have also learned that small changes in one

parameter can lead to big changes in the dynamics of our models (see exercise 1 below for a striking

example). Unfortunately, this sensitivity to seemingly small details is not the exception but the rule

in agent-based models. For this reason, it is of utmost importance to always check the robustness of

our computational results, to explore the parameter space adequately, and to keep our conclusions

within the scope of what we have actually investigated, not beyond.

7. Exercises

You can use the following link to download the complete NetLogo model: 2×2-imitate-best-nbr-

extended.nlogo.

174 | Part III. Spatial interactions on a grid

Photo by Tyler Easton on Unsplash

Exercise 1. Roca et al. (2009a, fig. 10; 2009b, fig. 2)

report a counterintuitive singularity that we can

replicate with our model. To do so, modify the

baseline setting (CD-payoff = DD-payoff = 0, CC-

payoff = 1) by choosing self-matching? = false, make

the world 100×100 with periodic (or ‘wrap-around’)

boundaries, and set initial conditions initial-%-of-C-

players = 50. Now compare the long-run fraction of

cooperators for values of DC-payoff equal to

1.3999, 1.4 and 1.4001. What do you observe?

To understand this curious phenomenon, you may

also want to run simulations with initial

conditions initial-%-of-C-players = 100 and make

use of our button labeled make agent at 0 0 play D.

P.S. One may wonder whether this singularity could

be an artifact due to floating-point errors, since (1.4

+ 1.4 + 1.4 + 1.4 + 1.4) ≠ 7 in the IEEE754 floating-

point standard (which is the standard used in most

programming languages, and in NetLogo in

particular).
6

You can check that the singularity is not

due to floating-point errors choosing an equivalent

parameterization that is not prone to floating-point

errors. Can you come up with an equivalent parameterization that uses only integers when

computing payoffs?

Exercise 2. Consider the simulation run from the previous chapter which produced the beautiful

kaleidoscopic patterns. How does each of the four modifications outlined in the motivation affect its

dynamics?

Exercise 3. How can we parameterize our model to replicate the results shown in figure 2 of

Killingback and Doebeli (1996, p. 1138)?

Exercise 4. What changes should we make in the code to be able to replicate figure 3 of

Killingback and Doebeli (1996, p. 1139)? Note that in the model used to produce that figure,

individual patches do not update their strategy with 5% probability.

6. Note that in our implementation of procedure to play we do not add individual payoffs but we multiply them, so we
would not compute (1.4 + 1.4 + 1.4 + 1.4 + 1.4) but instead 5*1.4, which is indeed exactly equal to 7 in IEEE754 floating-
point arithmetic. For more on the potential impact of floating-point errors on agent-based models, see Polhill et al.
(2006) and Izquierdo and Polhill (2006).

III-2. Robustness and fragility | 175

Exercise 5. In section “Sample runs”, when we added some noise to the baseline setting, we

stated that the percentage of cooperators in the regime where cooperators and defectors coexist is

about ~15% if noise = 0.04. Try to corroborate this estimation using BehaviorSpace.

Exercise 6. In our model, changing the value of noise has an immediate effect on the dynamics

of the model at runtime. The same occurs with synchronous-updating?, but not with self-matching?.

How can you make the model respond immediately to changes in self-matching? ? Try to do it in a way

that does not affect the execution speed.

176 | Part III. Spatial interactions on a grid

III-3. Extension to any number of strategies

1. Goal

Our goal here is to extend the model we have created in the previous chapter –which accepted

games with 2 strategies only– to model (2-player symmetric) games with any number of strategies.

2. Motivation. Spatial Hawk-Dove-Retaliator

The model we are going to develop in this chapter will allow us to explore games with any number

of strategies. Thus, we will be able to model games like the classical Hawk-Dove-Retaliator (Maynard

Smith, 1982, pp. 17-18), which is an extension of the Hawk-Dove game, with the additional strategy

Retaliator. Retaliators are just like Doves, except in contests against Hawks. When playing against

Hawks, Retaliators behave like Hawks. A possible payoff matrix for this symmetric game is the

following:

Hawk (H) Dove (D) Retaliator (R)

Hawk (H) -1 2 -1

Dove (D) 0 1 1

Retaliator (R) -1 1 1

Let us consider the population game where agents are matched to play the normal form game

with payoffs as above.
1

The only Evolutionarily Stable State (ESS; see Thomas (1984) and Sandholm

(2010a, section 8.3)) of this population game is the state (½H + ½D), with half the population playing

Hawk and the other half playing Dove (Maynard Smith, 1982, appendix E; Binmore, 2013). Also, note

that Retaliators are weakly dominated by Doves: they get a strictly lower expected payoff than Doves

in any situation, except in those population states with no Hawks whatsoever (at which retaliators

get exactly the same payoff as Doves).

Figure 1 below shows the best response correspondence of this game. Population states are

represented in a simplex, and the color at any population state indicates the strategy that provides

the highest expected payoff at that state: orange for Hawk, green for Dove, and blue for Retaliator.

As an example, the population state where the three strategies are equally present, i.e. (⅓H + ⅓D

+⅓R), which lies at the barycenter of the simplex, is colored in green, denoting that the strategy that

provides the highest expected payoff at that state is Dove.

1. The payoff function of the associated population game is , where denotes the population state and
denotes the payoff matrix of the normal form game. This population game can be obtained by assuming that every

agent plays with every other agent.

III-3. Extension to any number of strategies | 177

Fig. 1. Best response correspondence for the Hawk-Dove-Retaliator game. Color indicates the strategy with
the highest expected payoff at each population state. Arrows are just a visual aid that indicate the direction
of the best response. The yellow line indicates that both Dove and Hawk are best response. The purple line

indicates that both Dove and Retaliator are best response. All three strategies are best response at the white
circle at (⅔D +⅓R). Finally, the unique ESS (½H + ½D) is indicated with a red circle

We would like to study the dynamic stability of the unique ESS (½H + ½D) in spatial contexts. In

unstructured populations, ESSs are asymptotically stable under a wide range of revision protocols

(see e.g. Sandholm (2010a, theorem 8.4.7)), and in particular under the best response rule. Therefore,

one might be tempted to think that in our spatial model with the imitate the best neighbor

rule (including some noise to allow for the occasional entry of any strategy), simulations will tend

to spend most of the time around the unique (½H + ½D) and Retaliators would hardly be observed.

This hypothesis may be further supported by the fact that the area around the unique ESS where

Retaliators are suboptimal is quite sizable. In no situation can Retaliators obtain a higher expected

payoff than Doves, and departing from the unique ESS, at least one half of the population would have

to be replaced (i.e. all the Hawks) for Retaliators to get the same expected payoff as Doves.

Having seen all this, it may come as no surprise that if we simulate this game with the random-

matching model we implemented in Part II, retaliators tend to disappear from any interior population

state. The following video shows an illustrative simulation starting from a situation where all agents

are retaliators (and including some noise to allow for the entry of any strategy).
2

2. The fact that the simulation tends to linger around the ESS is a coincidence, since the imitate if better rule depends
only on ordinal properties of the payoffs. What is not a coincidence is that Retaliators (which are weakly dominated
by Doves) are eliminated in the absence of noise (Loginov, 2021).

178 | Part III. Spatial interactions on a grid

One or more interactive elements has been excluded from this version of the text. You can

view them online here: https://wisc.pb.unizin.org/agent-based-evolutionary-game-

dynamics/?p=112#video-112-1

So, will space give Retaliators any chance of survival? Let’s build a model to explore this question!

3. Description of the model

The model we are going to develop here is a generalization of the model implemented in the previous

chapter. The new model will have a new parameter, payoffs, that the user can set to input a payoff

matrix of the form [[A00 A01 … A0n] [A10 A11 … A1n] … [An0 An1 … Ann]], containing the payoffs Aij

that an agent playing strategy i obtains when meeting an agent playing strategy j (i, j ∈ {0, 1, …, n}).

The number of strategies will be inferred from the number of rows in the payoff matrix.

The user will also be able to set any initial conditions using parameter n-of-players-for-each-strategy,

which will be a list of the form [a0 a1 … an], where item ai is the initial number of agents playing

strategy i. Naturally, the sum of all the elements in this list should equal the number of patches in the

world.

Everything else stays as described in the previous chapter.

4. Interface design

We depart from the model we developed in the previous chapter (so if you want to preserve it, now

is a good time to duplicate it).

III-3. Extension to any number of strategies | 179

Fig. 2. Interface design

The new interface (see figure 2 above) requires the following modifications:

• Remove the sliders for parameters CC-payoff, CD-payoff, DC-payoff, DD-payoff, and initial-%-of-

C-players. Since these sliders were our way of declaring the corresponding global variables, you

will now get all sorts of errors, but don’t panic, we will sort them out later.

• Remove the button labeled make agent at 0 0 play D. Yes, more errors, but let us do our best

to stay calm; we will fix them in a little while.

• Add an input box for parameter payoffs.

Create an input box with associated global variable payoffs. Set the input box type

to “String (reporter)” and tick the “Multi-Line” box. Note that the content of payoffs

will be a string (i.e. a sequence of characters) from which we will have to extract the

payoff numeric values.

• Create an input box to let the user set the initial number of players using each strategy.

Create an input box with associated global variable n-of-players-for-each-strategy. Set

the input box type to “String (reporter)”.

• Remove the “pens” in the Strategy Distribution plot. Since the number of strategies is unknown

until the payoff matrix is read, we will need to create the required number of “pens” in the Code

tab.

180 | Part III. Spatial interactions on a grid

Edit the Strategy Distribution plot and delete both pens.

• We have also modified the monitor. Before it showed the ticks and now it shows the number

of players (i.e. the value of a global variable named n-of-players, to be defined shortly). You may

want to do this or not, as you like.

5. Code

5.1. Skeleton of the code

Figure 3. Skeleton of the setup procedure

III-3. Extension to any number of strategies | 181

Figure 4. Skeleton of the go procedure

5.2. Global variables and individually-owned variables

First of all, we declare the global variables that we are going to use and we have not already declared

in the interface. We will be using a global variable named payoff-matrix to store the payoff values

on a list. It will also be handy to have a variable store the number of strategies and another variable

store the number of players. Since this information will likely be used in various procedures and will

not change during the course of a simulation, it makes sense to define the new variables as global.

The natural names for these two variables are n-of-strategies and n-of-players:

globals [
payoff-matrix
n-of-strategies
n-of-players

]

Now we focus on the patches-own variables. We are going to need each individual patch to store

its strategy and its strategy-after-revision. These two variables replace the previous C-player? and C-

player?-after-revision. Thus, the code for patches-own variables looks as follows now:

182 | Part III. Spatial interactions on a grid

patches-own [
;; C-player? <== no longer needed
;; C-player?-after-revision <== no longer needed
strategy ;; <== new variable
strategy-after-revision ;; <== new variable
payoff
my-nbrs-and-me
my-coplayers
n-of-my-coplayers

]

5.3. Setup procedures

The current setup procedure looks as follows:

to setup
clear-all
setup-players
ask patches [update-color]
reset-ticks

end

Clearly we will have to keep this code, but additionally we will have to set up the payoffs and set

up the graph (since the number of pens to be created depends on the payoff matrix now). To do this

elegantly, we should create separate procedures for each set of related tasks; to setup-payoffs and to

setup-graph are excellent names for these new procedures. Thus, the code of procedure to setup

should include calls to these new procedures:

to setup
clear-all
setup-payoffs ;; <== new line
setup-players
setup-graph ;; <== new line
reset-ticks

update-graph ;; <== new line
ask patches [update-color]

end

Note that we have also included a call to another new procedure named to update-graph, to plot the

initial conditions.
3

The code of procedure to setup in this model looks almost identical to the code of

the same procedure in the model we developed in Part II. As a matter of fact, we will be able to reuse

much of the code we wrote for that model. Let us now implement procedures to setup-payoffs, to

3. There is some flexibility in the order of the lines within procedure to setup. For instance, the call to procedure setup-
graph could be made before or after executing reset-ticks.

III-3. Extension to any number of strategies | 183

setup-graph and to update-graph. We will also have to modify procedures to setup-players and to

update-color.

to setup-payoffs

The procedure to setup-payoffs will include the instructions to read the payoff matrix, and will

also set the value of the global variable n-of-strategies. Looking at the implementation of the same

procedure in the model we developed in Part II, can you implement procedure to setup-payoffs for

our new model?

Implementation of procedure to setup-payoffs.

Yes, well done! We can use exactly the same code!

to setup-payoffs
set payoff-matrix read-from-string payoffs
set n-of-strategies length payoff-matrix

end

to setup-players

The current procedure to setup-players looks as follows:

to setup-players
ask patches [

set payoff 0
set C-player? false
set C-player?-after-revision false
set my-nbrs-and-me (patch-set neighbors self)
set my-coplayers ifelse-value self-matching? [my-nbrs-and-me] [neighbors]
set n-of-my-coplayers (count my-coplayers)

]
ask n-of (round (initial-%-of-C-players * count patches / 100)) patches [

set C-player? true
set C-player?-after-revision true

]
end

This procedure will have to be modified substantially. In particular, the lines in bold in the code above

include variables that do not exist anymore. But don’t despair! Once again, to modify procedure to

setup-players appropriately, the implementation of the same procedure in the model we developed

in Part II will be invaluable. Using that code, can you try to implement procedure to setup-players in

our new model?

184 | Part III. Spatial interactions on a grid

Implementation of procedure to setup-players.

The lines marked in bold below are the only modifications we have to make to the

implementation of this procedure from Part II.

to setup-players
let initial-distribution read-from-string n-of-players-for-each-strategy
if length initial-distribution != length payoff-matrix [

user-message (word "The number of items in\n"
"n-of-players-for-each-strategy (i.e. "
length initial-distribution "):\n" n-of-players-for-each-strategy
"\nshould be equal to the number of rows\n"
"in the payoff matrix (i.e. "
length payoff-matrix "):\n"
payoffs

)
]
ask patches [set strategy false]
let i 0
foreach initial-distribution [j ->

ask n-of j (patches with [strategy = false]) [
set payoff 0
set strategy i
set strategy-after-revision strategy
set my-nbrs-and-me (patch-set neighbors self)
set my-coplayers ifelse-value self-matching?

[my-nbrs-and-me] [neighbors]
set n-of-my-coplayers (count my-coplayers)

]
set i (i + 1)

]
set n-of-players count patches

end

Finally, it would be a nice touch to warn the user if the total number of players in list n-of-

players-for-each-strategy is not equal to the number of patches. One possible way of doing this

is to include the code below, right before setting the patches’ strategies to false.

if sum initial-distribution != count patches [
user-message (word "The total number of agents in\n"

"n-of-agents-for-each-strategy (i.e. "
sum initial-distribution "):\n" n-of-players-for-each-strategy
"\nshould be equal to the number of patches (i.e. "
count patches ")"

)
]

III-3. Extension to any number of strategies | 185

to setup-graph

The procedure to setup-graph will create the required number of pens –one for each strategy– in

the Strategy Distribution plot. Looking at the implementation of the same procedure in the model we

developed in Part II, can you implement procedure to setup-graph for our new model?

Implementation of procedure to setup-graph.

Yes, well done! We can use exactly the same code!

to setup-graph
set-current-plot "Strategy Distribution"
foreach (range n-of-strategies) [i ->

create-temporary-plot-pen (word i)
set-plot-pen-mode 1
set-plot-pen-color 25 + 40 * i

]
end

to update-graph

Procedure to update-graph will draw the strategy distribution using a stacked bar chart, just like in

the model we implemented in Part II (see figure 3 in chapter II-2). This procedure is called at the end

of setup to plot the initial distribution of strategies, and will also be called at the end of procedure to

go, to plot the strategy distribution at the end of every tick.

Looking at the implementation of the same procedure in the model we developed in Part II, can you

implement procedure to update-graph for our new model?

Implementation of procedure to update-graph.

Yes, well done! We only have to replace the word players in the previous code with patches
in the current code.

to update-graph
let strategy-numbers (range n-of-strategies)
let strategy-frequencies map [n ->

count patches with [strategy = n] / n-of-players
] strategy-numbers

186 | Part III. Spatial interactions on a grid

set-current-plot "Strategy Distribution"
let bar 1
foreach strategy-numbers [n ->

set-current-plot-pen (word n)
plotxy ticks bar
set bar (bar - (item n strategy-frequencies))

]
set-plot-y-range 0 1

end

to update-color

Note that in the previous model, patches were colored according to the four possible combinations

of values of C-player? and C-player?-after-revision. Now that there can be many strategies, it seems

more natural to use one color for each strategy. It also makes sense to use the same color legend as

in the Strategy Distribution plot (see procedure to setup-graph). Can you try and implement the new

version of to update-color?

Implementation of procedure to update-color.

Here we go!

to update-color
set pcolor 25 + 40 * strategy

end

5.4. Go procedure

The current go procedure looks as follows:

to go
ifelse synchronous-updating?

[
ask patches [play]
ask patches [

update-strategy-after-revision
;; here we are not updating the agent's strategy yet

update-color
]

III-3. Extension to any number of strategies | 187

ask patches [update-strategy]
;; now we update every agent's strategy at the same time

]
[

ask patches [
play
ask my-coplayers [play]

;; since your coplayers' strategies or
;; your coplayers' coplayers' strategies
;; could have changed since the last time
;; your coplayers played

update-strategy-after-revision
update-color
update-strategy

]
]

tick
end

In the previous version of the model, the call to update-color had to be done in between the calls

to update-strategy-after-revision and update-strategy. Now that the patches’ color only depends on

their (updated) strategy, we should ask patches to run update-color at the end of procedure to go,

after every patch has updated its strategy.

Finally, recall that we also have to run update-graph at the end of procedure to go, to plot the

strategy distribution at the end of every tick. Thus, the code of procedure to go will be as follows:

to go
ifelse synchronous-updating?

[
ask patches [play]
ask patches [update-strategy-after-revision]

;; here we are not updating the agent's strategy yet
ask patches [update-strategy]

;; now we update every agent's strategy at the same time
]
[

ask patches [
play
ask my-coplayers [play]

;; since your coplayers' strategies or
;; your coplayers' coplayers' strategies
;; could have changed since the last time
;; your coplayers played

update-strategy-after-revision
update-strategy

]
]

tick
update-graph ;; <== new line

188 | Part III. Spatial interactions on a grid

ask patches [update-color] ;; <== new line
end

5.5. Other procedures

to play

In procedure to play the patch has to compute its payoff. For that, the patch must count how many

of its coplayers are using each of the possible strategies. We can count the number of coplayers that

are using strategy i ∈ {0, 1, …, (n-of-strategies – 1)} as:

count my-coplayers with [strategy = i]

Thus, we just have to run this little function for each value of i ∈ {0, 1, …, (n-of-strategies – 1)} . This

can be easily done using primitive n-values:

n-values n-of-strategies [i -> count my-coplayers with [strategy = i]]

The code above produces a list with the number of coplayers that are using each strategy. Let us

store this list in local variable n-of-coplayers-with-strategy-?:

let n-of-coplayers-with-strategy-? n-values n-of-strategies [i ->
count my-coplayers with [strategy = i]]

Now note that the relevant row of the payoff-matrix is the one at position strategy. We store this

row in local variable my-payoffs:

let my-payoffs (item strategy payoff-matrix)

Finally, the payoff that the patch will get for each coplayer playing strategy i is the i-th element of

the list my-payoffs, so we only have to multiply the two lists (my-payoffs and n-of-coplayers-with-

strategy-?) element by element, and add up all the elements in the resulting list. To multiply the two

lists element by element we use primitive map:

sum (map * my-payoffs n-of-coplayers-with-strategy-?)

With this, we have finished the code in procedure to play.

to play
let n-of-coplayers-with-strategy-? n-values n-of-strategies [i ->

count my-coplayers with [strategy = i]]
let my-payoffs (item strategy payoff-matrix)
set payoff sum (map * my-payoffs n-of-coplayers-with-strategy-?)

end

to update-strategy-after-revision

Right now, procedure to update-strategy-after-revision is implemented as follows:

III-3. Extension to any number of strategies | 189

to update-strategy-after-revision
set C-player?-after-revision ifelse-value (random-float 1 < noise)

[one-of [true false]]
[[C-player?] of one-of (my-nbrs-and-me with-max [payoff])]

end

What changes do we have to make in this procedure?

Implementation of procedure to update-strategy-after-revision.

The only changes we have to make are highlighted in bold below:

to update-strategy-after-revision
set strategy-after-revision ifelse-value (random-float 1 < noise)

[random n-of-strategies]
[[strategy] of one-of (my-nbrs-and-me with-max [payoff])]

end

to update-strategy

Right now, procedure to update-strategy is implemented as follows:

to update-strategy
set C-player? C-player?-after-revision

end

What changes do we have to make in this procedure?

Implementation of procedure to update-strategy.

Keep up the excellent work!

to update-strategy
set strategy strategy-after-revision

end

190 | Part III. Spatial interactions on a grid

5.6. Complete code in the Code tab

The Code tab is ready!

globals [
payoff-matrix
n-of-strategies
n-of-players

]

patches-own [
strategy
strategy-after-revision
payoff
my-nbrs-and-me
my-coplayers
n-of-my-coplayers

]

to setup
clear-all
setup-payoffs
setup-players
setup-graph
reset-ticks
update-graph
ask patches [update-color]

end

to setup-payoffs
set payoff-matrix read-from-string payoffs
set n-of-strategies length payoff-matrix

end

to setup-players
let initial-distribution read-from-string n-of-players-for-each-strategy
if length initial-distribution != length payoff-matrix [

user-message (word "The number of items in\n"
"n-of-players-for-each-strategy (i.e. "
length initial-distribution "):\n" n-of-players-for-each-strategy
"\nshould be equal to the number of rows\n"
"in the payoff matrix (i.e. "
length payoff-matrix "):\n"
payoffs

)
]
if sum initial-distribution != count patches [

user-message (word "The total number of agents in\n"
"n-of-agents-for-each-strategy (i.e. "
sum initial-distribution "):\n" n-of-players-for-each-strategy
"\nshould be equal to the number of patches (i.e. "
count patches ")"

)

III-3. Extension to any number of strategies | 191

]
ask patches [set strategy false]
let i 0
foreach initial-distribution [j ->

ask n-of j (patches with [strategy = false]) [
set payoff 0
set strategy i
set strategy-after-revision strategy
set my-nbrs-and-me (patch-set neighbors self)
set my-coplayers ifelse-value self-matching?

[my-nbrs-and-me] [neighbors]
set n-of-my-coplayers (count my-coplayers)

]
set i (i + 1)

]
set n-of-players count patches

end

to setup-graph
set-current-plot "Strategy Distribution"
foreach (range n-of-strategies) [i ->

create-temporary-plot-pen (word i)
set-plot-pen-mode 1
set-plot-pen-color 25 + 40 * i

]
end

to go
ifelse synchronous-updating?

[
ask patches [play]
ask patches [update-strategy-after-revision]

;; here we are not updating the agent's strategy yet
ask patches [update-strategy]

;; now we update every agent's strategy at the same time
]
[

ask patches [
play
ask my-coplayers [play]

;; since your coplayers' strategies or
;; your coplayers' coplayers' strategies
;; could have changed since the last time
;; your coplayers played

update-strategy-after-revision
update-strategy

]
]

tick
update-graph
ask patches [update-color]

end

192 | Part III. Spatial interactions on a grid

to play
let n-of-coplayers-with-strategy-? n-values n-of-strategies [i ->

count my-coplayers with [strategy = i]]
let my-payoffs (item strategy payoff-matrix)
set payoff sum (map * my-payoffs n-of-coplayers-with-strategy-?)

end

to update-strategy-after-revision
set strategy-after-revision ifelse-value (random-float 1 < noise)

[random n-of-strategies]
[[strategy] of one-of my-nbrs-and-me with-max [payoff]]

end

to update-strategy
set strategy strategy-after-revision

end

to update-graph
let strategy-numbers (range n-of-strategies)
let strategy-frequencies map [n ->

count patches with [strategy = n] / n-of-players] strategy-numbers
set-current-plot "Strategy Distribution"
let bar 1
foreach strategy-numbers [n ->

set-current-plot-pen (word n)
plotxy ticks bar
set bar (bar - (item n strategy-frequencies))

]
set-plot-y-range 0 1

end

to update-color
set pcolor 25 + 40 * strategy

end

5.7. Code inside the plots

Note that we take care of all plotting in the update-graph procedure. Thus there is no need to write

any code inside the plot. We could instead have written the code of procedure to update-graph inside

the plot, but given that it is somewhat lengthy, we find it more convenient to group it with the rest of

the code in the Code tab.

6. Sample runs

Now that we have implemented the model we can explore the dynamics of the spatial Hawk-Dove-

Retaliator game! Will Retaliators survive in a spatial context? Let us explore this question using the

parameter values shown in figure 2 above. Get ready… because the results are going to blow your

mind!

III-3. Extension to any number of strategies | 193

One or more interactive elements has been excluded from this version of the text. You can

view them online here: https://wisc.pb.unizin.org/agent-based-evolutionary-game-

dynamics/?p=112#video-112-2

Unbelievable! Retaliators do not only survive, but they are capable of taking over about half the

population. Is this observation robust? If you modify the parameters of the model you will see that

indeed it is. The following video shows an illustrative run with noise = 0.05, synchronous-updating? =

false and self-matching? = false.

One or more interactive elements has been excluded from this version of the text. You can

view them online here: https://wisc.pb.unizin.org/agent-based-evolutionary-game-

dynamics/?p=112#video-112-3

The greater level of noise means that more Hawks appear by chance. This harms Retaliators more

than it harms Doves, but Retaliators still manage to stay the most prevalent strategy in the

population. How can this be?

First, note that even though the state where the whole population is choosing Retaliator is not an

ESS, it is a Neutrally Stable State (Sandholm, 2010a, p. 82). And, crucially, it is the only pure state

that is Nash (i.e. the only pure strategy that is best response to itself). Note that in spatial contexts

neighbors face similar situations when playing the game (since their neighborhoods overlap). Because

of this, it is often the case that neighbors choose the same strategy, and therefore clusters of agents

using the same strategy are common. In the Hawk-Dove-Retaliator game, clusters of Retaliators are

more stable than clusters of Doves (which are easily invadable by Hawks) and also more stable than

clusters of Hawks (which are easily invadable by Doves). This partially explains the amazing success

of Retaliators in spatial contexts, even though they are weakly dominated by Doves.

7. Exercises

You can use the following link to download the complete NetLogo model: nxn-imitate-best-nbr.nlogo.

194 | Part III. Spatial interactions on a grid

Snapshot of a simulation run of a spatial monocyclic
game with noise = 0.001, synchronous-updating? =

false and self-matching? = true.

Exercise 1. Killingback and Doebeli (1996, pp.

1140-1) explore the spatial Hawk-Dove-

Retaliator-Bully game, with payoff matrix:

[[-1 2 -1 2]

[0 1 1 0]

[-1 1 1 2]

[0 2 0 1]]

Do Retaliators still do well in this game?

Exercise 2. Explore the beautiful dynamics of

the following monocyclic game (Sandholm,

2010a, example 9.2.2, pp. 329-30):

[[0 -1 0 0 1]

[1 0 -1 0 0]

[0 1 0 -1 0]

[0 0 1 0 -1]

[-1 0 0 1 0]]

Compare simulations with balanced initial conditions (i.e. all strategies approximately equally present)

and with unbalanced initial conditions (e.g. only one strategy present at the beginning of the

simulation). What do you observe?

Exercise 3. How can we parameterize our model to replicate the results shown in figure 4 of

Killingback and Doebeli (1996, p. 1141)?

Exercise 4. In procedure to play we compute the list with the number of coplayers that are using

each strategy as follows:

n-values n-of-strategies [i -> count my-coplayers with [strategy = i]]

Can you implement the same functionality using the primitive map instead of n-values?

Exercise 5. Reimplement the procedure to update-strategy-after-revision so the revising agent

uses the imitative pairwise-difference rule adapted to networks, i.e. the revising agent looks at

a random neighbor and copies her strategy only if the observed agent’s average payoff is higher

than the revising agent’s average payoff; in that case, the revising agent switches with probability

proportional to the payoff difference.

III-3. Extension to any number of strategies | 195

III-4. Other types of neighborhoods and other
decision rules

1. Goal

Our goal in this chapter is to extend the model we have created in the previous chapter by adding

two features that are crucial to assess the impact of space on evolutionary models:

• The possibility to model different types of neighborhoods of arbitrary size. Besides Moore

neighborhoods, we will implement Von Neumann neighborhoods, and both of them of any

size.

• The possibility to model other decision rules besides the imitate the best neighbor rule. In

particular, we will implement the imitative pairwise-difference rule, the imitate if better rule, the

imitative positive proportional rule, and the Fermi rule.
1

2. Motivation. The impact of decision rules

In chapter III-2 we explored the impact of different assumptions on the robustness of cooperation

in spatial settings. However, one assumption we did not change was the decision rule (aka update

rule). Roca et al. (2009a, 2009b) conducted an impressive simulation study of the effect of spatial

structure in 2×2 games, and discovered that the decision rule can play a major role. In particular, they

found that the imitate the best neighbor rule (which Roca et al. (2009a, 2009b) call “unconditional

imitation”) favors cooperation in the Prisoner’s Dilemma more than any other decision rule they

studied.

In what concerns the Prisoner’s Dilemma, the above results also prove that the promotion

of cooperation in this game is not robust against changes in the update rule, because the

beneficial effect of spatial lattices practically disappears for rules different from unconditional

imitation, when seen in the wider scope of the ST plane. Roca et al. (2009b, p. 9)

In this chapter we are going to implement several decision rules. This will allow us to replicate Roca

et al.’s (2009a, 2009b) results… and many others (see the proposed exercises).

1. The names given to the different rules follow Izquierdo et al. (2019).

196 | Part III. Spatial interactions on a grid

3. Description of the model

The model we are going to develop here is a generalization of the model implemented in the previous

chapter. In particular, we are going to add the following four parameters:

• neighborhood-type. This parameter is used to define the agents’ neighborhood (both for playing

and for strategy updating).
2

The parameter can have two possible values: “Moore” for a Moore

neighborhood, or “Von Neumann” for a Von Neumann neighborhood.

• neighborhood-range. This parameter determines the range of the neighborhood. A

patch’s Moore neighborhood of range r consists of the patches within Chebyshev distance r. A

patch’s Von Neumann neighborhood of range r is composed of the patches within Manhattan

distance r. Note that in our descriptions of decision rules below, we do not consider a patch to

be a neighbor of itself unless otherwise stated.

• decision-rule. This parameter determines the decision rule that agents will follow. It will be

implemented with a chooser, with five possible values:

◦ “best-neighbor” (Nowak and May, 1992, 1993). This is the imitate the best neighbor rule,

already implemented in our model.
3

◦ “imitate-if-better-all-nbrs“. This is the imitate if better rule (Izquierdo and Izquierdo, 2013;

Loginov, 2021) adapted to networks, where agents play with all their neighbors. Under

this rule, the revising agent looks at a random neighbor and copies her strategy if and

only if the observed neighbor’s average payoff is higher than the revising agent’s average

payoff.

◦ “imitative-pairwise-difference” (Hauert, 2002,
4

2006). This is the imitative pairwise-

difference rule we saw in chapter I-2 adapted to networks. Under this rule, the revising

agent looks at a random neighbor and considers copying her strategy only if the

observed neighbor’s average payoff is higher than the revising agent’s average payoff; in

that case, the revising agent switches with probability proportional to the payoff

difference.
5

◦ “imitative-positive-proportional-m” (Nowak et al., 1994a, b). Under this decision rule, the

revising agent copies the strategy of one of her neighbors (including herself, in this

case), selected with probability proportional to their total payoff raised to parameter

m.
6

Parameter m controls the intensity of selection (see below). We do not allow for

2. Recall that the set of patches that a patch plays with also depends on the value of self-matching?.
3. Roca et al. (2009a, 2009b) call this decision rule "unconditional imitation" and Hauert (2002) calls it "best takes over".

Also, note that Hauert (2002) resolves ties differently.
4. See Roca et al. (2009b) for an important and illuminating discussion of this paper.
5. Roca et al. (2009a, 2009b) call this decision rule "replicator rule" or "proportional imitation rule", though their

implementation is not exactly the same as ours. They use total payoffs and we use average payoffs. The two
implementations differ only if it is possible that two agents have different number of neighbors (e.g. as with non-
periodic boundary conditions). Note, however, that Roca et al. (2009a, 2009b)'s experiments have periodic boundary
conditions, i.e. all agents have the same number of neighbors, so for all these cases the two implementations are
equivalent. Hauert (2002) calls this decision rule "imitate the better".

III-4. Other types of neighborhoods and other decision rules | 197

negative payoffs when using this rule.
7

◦ “Fermi-m” (Szabó and Tőke, 1998; Traulsen and Hauert, 2009; Roca et al. 2009a, 2009b;

Perc and Szolnoki, 2010, Adami et al., 2016). Under this decision rule, the revising agent

looks at one of her neighbors at random and copies her strategy with probability

, where denotes agent ‘s average payoff and .
8

Parameter m controls the intensity of selection (see below).

• m. This is a parameter that controls the intensity of selection in decision rules imitative-positive-

proportional-m and Fermi-m (see above). High values of m imply that selection is strongly based

on payoffs, i.e. the agents with the highest payoffs will be chosen with very high probability.

Lower values of m mean that the sensitivity of selection to payoffs is weak (e.g. if m = 0,

selection among agents is random, i.e. independent of their payoffs).

Everything else stays as described in the previous chapter.

4. Interface design

We depart from the model we developed in the previous chapter (so if you want to preserve it, now

is a good time to duplicate it).

6. It may make more sense to use average rather than total payoffs. We use total payoffs here to be able to replicate
Nowak et al.'s (1994a, b) experiments. To use average payoffs, the change in the code is minimal.

7. Roca et al. (2009a, 2009b) call this decision rule with m = 1 "Moran rule". Their implementation is not exactly the same
as ours, since they do allow for negative payoffs by introducing a constant. Note, however, that the two
implementations are equivalent if payoffs are non-negative. Hauert (2002) calls this decision rule with m =
1 "proportional update".

8. Note that some authors (e.g. Szabó and Tőke, 1998) use total payoffs rather than average payoffs.

198 | Part III. Spatial interactions on a grid

Figure 1. Interface design

In the new interface (see figure 1 above), we have to add:

• One chooser for new parameter neighborhood-type (with possible values “Moore” and “Von

Neumann“), and a slider for parameter neighborhood-range (with minimum = 1 and increment =

1).

• One chooser for new parameter decision-rule (with possible values “best-neighbor“, “imitate-

if-better-all-nbrs“, “imitative-pairwise-difference“, “imitative-positive-proportional-m” and “Fermi-

m“), and a slider for parameter m (with minimum = 0 and increment = 0.1).

We have also added a button (labeled show player’s neighborhood) to see any patch’s neighborhood

on the 2D view and another button (labeled clear) to clear the display of the neighborhood.

5. Code

5.1. Skeleton of the code

The skeleton of the code for procedures to setup and to go is the same as in the previous model. In

this chapter we will modify mainly the following two procedures:

• procedure to setup-players, to set the players’ neighborhoods according to

parameters neighborhood-type and neighborhood-range (see figure 2).

III-4. Other types of neighborhoods and other decision rules | 199

Figure 2. Calls to other procedures from procedure to setup-players

• procedure to update-strategy-after-revision, to run the decision rule indicated in parameter

decision-rule (see figure 3).

Figure 3. Calls to other procedures from procedure to update-strategy-after-revision

5.2. Extension I. Implementation of different neighborhoods

Recall that patches have the following two individually owned variables:

• my-coplayers, which contains the set of agents with whom the patch plays the game (and is

affected by parameter self-matching?), and

• my-nbrs-and-me, which is the set of agents the player considers when revising its strategy.

These two agentsets are the same if self-matching? is true, and differ only in the focal patch if self-

matching? is false. We will keep this distinction for any type of neighborhood.

To implement the different neighborhoods, primitive at-points will be very useful. This primitive

reports a subset of a given agentset that includes only the agents on the patches at the given

coordinates (relative to the calling agent). As an example, the following code gives a patch’s Von

Neumann neighborhood of range 1 (including the patch itself):

patches at-points [[-1 0] [0 -1] [0 0] [0 1] [1 0]]

200 | Part III. Spatial interactions on a grid

And the following code gives a patch’s Moore neighborhood of range 1 (including the patch itself):

patches at-points [[-1 -1] [-1 0] [-1 1] [0 -1] [0 0] [0 1] [1 -1] [1 0] [1
1]]

Thus, the key is to implement procedures that report the appropriate lists of relative coordinates.
9

Let’s do this!

Implementation of relative coordinates for Moore neighborhoods

Our goal here is to implement a procedure that reports the appropriate list of relative coordinates

for Moore neighborhoods, for any given range and letting the user choose whether the list should

include the item [0 0] or not. Let us call this reporter to-report moore-offsets. Note that this reporter

takes two inputs, which we can call r (for range) and include-center?.

to-report moore-offsets [r include-center?]
;; code to be written

end

Below we provide some examples of what reporter to-report moore-offsets should produce:

• If r = 1 and include-center? is true:

[[-1 -1] [-1 0] [-1 1] [0 -1] [0 0] [0 1] [1 -1] [1 0] [1 1]]

• If r = 1 and include-center? is false:

[[-1 -1] [-1 0] [-1 1] [0 -1] [0 1] [1 -1] [1 0] [1 1]]

• If r = 2 and include-center? is true:

[[-2 -2] [-2 -1] [-2 0] [-2 1] [-2 2] [-1 -2] [-1 -1] [-1 0] [-1 1] [-1
2] [0 -2] [0 -1] [0 0] [0 1] [0 2] [1 -2] [1 -1] [1 0] [1 1] [1 2] [2
-2] [2 -1] [2 0] [2 1] [2 2]]

Note that the effect of input include-center? is just to include or exclude [0 0] from the output list,

so we can worry about that at the end of the implementation. To produce the list of Moore offsets

for range r, we can start building the list l = [–r, –r+1, …, r-1, r] and then build 2-item lists with each

element of the list l together with each element of the same list l. Thus, let us build the list l = [–r,

–r+1, …, r-1, r]:

let l (range (- r) (r + 1))

To build 2-items lists with first element el1 and second element each of the elements of list l, we can

use primitive map as follows:

9. Our implementation is heavily based on code example titled "Moore & Von Neumann Example", which you can find in
NetLogo models library. Note, however, that this code example does not compute the correct neighborhoods if the
center of the world lies at the edge or at a corner of the world (at least in version 6.4.0 and previous ones).

III-4. Other types of neighborhoods and other decision rules | 201

map [el2 -> list el1 el2] l

And now we should make el1 be each of the elements of list l. For this we can use primitive map
again:

map [el1 -> map [el2 -> list el1 el2] l] l

The only problem now is that we have several nested lists. For example, the code above for l = [-1,

0, 1] produces:

[[[-1 -1] [-1 0] [-1 1]] [[0 -1] [0 0] [0 1]] [[1 -1] [1 0] [1 1]]]

Note that the outmost list contains three sublists, each of which contains three 2-item lists. We can

get rid of the extra lists using primitives reduce and sentence:

let result reduce sentence map [el1 -> map [el2 -> list el1 el2] l] l

The code above creates the list of required offsets, including [0 0]. Now we just have to remove

[0 0] if and only if input include-center? is false. Thus, the final code for reporter to-report moore-

offsets is as follows:

to-report moore-offsets [r include-center?]
let l (range (- r) (r + 1))
let result reduce sentence map [el1 -> map [el2 -> list el1 el2] l] l
report ifelse-value include-center?

[result]
[remove [0 0] result]

end

Implementation of relative coordinates for Von Neumann neighborhoods

Our goal here is to implement a procedure that reports the appropriate list of relative coordinates for

Von Neumann neighborhoods. Let us call this reporter to-report von-neumann-offsets and let us call

its inputs r (for range) and include-center?, just like before.

to-report von-neumann-offsets [r include-center?]
;; code to be written

end

Note that, for any given r and include-center?, the list of offsets for a Von Neumann neighborhood is

a subset of the list of offsets for the corresponding Moore neighborhood. In particular, the list of Von

Neumann offsets is composed of the elements [el1 el2] in the list of Moore offsets that satisfy the

condition |el1| + |el2| ≤ r . Thus, we can create the corresponding list of Moore offsets and filter those

coordinates that satisfy the condition using primitive filter. Do you want to give it a try?

202 | Part III. Spatial interactions on a grid

Implementation of procedure to-report von-neumann-offsets

Yes, well done!

to-report von-neumann-offsets [r include-center?]
let moore-list (moore-offsets r include-center?)
report filter [l -> abs first l + abs last l <= r] moore-list

end

Putting everything together

Now that we have implemented to-report moore-offsets and to-report von-neumann-offsets, we can

use them in procedure to setup-players to create the right neighborhood for each patch. The only

lines we have to modify are the ones highlighted in bold below:

to setup-players
let initial-distribution read-from-string n-of-players-for-each-strategy
if length initial-distribution != length payoff-matrix [

user-message (word "The number of items in\n"
"n-of-players-for-each-strategy (i.e. "
length initial-distribution "):\n" n-of-players-for-each-strategy
"\nshould be equal to the number of rows\n"
"in the payoff matrix (i.e. "
length payoff-matrix "):\n"
payoffs

)
]
if sum initial-distribution != count patches [

user-message (word "The total number of agents in\n"
"n-of-agents-for-each-strategy (i.e. "
sum initial-distribution "):\n" n-of-players-for-each-strategy
"\nshould be equal to the number of patches (i.e. "
count patches ")"

)
]
ask patches [set strategy false]
let i 0
let offsets ifelse-value (neighborhood-type = "Von Neumann")

[von-neumann-offsets neighborhood-range self-matching?]
[moore-offsets neighborhood-range self-matching?]

foreach initial-distribution [j ->
ask n-of j (patches with [strategy = false]) [

set payoff 0
set strategy i
set strategy-after-revision strategy
set my-coplayers patches at-points offsets

III-4. Other types of neighborhoods and other decision rules | 203

set n-of-my-coplayers (count my-coplayers)
set my-nbrs-and-me (patch-set my-coplayers self)

]
set i (i + 1)

]
set n-of-players count patches

end

Note that variable my-coplayers may or may not contain the patch itself (depending on the value of

parameter self-matching?), but variable my-nbrs-and-me will always contain it, since we are setting its

value to (patch-set my-coplayers self). This is perfectly fine even if my-coplayers already contains the

patch itself, since agentsets do not contain duplicates. Adding an agent a to an agentset that already

contains that agent a has no effect whatsoever.
10

A nice final touch

Finally, we are going to write some code to let the user see the neighborhood of any patch in the 2D

view by clicking on it. This is just for displaying purposes, so feel free to skip this if you’re not really

interested. Let us start by implementing a new procedure called to show-neighborhood as follows:

to show-neighborhood
if mouse-down? [

ask patch mouse-xcor mouse-ycor [
ask my-coplayers [set pcolor white]

]
]
display

end

You may want to read the documentation for primitives mouse-down?, mouse-xcor and mouse-
ycor. Basically, this procedure paints in white the patches contained in the variable my-coplayers of

the patch you click with your mouse. However, for this to work, the procedure must be running all the

time. To do this, we can run this procedure within the button labeled show player’s neighborhood in

the interface, and make this button be a “forever” button.

Insert the following code within the button labeled show player’s neighborhood:

with-local-randomness [show-neighborhood]

10. For instance, the following code reports true.

show (patch-set patch 0 0 patch 0 0) = (patch-set patch 0 0)

204 | Part III. Spatial interactions on a grid

The use of primitive with-local-randomness guarantees that this piece of code does not

interfere with the generation of pseudorandom numbers for the rest of the model.

To clear the white paint, insert the following code within the button labeled clear (which

should not be a “forever” button):

with-local-randomness [ask patches [update-color]]

Figure 4 shows a patch’s Von Neumann neighborhood of range 5 (excluding the patch itself) painted

in white.

5.3. Extension II. Implementation of different decision rules

The implementation of the decision rule takes place in procedure to update-strategy-after-

revision. Note that the effect of noise is the same regardless of the decision rule, so we can deal with

noise in a unified way, regardless of which decision rule will be executed. One possible way of doing

this is as follows:

to update-strategy-after-revision
ifelse (random-float 1 < noise)

[set strategy-after-revision random n-of-strategies]
[

;; code to set strategy-after-revision
;; using the decision rule indicated by the user

III-4. Other types of neighborhoods and other decision rules | 205

;; through parameter decision-rule
]

end

To make the implementation of decision rules elegant and modular, we should implement a different

procedure for each decision rule. Let us call these procedures: best-neighbor-rule, imitate-if-better-

all-nbrs-rule, imitative-pairwise-difference-rule, imitative-positive-proportional-m-rule and Fermi-m-

rule. With these procedures in place, the code for procedure to update-strategy-after-revision would

just look as follows:

to update-strategy-after-revision
ifelse (random-float 1 < noise)

[set strategy-after-revision random n-of-strategies]
[(ifelse

decision-rule = "best-neighbor"
[best-neighbor-rule]

decision-rule = "imitate-if-better-all-nbrs"
[imitate-if-better-all-nbrs-rule]

decision-rule = "imitative-pairwise-difference"
[imitative-pairwise-difference-rule]

decision-rule = "imitative-positive-proportional-m"
[imitative-positive-proportional-m-rule]

decision-rule = "Fermi-m"
[Fermi-m-rule]

)
]

end

Note that primitive ifelse can work with multiple conditions, just like switch statements in other

programming languages.
11

Now we just have to implement the procedures for each of the four decision rules. Do you want to

give it a try? The first one is not very difficult.

Implementation of procedure to best-neighbor-rule

to best-neighbor-rule
set strategy-after-revision

[strategy] of one-of my-nbrs-and-me with-max [payoff]

11. This functionality was added in NetLogo 6.1.

206 | Part III. Spatial interactions on a grid

end

Implementing procedure to imitate-if-better-all-nbrs-rule is slightly more difficult, but we believe you

can do it. Remember that players consider average payoffs, rather than total payoffs.

Implementation of procedure to imitate-if-better-all-nbrs-rule

to imitate-if-better-all-nbrs-rule
let observed-player one-of other my-coplayers

if ([payoff / n-of-my-coplayers] of observed-player) >
(payoff / n-of-my-coplayers) [

set strategy-after-revision ([strategy] of observed-player)
]

end

The implementation of procedure to imitative-pairwise-difference-rule is significantly more difficult

than the previous one, but if you have managed to read this book until here, you certainly have what

it takes to do it!

Implementation of procedure to imitative-pairwise-difference-rule

A possible implementation of this procedure is as follows:

to imitative-pairwise-difference-rule
let observed-player one-of other my-coplayers
;; compute difference in average payoffs
let payoff-diff ([payoff / n-of-my-coplayers] of observed-player

- (payoff / n-of-my-coplayers))
set strategy-after-revision

ifelse-value
(random-float 1 < (payoff-diff / max-payoff-difference))

[[strategy] of observed-player]
[strategy]
;; If your strategy is the better, payoff-diff is negative,

III-4. Other types of neighborhoods and other decision rules | 207

;; so you are going to stick with it.
;; If it's not, you switch with probability
;; (payoff-diff / max-payoff-difference)

end

Note that we are using a new variable, i.e. max-payoff-difference, to make sure that the

agent changes strategy with probability proportional to the average payoff difference. Thus, we

should define it as global (since this max-payoff difference will not change over the course of a

run), as follows:

globals [
payoff-matrix
n-of-strategies
n-of-players
max-payoff-difference ;; <== New line

]

We also have to set the value of this new variable. We can do that at the end of the setup-

payoffs method, as follows:

to setup-payoffs
set payoff-matrix read-from-string payoffs
set n-of-strategies length payoff-matrix
;; new lines below
set max-payoff-difference

(max-of-matrix payoff-matrix) - (min-of-matrix payoff-matrix)
end

Finally, note that we have implemented two new procedures to compute the minimum and the

maximum value of a matrix:

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; SUPPORTING PROCEDURES ;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;;;;;;;;;;;;;;;
;;; Matrices ;;;
;;;;;;;;;;;;;;;;

to-report max-of-matrix [matrix]
report max reduce sentence matrix

end

to-report min-of-matrix [matrix]

208 | Part III. Spatial interactions on a grid

report min reduce sentence matrix
end

To implement procedure to imitative-positive-proportional-m-rule, there is an extension that comes

bundled with NetLogo which will make our life much easier: extension rnd. To use it, you just have

to add the following line at the beginning of your code

extensions [rnd]

Having loaded the rnd extension, you can use primitive rnd:weighted-one-of, which will be

very handy. With this information, you may want to try to implement this short procedure yourself.

Implementation of procedure to imitative-positive-proportional-m-rule

to imitative-positive-proportional-m-rule
let chosen-nbr rnd:weighted-one-of my-nbrs-and-me [payoff ^ m]
set strategy-after-revision [strategy] of chosen-nbr

end

If you wanted to use average rather than total payoffs, you would only have to divide the payoff

by n-of-my-coplayers.

To avoid errors when payoffs are negative and this rule is used, it would be nice to check that

payoffs are non-negative, and if they are, let the user know. We can do this implementing the

following procedure:

to check-payoffs-are-non-negative
if min reduce sentence payoff-matrix < 0 [

user-message (word
"Since you are using decision-rule =\n"
"imitative-positive-proportional-m,\n"
"all elements in the payoff matrix\n"
payoffs
"\nshould be non-negative numbers.")

]
end

An appropriate place to call this procedure would be at the end of procedure to setup-payoffs,

which would then be as follows:

III-4. Other types of neighborhoods and other decision rules | 209

to setup-payoffs
set payoff-matrix read-from-string payoffs
set n-of-strategies length payoff-matrix
;; New lines below
set max-payoff-difference

(max-of-matrix payoff-matrix) - (min-of-matrix payoff-matrix)
if decision-rule = "imitative-positive-proportional-m"

[check-payoffs-are-non-negative]
end

The implementation of procedure to Fermi-m-rule is not extremely hard after having seen the

implementation of to imitative-pairwise-difference-rule, and realizing that

.

Implementation of procedure to Fermi-m-rule

A possible implementation of this procedure is as follows:

to Fermi-m-rule
let observed-player one-of other my-coplayers
;; compute difference in average payoffs
let payoff-diff ([payoff / n-of-my-coplayers] of observed-player

- (payoff / n-of-my-coplayers))
set strategy-after-revision

ifelse-value (random-float 1 < (1 / (1 + exp (- m * payoff-diff))))
[[strategy] of observed-player]
[strategy]

end

5.4. Complete code in the Code tab

The Code tab is ready! Congratulations! With this model you can rigorously explore the effect of

space in 2-player games.

extensions [rnd] ;; <== New line

globals [
payoff-matrix
n-of-strategies

210 | Part III. Spatial interactions on a grid

n-of-players
max-payoff-difference ;; <== New line

]

patches-own [
strategy
strategy-after-revision
payoff
my-nbrs-and-me
my-coplayers
n-of-my-coplayers

]

to setup
clear-all
setup-payoffs
setup-players
setup-graph
reset-ticks
update-graph
ask patches [update-color]

end

to setup-payoffs
set payoff-matrix read-from-string payoffs
set n-of-strategies length payoff-matrix
;; New lines below
set max-payoff-difference

(max-of-matrix payoff-matrix) - (min-of-matrix payoff-matrix)
if decision-rule = "imitative-positive-proportional-m"

[check-payoffs-are-non-negative]
end

to setup-players
let initial-distribution read-from-string n-of-players-for-each-strategy
if length initial-distribution != length payoff-matrix [

user-message (word "The number of items in\n"
"n-of-players-for-each-strategy (i.e. "
length initial-distribution "):\n" n-of-players-for-each-strategy
"\nshould be equal to the number of rows\n"
"in the payoff matrix (i.e. "
length payoff-matrix "):\n"
payoffs

)
]
if sum initial-distribution != count patches [

user-message (word "The total number of agents in\n"
"n-of-agents-for-each-strategy (i.e. "
sum initial-distribution "):\n" n-of-players-for-each-strategy
"\nshould be equal to the number of patches (i.e. "
count patches ")"

)
]

III-4. Other types of neighborhoods and other decision rules | 211

ask patches [set strategy false]
let i 0
let offsets ifelse-value (neighborhood-type = "Von Neumann")

[von-neumann-offsets neighborhood-range self-matching?]
[moore-offsets neighborhood-range self-matching?]

foreach initial-distribution [j ->
ask n-of j (patches with [strategy = false]) [

set payoff 0
set strategy i
set strategy-after-revision strategy
set my-coplayers patches at-points offsets
set n-of-my-coplayers (count my-coplayers)
set my-nbrs-and-me (patch-set my-coplayers self)

]
set i (i + 1)

]
set n-of-players count patches

end

to setup-graph
set-current-plot "Strategy Distribution"
foreach (range n-of-strategies) [i ->

create-temporary-plot-pen (word i)
set-plot-pen-mode 1
set-plot-pen-color 25 + 40 * i

]
end

to go
ifelse synchronous-updating?

[
ask patches [play]
ask patches [update-strategy-after-revision]

;; here we are not updating the agent's strategy yet
ask patches [update-strategy]

;; now we update every agent's strategy at the same time
]
[

ask patches [
play
ask my-coplayers [play]

;; since your coplayers' strategies or
;; your coplayers' coplayers' strategies
;; could have changed since the last time
;; your coplayers played

update-strategy-after-revision
update-strategy

]
]

tick
update-graph
ask patches [update-color]

end

212 | Part III. Spatial interactions on a grid

to play
let n-of-coplayers-with-strategy-? n-values n-of-strategies [i ->

count my-coplayers with [strategy = i]]
let my-payoffs (item strategy payoff-matrix)
set payoff sum (map * my-payoffs n-of-coplayers-with-strategy-?)

end

to update-strategy-after-revision
ifelse (random-float 1 < noise)

[set strategy-after-revision random n-of-strategies]
[(ifelse

decision-rule = "best-neighbor"
[best-neighbor-rule]

decision-rule = "imitate-if-better-all-nbrs"
[imitate-if-better-all-nbrs-rule]

decision-rule = "imitative-pairwise-difference"
[imitative-pairwise-difference-rule]

decision-rule = "imitative-positive-proportional-m"
[imitative-positive-proportional-m-rule]

decision-rule = "Fermi-m"
[Fermi-m-rule]

)
]

end

to best-neighbor-rule
set strategy-after-revision

[strategy] of one-of my-nbrs-and-me with-max [payoff]
end

to imitate-if-better-all-nbrs-rule
let observed-player one-of other my-coplayers
if ([payoff / n-of-my-coplayers] of observed-player) >

(payoff / n-of-my-coplayers) [
set strategy-after-revision ([strategy] of observed-player)

]
end

to imitative-pairwise-difference-rule
let observed-player one-of other my-coplayers
;; compute difference in average payoffs
let payoff-diff ([payoff / n-of-my-coplayers] of observed-player

- (payoff / n-of-my-coplayers))
set strategy-after-revision

ifelse-value (random-float 1 < (payoff-diff / max-payoff-difference))
[[strategy] of observed-player]
[strategy]

;; If your strategy is the better, payoff-diff is negative,
;; so you are going to stick with it.
;; If it's not, you switch with probability
;; (payoff-diff / max-payoff-difference)

end

III-4. Other types of neighborhoods and other decision rules | 213

to imitative-positive-proportional-m-rule
let chosen-nbr rnd:weighted-one-of my-nbrs-and-me [payoff ^ m]
;; https://ccl.northwestern.edu/netlogo/docs/rnd.html#rnd:weighted-one-of

set strategy-after-revision [strategy] of chosen-nbr
end

to Fermi-m-rule
let observed-player one-of other my-coplayers
;; compute difference in average payoffs
let payoff-diff ([payoff / n-of-my-coplayers] of observed-player

- (payoff / n-of-my-coplayers))
set strategy-after-revision

ifelse-value (random-float 1 < (1 / (1 + exp (- m * payoff-diff))))
[[strategy] of observed-player]
[strategy]

end

to update-strategy
set strategy strategy-after-revision

end

to update-graph
let strategy-numbers (range n-of-strategies)
let strategy-frequencies map [n ->

count patches with [strategy = n] / n-of-players] strategy-numbers
set-current-plot "Strategy Distribution"
let bar 1
foreach strategy-numbers [n ->

set-current-plot-pen (word n)
plotxy ticks bar
set bar (bar - (item n strategy-frequencies))

]
set-plot-y-range 0 1

end

to update-color
set pcolor 25 + 40 * strategy

end

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; SUPPORTING PROCEDURES ;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

to-report moore-offsets [r include-center?]
let l (range (- r) (r + 1))
let result reduce sentence map [el1 -> map [el2 -> list el1 el2] l] l
report ifelse-value include-center?

[result]
[remove [0 0] result]

end

to-report von-neumann-offsets [r include-center?]

214 | Part III. Spatial interactions on a grid

let moore-list (moore-offsets r include-center?)
report filter [l -> abs first l + abs last l <= r] moore-list

end

to show-neighborhood
if mouse-down? [

ask patch mouse-xcor mouse-ycor [
ask my-coplayers [set pcolor white]

]
]
display

end

to check-payoffs-are-non-negative
if min reduce sentence payoff-matrix < 0 [

user-message (word
"Since you are using decision-rule =\n"
"imitative-positive-proportional-m,\n"
"all elements in the payoff matrix\n"
payoffs
"\nshould be non-negative numbers.")

]
end

;;;;;;;;;;;;;;;;
;;; Matrices ;;;
;;;;;;;;;;;;;;;;

to-report max-of-matrix [matrix]
report max reduce sentence matrix

end

to-report min-of-matrix [matrix]
report min reduce sentence matrix

end

6. Sample runs

6.1. Decision rules

Now that we have implemented the model, we can explore the impact of the decision rule on the

promotion of cooperation in the spatially embedded Prisoner’s Dilemma. Let us explore this question

using the parameter values shown in figure 1 above. We start with the imitate the best neighbor rule.

The simulation below shows a representative run.

One or more interactive elements has been excluded from this version of the text. You can

view them online here: https://wisc.pb.unizin.org/agent-based-evolutionary-game-

dynamics/?p=1292#video-1292-1

III-4. Other types of neighborhoods and other decision rules | 215

As you can see in the video above, with the imitate the best neighbor rule, high levels of cooperation

are achieved (i.e. about 90% of the patches cooperate in the long run). But, how robust is this result to

changes in the decision rule? To explore this question, let us run the same simulation with the other

four decision rules we have implemented. The simulation below shows a representative run with the

imitate-if-better-all-nbrs rule.

One or more interactive elements has been excluded from this version of the text. You can

view them online here: https://wisc.pb.unizin.org/agent-based-evolutionary-game-

dynamics/?p=1292#video-1292-2

As you can see in the video, with the imitate-if-better-all-nbrs rule there is no cooperation at all.

Defection takes over in about forty ticks. Let us see what happens with the imitative-pairwise-

difference rule.

One or more interactive elements has been excluded from this version of the text. You can

view them online here: https://wisc.pb.unizin.org/agent-based-evolutionary-game-

dynamics/?p=1292#video-1292-3

With the imitative-pairwise-difference rule, again, there is no cooperation at all in the long run. Let

us now try the imitative-positive-proportional-m rule with m = 1:
12

One or more interactive elements has been excluded from this version of the text. You can

view them online here: https://wisc.pb.unizin.org/agent-based-evolutionary-game-

dynamics/?p=1292#video-1292-4

We do not observe any cooperation at all with the imitative-positive-proportional-m rule (with m =

1) either. Finally, let us try the Fermi-m rule with m = 1 (or any other positive value, for that matter):
13

One or more interactive elements has been excluded from this version of the text. You can

view them online here: https://wisc.pb.unizin.org/agent-based-evolutionary-game-

dynamics/?p=1292#video-1292-5

12. As long as m ≤ 5, results are very similar, but for greater values of m (i.e. greater intensity of selection) cooperation
starts to emerge.

13. In contrast with what happens under the imitative-positive-proportional-m rule, parameter m does not seem to have
a great influence in this case. This changes if self-matching? is turned on. In that case, for high values of m,
cooperation can emerge.

216 | Part III. Spatial interactions on a grid

And we observe universal defection again! Clearly, as Roca et al. (2009a, 2009b) point out, the

imitate the best neighbor rule seems to favor cooperation in the Prisoner’s Dilemma more than other

decision rules.

6.2. Neighborhoods

What about if we change the type of neighborhood? You can check that the simulations shown in

the videos above do not change qualitatively if we use Von Neumann neighborhoods rather than

Moore neighborhoods. However, what does make a difference is the size of the neighborhood.

Note that if the size is so large that agents’ neighborhoods encompass the whole population, we

have a global interaction model (i.e. a model without population structure). Thus, the size of the

neighborhood allows us to study the effect of population structure in a gradual manner. Having

seen this, we can predict that, for the imitate the best neighbor rule, if we increase the size of

the neighborhood enough, at some point cooperation will disappear. As an exercise, try to find

the minimum neighborhood-range (for both types of neighborhood) at which cooperation cannot be

sustained anymore, with the other parameter values as shown in figure 1.

Critical neighborhood size at which cooperation does not emerge in the simulation

parameterized as in figure 1.

• neighborhood-type = “Moore“. With neighborhood-range = 1, we observe significant levels

of cooperation (about 90%) cooperation, but with neighborhood-range ≥ 2, we observe

no cooperation at all.

• neighborhood-type = “Von Neumann“. With neighborhood-range = 1, we observe

significant levels of cooperation (about 75%) cooperation.

Interestingly, with neighborhood-range = 2, we observe even more cooperation (usually

more than 90%), but with neighborhood-range ≥ 3, we observe no cooperation at all.

6.3. Discussion

We would like to conclude this chapter emphasizing that the influence of population structure on

evolutionary dynamics generally depends on many factors that may seem insignificant at first sight,

and whose effects interact in complex ways. This may sound discouraging, since it suggests that

a simple general theory of the influence of population structure on evolutionary dynamics cannot

be derived. On a more positive note, it also highlights the importance of the skills you are learning

with this book. Without the aid of computer simulation, it seems impossible to explore this type of

questions. But using computer simulation we can gain some understanding of the complexity and

the beauty of these apparently simple –yet surprisingly intricate– systems. The following quote from

Roca et al. (2009b) nicely summarizes this view.

III-4. Other types of neighborhoods and other decision rules | 217

A frame of the simulation shown in figure 11 of Nowak
and May (1993)

To conclude, we must recognize the strong dependence on details of evolutionary games on

spatial networks. As a consequence, it does not seem plausible to expect general laws that could

be applied in a wide range of practical settings. On the contrary, a close modeling including

the kind of game, the evolutionary dynamics and the population structure of the concrete

problem seems mandatory to reach sound and compelling conclusions. With no doubt this is

an enormous challenge, but we believe that this is one of the most promising paths that the

community working in the field can explore. Roca et al. (2009b, pp. 14-15)

7. Exercises

You can use the following link to download the complete NetLogo model: nxn-imitate-best-nbr-

extended.nlogo.

Exercise 1. How can we parameterize our model

to replicate the results shown in figures 1b and

1d of Hauert and Doebeli (2004)?

Exercise 2. How can we parameterize our model

to replicate the results shown in figures 1, 2, 6

and 7 of Nowak et al. (1994a)?
14

Exercise 3. How can we parameterize our model

to replicate the results shown in figure 1

of Szabó and Tőke (1998)? Note that Szabó and

Tőke (1998) use total payoffs and we use

average payoffs in our Fermi-m rule, but a clever

parameterization can save you any

programming efforts.

Exercise 4. How can we parameterize our model

to replicate the results shown in figure 11 of

Nowak and May (1993)?

Exercise 5. To appreciate the impact that neighborhood-type may have, run a simulation

parameterized as in figure 1 above, but with decision-rule = “Fermi-m”, m = 10, and self-

matching? = true. Compare the results obtained using neighborhood-type =

“Moore” and neighborhood-type = “Von Neumann”. What do you observe?

Exercise 6. The following block of code (in procedure to update-strategy-after-revision) can be

14. Figures 1 and 2 in Nowak et al. (1994a) are the same as figures 1 and 2 in Nowak et al. (1994b).

218 | Part III. Spatial interactions on a grid

replaced by one simple line using run (a primitive that can take a string containing the name of a

command as an input, and it runs the command).

[(ifelse
decision-rule = "best-neighbor"

[best-neighbor-rule]
decision-rule = "imitate-if-better-all-nbrs"

[imitate-if-better-all-nbrs-rule]
decision-rule = "imitative-pairwise-difference"

[imitative-pairwise-difference-rule]
decision-rule = "imitative-positive-proportional-m"

[imitative-positive-proportional-m-rule]
decision-rule = "Fermi-m"

[Fermi-m-rule]
)

]

Can you come up with the simple line?

III-4. Other types of neighborhoods and other decision rules | 219

III-5. Analysis of these models

The computable need not be predictable. Sigmund (1983, p. 54)

1. A much greater state space

Like most agent-based models, all the models developed in this Part III can be usefully seen as time-

homogeneous Markov chains. Note, however, that in order to interpret them as Markov chains, the

definition of the state of the system must be different from the one we used in Part II.

Recall that in Part II (where we studied unstructured populations), we could define the state of the

system as the strategy distribution in the population, i.e. the number of agents that are using each

possible strategy. This was all the information we needed about the present –and the past– of the

stochastic process to be able to (probabilistically) predict its future as accurately as it is possible. By

contrast, in grid models this information is not enough.

As an illustration, consider the following (deterministic) simulation runs, conducted with the first

model developed in this Part III, using payoffs DD-payoff = CD-payoff = 0, CC-payoff = 1 and DC-payoff

= 1.15, and periodic boundary conditions (see video 1 below). The three runs start with exactly four

cooperators. The cooperators are arranged (a) in a square, (b) in L, and (c) in a line. As you can see, the

three simulations lead to completely different dynamics: run (a) goes to universal cooperation, run (b)

produces a glider of cooperators that moves indefinitely, and run (c) goes to universal defection in

one tick.

220 | Part III. Spatial interactions on a grid

a) Four cooperators in a square b) Four cooperators in L c) Four cooperators in a line

One or more

interactive elements

has been excluded from this

version of the text. You can

view them online here:

https://wisc.pb.unizin.org/

agent-based-evolutionary-

game-

dynamics/?p=114#video-114-1

One or more

interactive elements

has been excluded from this

version of the text. You can

view them online here:

https://wisc.pb.unizin.org/

agent-based-evolutionary-

game-

dynamics/?p=114#video-114-2

One or more

interactive elements

has been excluded from this

version of the text. You can

view them online here:

https://wisc.pb.unizin.org/

agent-based-evolutionary-

game-

dynamics/?p=114#video-114-3

Video 1: Simulations of model 2×2-imitate-best-nbr on a 80×80 torus, using payoffs DD-payoff = CD-payoff =
0, CC-payoff = 1 and DC-payoff = 1.15. Initially, there are only four cooperators arranged (a) in a square, (b) in

L, and (c) in a line.

Video 1 clearly illustrates that, in grid models, simply knowing how many agents are using each

strategy is not enough to predict how the system will evolve. In general, we need to know the

strategy of each individual agent (i.e. patch). Therefore, the size of the state space in grid models is

much larger than in their well-mixed population counterparts. Let us see exactly how much. Recall

that the number of possible states in the well-mixed population models implemented in the Part II

was , where is the number of agents and the number of strategies (see section II-5.3).

In contrast, the number of possible states in the grid models implemented in this Part III is generally

. This is a major difference. For example, if and , the size of the state space in the

well-mixed population model would be , while the size of the state space in the

grid model would be .

Some of the models developed in this Part III can be seen as a particular class of Markov chains called

cellular automata, so we deal with them separately in the following section.

2. Cellular automata

Cellular automata (CA) are discrete-time models that consist of a regular lattice of cells. In principle,

the lattice can be of any finite number of dimensions. For instance, video 2 below shows a

2-dimensional CA that is called Conway’s Game of Life.

One or more interactive elements has been excluded from this version of the text. You

III-5. Analysis of these models | 221

can view them online here: https://wisc.pb.unizin.org/agent-based-evolutionary-game-

dynamics/?p=114#video-114-4

Video 2: Simulation of Conway’s Game of Life on a 50×50 torus.

In CA, each cell has a set of neighboring cells, defined by a certain neighborhood function (e.g. the

neighborhood in the Game of Life is the Moore neighborhood). At any given tick, each cell is in one

state out of a finite set (e.g., black or white in video 2 above). The state of each cell in the following

tick is deterministically determined by the state of its neighbors and its own state in the current tick;

and the function that updates the state of each cell is applied synchronously to every cell. As an

example, the function that updates the cells’ state in Conway’s Game of Life reads as follows:

A white cell turns black if it has exactly three black neighbors, and a black cell stays black only if

two or three of its neighbors are black. All other cells go white.

As you can see in video 2 above, cellular automata can produce astonishingly complex patterns from

extremely simple deterministic rules.
1

This is true even for elementary cellular automata, which are

1-dimensional, two-state cellular automata where the neighborhood of each cell is just the two cells

at either side (Wolfram, 1983, 2002). Amazingly, some elementary cellular automata, like rule 30,

display chaotic behavior, and others, like rule 110, are even capable of universal computation (Cook,

2004).
2

Going back to our models, note that all synchronous models implemented in this Part III that use a

deterministic decision rule fit the definition of 2-dimensional cellular automata. In particular, the first

model we implemented in this Part III (Nowak and May, 1992, 1993) is one of them.
3,4

1. You can run your own simulations of the Game of Life using the following Mathematica script:

globalState = RandomInteger[1, {50, 50}];
Dynamic[ArrayPlot[

globalState = Last[CellularAutomaton["GameOfLife", globalState, 1]]
]]

2. Two useful references to learn about the fascinating world of cellular automata are Berto and Tagliabue (2023) and
Wolfram (2002). Sigmund (1983, chapter 2) and Mitchell (1998) are two wonderful thought-provoking gems, highly
recommended for anyone interested in appreciating the important role of cellular automata in understanding self-
reproduction and universal computation.

3. Note, however, that the neighborhood in the definition of the corresponding cellular automaton is not the (Moore)
neighborhood used in the model. In the model, the strategy of a player depends on the payoffs of its Moore
neighbors, which in turn depend on the strategy of the player's neighbors' neighbors. Thus, the neighborhood of the
corresponding cellular automaton is the Moore neighborhood of range 2, i.e., the 5x5 square around each patch.

4. Szabó and Fáth (2007, sections 4.1 and 6.5) discuss this model in detail and review several other CA models in the
context of evolutionary game theory.

222 | Part III. Spatial interactions on a grid

In general, CA are surprisingly difficult to analyze. Even though they are completely deterministic, in

many cases there seems to be no shorter way of predicting the state of the CA after n ticks than

by actually running the whole simulation, i.e. there is no shortcut or possible theory that can save

us from having to compute every single step from tick 0 to tick n.
5

This may come as a surprise,

especially for CA defined on finite lattices like all the CA developed in this book. After all, if a CA is

run on a finite grid, it is clear that, sooner or later, it must end up in a cycle of finite length (including

single states, which can be seen as cycles of length 1). However, it is often the case that CA:

• have a huge number of possible end cycles,

• the length of the end cycles can vary substantially,

• the specific cycle where a simulation ends up may be very sensitive to initial conditions and to

small changes in the model (such as the size and the topology of the grid) and,

• the number of ticks required to enter the end cycle may also be very sensitive to initial

conditions and to small changes in the model.

The simulation runs displayed in Video 1 are a clear illustration of these points. Simulations (a) and

(c) differ from (b) only in the location of one single cooperator at the beginning of the simulation.

Nonetheless, the final state of run (a) is universal cooperation, the final state of run (c) is universal

defection, and run (b) ends up in a cycle of length 80. In short, a change on initial conditions as small

as it can be may lead to a change in the dynamics as large as it can be. You may want to run this

model with different initial conditions to appreciate the great number of possible end cycles it can

get to, and its sensitivity to initial conditions.

As another example, consider the Game of Life simulation displayed in video 2 above. Video 3 below

shows a simulation run with the same initial condition except for the top leftmost cell, which was

white in video 2 and is black in video 3 below.

One or more interactive elements has been excluded from this version of the text. You can

view them online here: https://wisc.pb.unizin.org/agent-based-evolutionary-game-

dynamics/?p=114#video-114-5

Video 3: Simulation of Conway’s Game of Life on a 50×50 torus. The initial condition differs from the initial
condition used in video 2 only in the cell at the top left.

The simulation in video 2 reaches a 200-cycle (i.e., a cycle of length 200) after 467 ticks, while the

simulation in video 3 reaches a completely different 2-cycle after 2083 ticks.

Besides initial conditions, there are other features we can change in CA, which may seem innocuous

at first sight, but which may significantly affect their dynamics. To see this, consider the kaleidoscopic

simulation we ran in section III-1.6. The simulation starts with one single defector in a sea of

5. Wolfram (2002, p. 739) calls this feature "computational irreducibility". However, to our knowledge, there is not a
unique and uncontested formal definition of this concept.

III-5. Analysis of these models | 223

cooperators. The run seems to go on forever but, given that the grid is finite, we know that the

simulation will necessarily end up in a cycle. Table 1 below shows the tick at which the simulation

enters its end cycle, together with the length of the end cycle and its average number of cooperators,

for different grid sizes.
6

As you can see, changing slightly the size of the grid can also change the

dynamics substantially (Nowak and May, 1993).

Grid
size

Tick at which the run enters the end
cycle

Length of
cycle

Average number of cooperators in the
end cycle

49×49 1 140 1 0 (0%)

51×51 737 2 (2304+2500)/2 = 2402 (92.35%)

53×53 331 1 0 (0%)

55×55 752 1 0 (0%)

57×57 4 770 2 (2916+3136)/2 = 3026 (93.14%)

59×59 33 1 0 (0%)

61×61 3 900 4 (48+48+48+48)/4 = 48 (1.29%)

63×63 33 1 0 (0%)

65×65 33 1 0 (0%)

67×67 33 1 0 (0%)

69×69 56 723 1 0 (0%)

71×71 163 982 1 0 (0%)

73×73 151 292 1 0 (0%)

75×75 171 429 1 0 (0%)

77×77 374 805 1 0 (0%)

79×79 1 053 418 4 (48+48+48+48)/4 = 48 (0.77%)

81×81 1 547 640 1 0 (0%)

Table 1. End cycles of model 2×2-imitate-best-nbr run on a grid with fixed boundaries (box), for different grid
sizes, using payoffs DD-payoff = CD-payoff = 0, CC-payoff = 1 and DC-payoff = 1.85. Initially, there is one
single defector in the center of the grid. All runs for grids 1×1 to 47×47 end up in universal defection in less

than 200 ticks

Finally, let us see the impact of changing the boundary conditions, again in the kaleidoscopic setup.

Table 2 below shows that changes in boundary conditions can impact both the type of cycle we end

up, and also the time it takes to reach it, in ways that do not seem easy to grasp.

6. This is a slightly extended version of table 1 in Nowak and May (1993, p. 46).

224 | Part III. Spatial interactions on a grid

Grid
size

Fixed boundaries7

(Box)
Periodic boundaries

(Torus)

43×43

Universal defection from tick 111
2-cycle from tick 324, with an average of

90.97% cooperators

45×45 Universal defection from tick 180 Universal defection from tick 939

47×47 Universal defection from tick 143 Universal defection from tick 8030

49×49 Universal defection from tick 1140 Universal defection from tick 430

51×51

2-cycle from tick 737, with an average of
92.35% cooperators

Universal defection from tick 16,446

53×53 Universal defection from tick 331 Universal defection from tick 4853

55×55 Universal defection from tick 752 Universal defection from tick 14,946

57×57

2-cycle from tick 4770, with an average of
93.14% cooperators

Universal defection from tick 3329

59×59

Universal defection from tick 33
4-cycle from tick 45,406, with an average of

1.38% cooperators

61×61

4-cycle from tick 3900, with an average of
1.29% cooperators

4-cycle from tick 14,007, with an average of
1.29% cooperators

63×63 Universal defection from tick 33 Universal defection from tick 33

65×65 Universal defection from tick 33 Universal defection from tick 33

67×67 Universal defection from tick 33 Universal defection from tick 286,379

III-5. Analysis of these models | 225

Table 2. End cycles of model 2×2-imitate-best-nbr run on a grid, using payoffs DD-payoff = CD-payoff = 0,
CC-payoff = 1 and DC-payoff = 1.85, for different grid sizes and boundary conditions (box vs. torus). Initially,

there is one single defector in the center of the grid

The previous examples illustrate how difficult it is to analyze CA, even when they are run on finite

lattices. It seems that predicting their behavior by means of deductive mathematical analysis is

only possible for particularly simple cases; in general, we have to resort to computer simulation.

Bhattacharjee et al. (2020) review various tools to characterize CA and state the following:

In this section, we survey the characterization tools and parameters, developed till date to analyze the

CAs. Tools are mainly developed for one-dimensional CAs, and for two or higher dimensional CAs, ‘‘run

and watch’’ is the primary technique to study the behavior. Bhattacharjee et al. (2020, p. 439)

To conclude this section on CA, let us emphasize that the dynamics displayed by many CA are

also very sensitive to noise. Oftentimes, adding just a bit of stochasticity (e.g. by using random

asynchronous updating rather than synchronous updating) drastically changes the generated

patterns. See e.g. sample runs in chapter III-2. In such cases, we should be very careful about the

conclusions we can draw from those CA. Our personal view is that deterministic dynamical patterns

that are not robust to low levels of stochasticity may be interesting from a theoretical (or even

aesthetical) point of view, but its usefulness as models of real-world systems is probably doubtful.

Interestingly, adding a little bit of stochasticity to CA, besides making them more realistic, often

improves their mathematical tractability. As we saw in section II-5.3, stochasticity often turns

reducible Markov chains into irreducible and aperiodic ones (sometimes called ergodic), which are

more amenable to exploration and analysis, and their asymptotic dynamics do not depend on initial

conditions.
8

3. Models more amenable to mathematical analysis.
The pair approximation

In chapter II-5, we saw that the dynamics of all the models developed in Part II could be approximated

impressively well using various mathematical techniques, at least within certain ranges of parameter

values (e.g. large populations and low revision probabilities). The main reason we could develop useful

approximations for those models is that:

• the state of the system could be defined using a small set of continuous and bounded variables

(i.e., the fraction of agents that are using each strategy), and

7. We use the term "fixed boundaries" to be consistent with Nowak and May's (1992, 1993) original papers, but other authors, such as
Sayama (2015, p. 189), refer to this topology as "cut-off boundaries", and use the term "fixed boundaries" for a different topology.

8. In section II-5.3.1.3 we provided sufficient conditions for irreducibility and aperiodicity of time-homogeneous Markov
chains.

226 | Part III. Spatial interactions on a grid

• these variables evolved slowly (i.e., their values could change only slightly in each tick).

The spatial models we have developed in this book do not generally satisfy the two conditions above.

This is specially evident for those that are cellular automata. In spatial models, the proportion of

agents that are using each strategy is certainly not enough to define the state of the system (see, e.g.,

video 1). Thus, a possible move forward consists in adding to our approximations some extra variables

that can capture some of the missing information that is necessary to predict how the system will

evolve. Specifically, in grid models, the strategies of your neighbors are very relevant, so an additional

set of variables that are certainly useful is the set of conditional probabilities that a neighbor of an

i-player is a j-player. This is the approach followed by the so-called “Pair approximation”, which we

introduce in the next section.

3.1. Introduction to the pair approximation

The pair approximation (Nakamaru et al. (1997), Rand (1999), van Baalen (2000)) can be interpreted

as an extension of the mean dynamic (section II-5.3.2.1) developed to be useful for structured

populations. The goal of both techniques is to derive a system of (deterministic) differential equations

that can approximate our model’s stochastic dynamics, and both techniques are based on computing

the expected change of the stochastic process.

To derive this expected change in unstructured populations, the only information we need is the

distribution of strategies in the population, since this information is enough to define the state of the

stochastic process. In unstructured populations, the fraction of agents with strategy i, i.e. the fraction

of i-players, is also the probability that the next interaction of any agent will be with an i-player;

and this is true for every agent. Thus, these fractions were the only variables we used in the mean

dynamic.

By contrast, in structured populations, the probability of interacting with an i-player is not the

fraction of i-players in the whole population; instead, this probability depends on the particular

distribution of strategies in the agent’s local neighborhood. Thus, in structured populations we need

more information. The approach followed in the pair approximation is to include the conditional

probabilities that a neighbor of an i-player is a j-player. These conditional probabilities, together

with the distribution of strategies in the population, are the variables that are used in the pair

approximation to estimate the expected evolution of the stochastic dynamics. These variables are by

no means sufficient to compute the expected change in the state of the system exactly, but they can

sometimes provide useful approximations.

3.2. Derivation of a pair approximation for regular undirected
networks

In this section we derive a simple pair approximation for the dynamics of 2-player 2-strategy games

in regular undirected networks, under different decision rules.

III-5. Analysis of these models | 227

(a) Von Neumann neighborhoods on a torus (b) Moore neighborhoods on a torus

Figure 1. The figure shows the regular networks that correspond to a grid with periodic boundaries using (a)
Von Neumann neighborhoods and (b) Moore neighborhoods. There is a white link between any two patches

that are neighbors

A network is a set of nodes and a set of links. Nodes represent the agents and links connect agents

that are neighbors. Figure 1 shows, in white, the links corresponding to a 2-dimensional grid with

toroidal topology, using Von Neumann neighborhoods (fig. 1(a)) and using Moore neighborhoods (fig.

1(b)).

Here we consider regular undirected networks only. Undirected networks are those where the

neighborhood relationship is symmetric, i.e., if agent a is a neighbor of agent b, then agent b is

also a neighbor of agent a. Regular networks are networks where every node has the same degree

(i.e., the same number of neighbors). Thus, the spatial grids we have considered here, with periodic

boundaries, fit the definition of regular undirected networks.
9

For simplicity, here we consider games with two strategies only. Let us denote them and . Our

goal is to derive a system of differential equations for the (joint) evolution of:

• the fraction of agents using strategy , and

• the conditional probability that a neighbor of an -player is an -player.

The following section explains the notation we will use.

3.2.1. Notation

Notation for nodes (i.e., agents)

• is the number of agents.

• is the number of neighbors (or degree) of every agent.

• is the number of agents with strategy , and is the number of agents with strategy .

Thus, .

9. Hauert and Szabó (2005, section B) study dynamics on different regular undirected networks besides lattices, such as
random regular graphs and regular small world networks.

228 | Part III. Spatial interactions on a grid

• is the fraction of players using strategy . Similarly, . Therefore,

.

Notation for links

We follow the convention of counting links between agents as if they were directed, i.e., if an

-player and a -player are neighbors, we count two links: one – link and one – link.
10

Thus,

the total number of links is .

• denotes the number of links from -players to -players. We define ,

and analogously. Thus, we have and

• denotes the fraction of links from -players to -players. We define ,

and analogously. Thus, we have and .

• denotes the fraction of neighbors of -players that are

-players themselves. This is also the probability that a (random) neighbor of a (random)

-player is an -player. is the probability that

a random neighbor of an -player is a -player. We have equivalent definitions for

and for .

Importantly, note that all the considered variables , and can be expressed as functions

of and .

3.2.2. Neighborhood configurations

In this section we derive the probability of different neighborhood configurations. We assume that

the model is such that the only relevant information about the neighborhood is its distribution of

strategies. With two strategies, this distribution can be characterized by the number of -neighbors,

, with .

For an -player, the probability of being in a neighborhood with -neighbors can be

approximated by the binomial distribution:

And, for a -player, the probability of being in a neighborhood with -neighbors can be

approximated by:

It will also be useful to refine these probabilities for the cases where we already know that there is

a player in the neighborhood using a strategy different from the focal agent’s strategy. That is, if we

10. This convention is convenient for the formulas, but there are alternatives that are also valid.

III-5. Analysis of these models | 229

already know that (at least) one of the neighbors of a focal -player is a -player, the conditional

probability of the neighborhood configuration with -players for the focal -player can be

approximated, for , by

And, equivalently, for a -player with at least one -neighbor, the conditional probabilities, for

, are given by

Importantly, note that, given that , all the formulas in this subsection can

also be expressed in terms of and .

3.2.3. Derivation of the first equation:

As indicated before, our goal is to derive a system of differential equations for i) the fraction of agents

using strategy and ii) the conditional probability that a neighbor of an -player is an -player, i.e.,

To derive the first equation, we follow the same approach we used to derive the mean dynamic

(section II-5.3.2.1). We define one unit of clock time as the time over which every agent is expected

to receive exactly one revision opportunity. Thus, over the time interval , the number of agents

who are expected to receive a revision opportunity is . Let be the probability

that a revising -player switches to strategy . Therefore, of the agents who revise their

strategies, are expected to switch from strategy to strategy . Similarly,

agents are expected to switch from strategy to strategy . Hence, the

expected change in the number of agents that are using strategy over the time interval is

. Therefore, the expected change in the fraction of agents

using strategy is:

Thus,

Note, however, that the probabilities in the formula above depend on the neighborhood

configuration of the focal agent. Thus, we should consider all the possible neighborhood

configurations and their corresponding probabilities, as follows:

where is the (conditional) probability that a revising -player with -neighbors switches

230 | Part III. Spatial interactions on a grid

to strategy , and is the (conditional) probability that a revising -player with

-neighbors switches to strategy .

Conditional switching probabilities and

Conditional switching probabilities depend on the number of -neighbors and on the decision

rule. Regarding the decision rule, here we focus on the imitative-pairwise-difference rule; we leave

the derivation of the switching probabilities for other decision rules as exercises at the end of this

chapter.

Under the imitative-pairwise-difference rule, the revising agent looks at a random neighbor and, if

the observed neighbor has a greater average payoff, the reviser copies her strategy with probability

proportional to the difference in average payoffs. Thus, let us start defining the payoff functions.

Consider first a revising -player with -neighbors. The average payoff to such a revising

-player is .
11

The payoff to an -neighbor of the revising

-player depends on the number of -neighbors of this -player (who has at least one

-neighbor), and this payoff is .

We can now derive , which is the probability that a revising -player switches to strategy

. The probability that a random neighbor of a revising -player with -neighbors is an

-player is . The payoff of this random -neighbor depends on the number of -neighbors she

has, with (since we know that she has at least one -neighbor, i.e. the reviser).

The probability that the observed -neighbor has -neighbors is . Therefore, the

formula for reads:

where and is a sufficiently large constant to guarantee that

in every possible case.
12

Following the same reasoning, we can derive :

Substitution

By now, we have the formulas for every term in the equation:

11. For decision rules that depend on total payoffs, rather than on average payoffs, we would just multiply by .
12. The value of should be at least ;

choosing any value greater than this will only imply a change of speed in the differential equations.

III-5. Analysis of these models | 231

It only remains to express all these terms as functions of and to obtain the first equation of

the pair approximation:

3.2.4. Derivation of the second equation:

Recall that . Therefore,

Since we already have the formula for , we just need to derive .

Remember that . Just like we did for the first equation, here we also consider the

events that modify , taking into account all the possible neighborhood configurations with their

corresponding probabilities. The expected change in the number of – links over the time

interval is:

where is the number of new – links that appear when a -player with

-neighbors switches to strategy , and where is the number of – links that

disappear when an -player (with -neighbors) adopts strategy . Therefore, the expected

change in is:

Thus,

Expressing the different terms as functions of and , we obtain an equation of the form

. Finally, from , we obtain the second equation of the

pair approximation .

3.3. Solving the pair approximation. Examples

Just like we did with the mean dynamics, we can numerically solve the system of differential

equations of the pair approximation. To this end, we have created a Mathematica® notebook that you

can download and run using the free Wolfram Player. Figure 2 shows its interface.

232 | Part III. Spatial interactions on a grid

Figure 2. Interface of the Mathematica® notebook created to solve the system of differential equations of the
pair approximation (Izquierdo et al., 2024). You can download the notebook at https://github.com/

luis-r-izquierdo/pair-approximation

As an example of a case where the pair approximation works well, we present some results for the

snowdrift game (payoffs = [[1 0.8][1.2 0]]) played synchronously on a 100×100 torus using Moore

neighborhoods () and the imitative-pairwise-difference rule. Initial conditions are random, with

half the population using strategy and the other half using strategy , so and

. Figure 3 shows the solution trajectory of the pair approximation (see also Figure 2),

together with the average, minimum and maximum values of the fraction of -strategists at every

tick, across 1000 simulation runs conducted with our nxn-imitate-best-nbr-extended model.

III-5. Analysis of these models | 233

Figure 3. Pair approximation and simulation results for the snowdrift game played synchronously on a
100×100 torus using Moore neighborhoods () and the imitative-pairwise-difference rule. The black

solid line shows the fraction of -strategists according to the pair approximation, while the orange solid line
shows the average values across 1000 simulation runs. The orange error bars show the minimum and
maximum values observed across the 1000 runs. Payoffs [[1 0.8][1.2 0]]; initial conditions [5000 5000]

As you can see in Figure 3, in this case the pair approximation works reasonably well, and its limiting

value provides a very good estimate of the long-term average value

of the fraction of -strategists.
13

Unfortunately, the pair approximation does not always work so well, by any means. As an example,

Figure 4 shows results for the same parameterization as in Figure 3, but using Von Neumann

neighborhoods () instead of Moore neighborhoods.

13. For asynchronous updating, the match between the pair approximation and the simulations is slightly worse but
qualitatively similar. The long-term average values for synchronous and asynchronous updating, together with the
pair approximation, are plotted in figure 1d of Hauert and Doebeli (2004), entering a cost-to-benefit ratio of 0.2.

234 | Part III. Spatial interactions on a grid

Figure 4. Pair approximation and simulation results for the snowdrift game played synchronously on a
100×100 torus using Von Neumann neighborhoods () and the imitative-pairwise-difference rule. The
black solid line shows the fraction of -strategists according to the pair approximation, while the orange
solid line shows the average values across 100 simulation runs. The orange error bars show the minimum
and maximum values observed across the 100 runs. Payoffs [[1 0.8][1.2 0]]; initial conditions [5000 5000]

In the case shown in Figure 4, the pair approximation provides an estimate for the long-term average

fraction of -strategists of , which is far from the value of 0.94 obtained by running the

stochastic model.
14

We conclude this section with another example where the pair approximation does not work

well. Consider the Prisoner’s Dilemma with payoffs [[1 0][1.1 0.1]] played asynchronously on a

125×125 torus using Moore neighborhoods () and the imitative-pairwise-difference rule. Initial

conditions are such that . Figure 5 shows the comparison between the pair

approximation and a computational experiment run with our nxn-imitate-best-nbr-extended model.
15

In this case, the pair approximation provides an estimate for the long-term average fraction of

-strategists of , while the value obtained from the computational experiment is 0.65.

14. These values are plotted in figure 1b of Hauert and Doebeli (2004), entering a cost-to-benefit ratio of 0.2.
15. A similar figure can be found in Fu et al. (2010, figure 4a, red lines), though they use different initial conditions. The

limiting values (and the value obtained from the computational experiment, 0.65) are also plotted in
figure 6a of Fu et al. (2010), for . Fu et al. (2010) use total payoffs rather than average payoffs, but this
difference is irrelevant when using the imitative-pairwise-difference rule on regular networks.

III-5. Analysis of these models | 235

Figure 5. Pair approximation and simulation results for the Prisoner’s Dilemma played asynchronously on a
125×125 torus using Moore neighborhoods () and the imitative-pairwise-difference rule. The black

solid line shows the fraction of -strategists according to the pair approximation, while the orange solid line
shows the average values across 100 simulation runs. The orange error bars show the minimum and

maximum values observed across the 100 runs. Payoffs [[1 0][1.1 0.1]]; initial conditions [7812 7813]

The take-home message of these examples is that the pair approximation may or may not work well,

and in most cases there is no simpler or shorter way of finding out whether it will work well other

than running the computer simulations.

3.4. Discussion

Note that in the “well-mixed population” models we developed in Part II, every player was equally

likely to interact with every other player, regardless of their strategies. Thus, in those models

.

By contrast, in spatial models, the values of and generally differ, and we often obtain better

approximations if we track their joint evolution, as we do in the pair approximation. However, it

seems clear that in most cases these two variables will not be enough to condense all the relevant

information that can affect evolutionary dynamics on grids (or, more generally, on networks). To make

this important point crystal clear, below we present different network configurations with exactly the

same initial values of and (so the prediction of the pair approximation is exactly the same

for both), but with completely different evolution.

Consider a toroidal grid with Von Neumann neighborhoods (). Agents play a coordination game

with strategies (orange) and (green), and payoff matrix [[3 0][0 2]], using the imitate-if-better-all-

236 | Part III. Spatial interactions on a grid

nbrs decision rule. You may assume synchronous or asynchronous updating. Initially, all players are

using the green strategy except for a group of 8 agents who use strategy . See the two initial

configurations in Table 3 below for two examples. These initial configurations show only the part of

the grid corresponding to the 8 orange -strategists and their second neighbors; the numbers are

the total payoff obtained by each player. You may assume that the grid is larger than the part shown

in the figures, as long as the part not shown is green.

Table 3 shows two distinct initial configurations, each with 8 -strategists and 8 undirected –

links, so they both have the same values for and . However, configuration c1 is an absorbing

state (i.e., it does not change over time), while configuration c2 leads to a complete invasion by

orange strategy .

Name Initial configuration ====> Final configuration

c1 ====>

c2 ====>

Table 3. Two initial configurations with the same values for and , and their corresponding final
states

Similarly, initial configurations c3 to c6 in Table 4 share the same number of -strategists (8) and of

– links (7 undirected links), so they all present the same values for and . However, their

dynamic evolution is completely different:

• Configuration c3 leads to the survival of the 2×2 orange square block and the disappearance

of the other orange -players.

• Configuration c4 leads to a complete invasion by orange strategy .

• Configuration c5 leads to a complete invasion by green strategy .

• Configuration c6 may lead to the invasion of orange , to the invasion of green , or to one

of two other possible final states where both strategies are present.

III-5. Analysis of these models | 237

Name Initial configuration ====> Possible final configurations

c3 ====>

c4 ====>

c5 ====>

c6 ====>

Table 4. Four initial configurations with the same values for and , and the final states they may lead
to

It is then clear that variables and are not sufficient to condense all the relevant information

238 | Part III. Spatial interactions on a grid

that can affect evolutionary dynamics on grids.
16

Thus, in general, the pair approximation presented

here cannot provide a good description of the agent-based stochastic dynamics.

One may wonder whether adding more variables may lead to better approximations. There are

different ways we can generalize and improve the pair approximation we have derived here. For

instance, if the underlying network is such that neighboring nodes tend to have common neighbors

(i.e., high clustering coefficient), we may refine the estimation of the probability of a neighbor’s

neighborhood configuration (i.e., our terms and) by taking into

account these correlations (see, e.g., Morita (2008)). Similarly, to estimate the probability that

a (random) neighbor of an -player linked to a -neighbor is an -player (with), we

could keep track of the expected evolution of triplets, such as [AAB]. This could well improve the

quality of the approximation, but it would also increase the number of variables and equations in the

system of ODEs, possibly making it less amenable to analysis (van Baalen, 2000).

In any case, the bottom line is that there is no guarantee whatsoever that adding more variables will

eventually yield a good analytical approximation that will work in every case. While for unstructured

populations there are mathematical theorems that guarantee that the stochastic process converges

to the mean dynamic as the population size grows, this is not generally the case for pair

approximations in structured populations. The “validity” of pair approximations is generally assessed

via simulations… the very same simulations the approximation aims to describe.

16. Hauert and Szabó (2005, figure 5) show examples of different regular networks that share the same pair
approximation but have very different dynamics.

III-5. Analysis of these models | 239

Photo by Antony Hyson S on Unsplash

4. Exercises

Exercise 1. Derive the pair approximation for

the imitate-if-better-all-nbrs decision rule.

Exercise 2. Derive the pair approximation for

the Fermi-m decision rule.

Exercise 3. Derive the pair approximation for

the imitate the best neighbor decision rule. For

simplicity, you may want to assume that a

revising -player will change her strategy only

if no -player achieves the maximum payoff in

the neighborhood (and analogously for

-revisers). This is a slightly different way of

resolving ties. Warning! This exercise is

significantly harder than the two previous ones.

Exercise 4. Extend our nxn-imitate-best-

nbr-extended model to include two monitors

that show the values of and .

Exercise 5. In exercise III-4.1, we parameterized

our nxn-imitate-best-nbr-extended model to

replicate the simulation results shown in figures

1b and 1d of Hauert and Doebeli (2004). We can now replicate their pair approximation results too

(i.e., the solid line in these figures). Please, use the Mathematica notebook that solves the pair

approximation to compute a few values of the solid lines in these two figures.

Exercise 6. How can we parameterize our nxn-imitate-best-nbr-extended model and the

Mathematica notebook that solves the pair approximation to replicate the results shown in figures

4a, 4d, 6a and 6c of Fu et al. (2010)?

240 | Part III. Spatial interactions on a grid

PART IV. GAMES ON
NETWORKS

Agent-Based Evolutionary Game Dynamics | 241

IV-1. The nxn game on a random network

1. Goal

The goal of this chapter is to learn how to implement models where players are connected in a

network (see figure 1). A network is a set of nodes and a set of links.
1
Links connect pairs of nodes. In

our models, the nodes in the network will be the players, so each link connects two players.

Figure 1. Example of a preferential attachment
network. Players are represented as circles. There

are links between some pairs of players

In this book, we will only use undirected links (which denote symmetric relations such as “being a

sibling of”). Nonetheless, in NetLogo it is equally easy to implement models with directed links (for

asymmetric relations, such as “being a parent of”), and also models with both types of links.

Here, we will use networks to limit the information that players can access. We assume that players

can only interact with their link-neighbors (i.e. those with whom the player shares a link), so link-

neighbors are the only players that a player can observe or play with. In this sense, networks define

local neighborhoods of interaction, potentially different for each player.

By using networks, we will be able to generalize all the models previously developed in this book.

1. A more mathematical term for network is "graph". People tend to use the term "graph" when they study the
mathematical structure, composed only of nodes and links. The term "network", rather than graph, is often used when
nodes or links have some individual attributes or properties that are of interest. In this book we will use the term
"network", but do feel free to use the term "graph" if you like. In graph theory, nodes are often called "vertices" and
links are often called "edges".

242 | Part IV. Games on networks

Note that in Part II we implemented models where every player could observe and play with every

other player. Such models can be interpreted as network models where players are connected

through a complete network, i.e., a network where everyone is linked to everybody else. In Part

III, we implemented models with spatial structure, i.e., models where players were embedded on

a 2-dimensional grid and they could only interact with their spatial neighbors. Those models can

be perfectly interpreted as network models. For instance, the spatial model where we used Von

Neumann neighborhoods of radius 1 corresponds to a square lattice network. In this Part IV, we will

learn to implement models where players are connected through any arbitrary network.

2. Motivation. A single-optimum coordination game

Consider the following 2-player 2-strategy single-optimum coordination game (which we discussed

in chapter I-2):

Player 2

Player 2 chooses A Player 2 chooses B

Player 1
Player 1 chooses A 1 , 1 0 , 0

Player 1 chooses B 0 , 0 2 , 2

If you explore the dynamics of this game with the last model we developed in Part II, i.e. nxn-imitate-

if-better-noise-efficient, you will see that a population of 100 agents using the imitate if better rule

with low noise (e.g. noise = 0.03), starting with 70 A-strategists and 30 B-strategists, will almost

certainly approach the inefficient state where everyone is choosing strategy A, and spend most of

the time around it. In the video below, strategy A corresponds to strategy 0 (orange) and strategy B

corresponds to strategy 1 (green).

One or more interactive elements has been excluded from this version of the text. You can

view them online here: https://wisc.pb.unizin.org/agent-based-evolutionary-game-

dynamics/?p=341#video-341-1

Note that in every model developed in Part II, every player can observe and play with every other

player (i.e., the network of potential interactions is complete). Now imagine that instead of assuming

that everyone can interact with everyone, we assume that each player has just a few contacts (say

about 2 on average), and we also asume that these contacts are set at random, in the sense that any

possible contact exists with the same probability (i.e., an Erdős–Rényi random network).

Do you think that this change on the network of potential interactions (from complete, to sparse

and random) will make any difference? Players will still select other players to observe and to play at

random. The difference will be that the set of players with which each player can interact throughout

the course of the simulation will be much smaller (though still random).

Let us build a model to explore this question!

IV-1. The nxn game on a random network | 243

3. Description of the model

We depart from the program we implemented in chapter II-3 (nxn-imitate-if-better-noise). In chapter

II-4, we saw that the computational speed of this program could be greatly increased. However, the

speed boost came at the expense of making our code slightly less readable. Here we want to focus

on code readability, so we believe it is better to start with the most natural implementation of the

model, i.e. nxn-imitate-if-better-noise.

The only change we are going to make to the model that nxn-imitate-if-better-noise implements is to

embed the players on a network created following the G(n-of-players, prob-link) Erdős–Rényi random

network model. In this type of network model, each possible link between any two players is included

in the network with probability prob-link, independently from every other link. The following is a full

description of the model we aim to implement, highlighting the main changes:

In this model, there is a population of n-of-players agents who repeatedly play a symmetric 2-player

game with any number of strategies. The payoffs of the game are determined by the user in the form

of a matrix [[A00 A01 … A0n] [A10 A11 … A1n] … [An0 An1 … Ann]] containing the payoffs Aij that

an agent playing strategy i obtains when meeting an agent playing strategy j (i, j ∈ {0, 1, …, n}). The

number of strategies is inferred from the number of rows in the payoff matrix.

The initial strategy distribution is set with parameter n-of-players-for-each-strategy, using a list of the

form [a0 a1 … an], where item ai is the initial number of agents with strategy i. Thus, the total number

of agents is the sum of all elements in this list.

Agents are embedded on a network created following the G(n-of-players, prob-link) Erdős–Rényi

random network model. The network is created once at the beginning of the simulation and it

is kept fixed for the whole simulation. Players can only interact with their link-neighbors in the

network.

Once initial conditions are set and the network has been created, the following sequence of events

–which defines a tick– is repeatedly executed:

1. Every agent obtains a payoff by selecting one of her link-neighbors at random and playing the

game.

2. With probability prob-revision, individual agents are given the opportunity to revise their

strategies. In that case, with probability noise, the revising agent will adopt a random

strategy; and with probability (1 – noise), the revising agent will choose her strategy following

the imitate if better rule, adapted for networks:

Look at one (randomly selected) link-neighbor and adopt her strategy if and only if her

payoff was greater than yours. (And do nothing if you have no neighbors.)
2

2. Note that, in this model, the agent observed by the revising agent may or may not be the same agent that the revising
agent played with. In general, imposing that revising agents necessarily look at the same agent they played with leads
to very different dynamics (see Hauert and Miȩkisz (2018)).

244 | Part IV. Games on networks

All agents who revise their strategies within the same tick do it simultaneously (i.e.

synchronously).

The model shows the evolution of the number of agents choosing each of the possible strategies at

the end of every tick. The model also shows a representation of the network, with players colored

according to their strategies.

4. Interface design

We depart from the model we created in chapter II-3 (nxn-imitate-if-better-noise), so if you want to

preserve it, now is a good time to duplicate it. The current interface looks as shown in figure II-3-1.

Our goal now is to modify it so it looks as figure 2 below. We will place everything related to networks

at the right side of the interface.

Figure 2. Interface design

Let us go through all the necessary changes:

• We should bring forward the 2D view of the NetLogo world (i.e. the large black square) to a

place where we can see it. We will use this view to represent the network of players.

Choose the dimensions of the world by clicking on the “Settings…” button on the

top bar, by double-clicking on the 2D view, or by right-clicking on the 2D view and

choosing Edit. A window will pop up, which allows you to choose the number of

patches by setting the values of min-pxcor, max-pxcor, min-pycor and max-
pycor. You can also determine the patches’ size in pixels, and whether the grid wraps

horizontally, vertically, both or none (see Topology section).

We recommend unticking the boxes related to wrapping, to prevent the links of the

network from going through the boundaries. Apart from that, feel free to choose any

values you like for the other parameters. Our settings are shown in figure 3 below:

IV-1. The nxn game on a random network | 245

Figure 3. Model settings

• Let us create two new buttons, for procedures that deal with the visualization of the network:

1. One button named relax-network, which runs the procedure to relax-

network indefinitely.

2. One button named drag-and-drop, which runs the procedure to drag-and-

drop indefinitely.

In the Code tab, write the procedures to relax-network and to drag-and-drop, without

including any code inside for now.

to relax-network
;; empty for now

end

246 | Part IV. Games on networks

to drag-and-drop
;; empty for now

end

Then, create the buttons. Since these buttons deal only with visual aspects of the

model, you may want to use the primitive with-local-randomness, which

guarantees that this piece of code does not interfere with the generation of

pseudorandom numbers for the rest of the model. Also, do not forget to tick the

“Forever” option. When pressed, these buttons will make their respective procedures

run repeatedly until the button is pressed again. We will understand later why we

want this.

Figure 4. Settings for relax-network button. Do not forget to tick on
“Forever”

• Finally, let us create a slider to let the user choose the probability prob-link with which each link

should be created in the random network.

Create a slider for global variable prob-link. You can choose limit values 0 (as the

minimum) and 1 (as the maximum), and an increment of 0.01.

5. Code

5.1. Skeleton of the code

Figure 5 below provides a schematic view of the code. You can find the legend for code skeletons in

Appendix A-2.

IV-1. The nxn game on a random network | 247

Figure 5. Skeleton of the code. The dashed green rectangles highlight the main additions in the code. The
dashed blue rectangles highlight the main modifications in the code

Note that the only differences between the skeleton of our current code and the skeleton of the new

model we are creating now (fig. 5) are that:

• we are going to call a new procedure named to build-Erdos-Renyi-network when setting up the

players (to build the random network),

• we are going to modify procedure to update-payoff so agents obtain their payoff by selecting

one of her link-neighbors at random (rather than one other agent in the population at random),

• we are going to modify procedure to update-strategy-after-revision so revising agents look at

one (randomly selected) link-neighbor (rather than at any other agent in the population), and

• we are going to call a new procedure named to update-players-color at the end of procedure

to go, to color the players according to their strategy in the 2D view.

Let’s make it happen!!

5.2. Extensions, global variables and individually-owned variables

Extensions

To implement models with networks in NetLogo, there is a wonderful extension that will make our

life much easier: the nw extension. It is highly recommended that you read its short documentation

now. Then, to load the nw extension, write the following line at the very top of the code:

248 | Part IV. Games on networks

extensions [nw]

Global variables

There is no need to add or remove any global variables in our code. The current global variables are:

globals [
payoff-matrix
n-of-strategies
n-of-players

]

Individually-owned variables

There is no need to add or remove any individually-owned variables in our code. The current

individually-owned variables are:

players-own [
strategy
strategy-after-revision
payoff

]

5.3. Setup procedures

In this model we want to embed the players in a G(n-of-players, prob-link) Erdős–Rényi random

network. Thus, we should create a procedure to do that. We can call it to build-Erdos-Renyi-network.

Primitive nw:generate-random from the nw extension builds the network for us. Thus, the code

for this procedure is particularly easy:

to build-Erdos-Renyi-network
nw:generate-random players links n-of-players prob-link

end

To create the network, we have to specify the breed of turtles and the breed of links that will be used.

Note that the command nw:generate-random will actually create new turtles and new links, from

the breed that we specify. We want players to be the breed of turtles in our network and, since

we have not defined a specific breed of links, we can just use the primitive links. To generate the

network, we also have to specify the number of players we want to create, so we will have to make

sure that variable n-of-players has the appropriate value at the time of calling procedure to build-

Erdos-Renyi-network. Finally, prob-link is a parameter set by the user, so we do not have to worry

about that.

Since procedure to build-Erdos-Renyi-network actually creates the players, we should call it from

procedure to setup-players, which we can modify as follows:

IV-1. The nxn game on a random network | 249

to setup-players
let initial-distribution

read-from-string n-of-players-for-each-strategy

if length initial-distribution != length payoff-matrix [
user-message (word "The number of items in\n"

"n-of-players-for-each-strategy (i.e. "
length initial-distribution "):\n"
n-of-players-for-each-strategy
"\nshould be equal to the number of rows\n"
"in the payoff matrix (i.e. "
length payoff-matrix "):\n"
payoffs

)
]

;; we have to compute the number of players
;; before running procedure build-Erdos-Renyi-network
set n-of-players sum initial-distribution

;; the following line is just for aesthetics
set-default-shape players "circle"

;; now we build the network
build-Erdos-Renyi-network
;; now we have created the players and the links

;; the following line is just for aesthetics
ask players [fd 15]

;; the following lines ensure that
;; we set the initial distribution of strategies
;; according to initial-distribution
ask players [set strategy -1]
let i 0
foreach initial-distribution [j ->

;; note that, below, we do not create the
;; players anymore (since they already exist)
ask n-of j players with [strategy = -1] [

set payoff 0
set strategy i
set strategy-after-revision strategy

]
set i (i + 1)

]

set n-of-players count players
end

At this point, we can run our code and check that we have successfully created the network!

250 | Part IV. Games on networks

Figure 6. Snapshot of a simulation run with the current code

Even though we have successfully created the network, players can still observe and play with any

other player in the population… but we will fix that in no time!

5.4. Go and other main procedures

In our model, we want players to interact only with their link-neighbors. In NetLogo, there is actually

a primitive called link-neighbors, which we can use once we have created the network. Thus, in

our code we should replace

other players

with the primitive link-neighbors at the places where we ask players to interact with other

players. One such place is at procedure to update-payoff:

to update-payoff
;; let mate one-of other players <== deleted line
let mate one-of link-neighbors ;; <== added line
set payoff item ([strategy] of mate) (item strategy payoff-matrix)

end

And the other place is at procedure to update-strategy-after-revision:

to update-strategy-after-revision
ifelse random-float 1 < noise

[set strategy-after-revision (random n-of-strategies)]
[

;; let observed player one-of other players <== deleted line
let observed-player one-of link-neighbors ;; <== added line

if ([payoff] of observed-player) > payoff [
set strategy-after-revision

([strategy] of observed-player)
]

]
end

IV-1. The nxn game on a random network | 251

At this point, our code should not contain any syntactic errors. However, if you run it, you will get

an error. Do you understand why? Can you fix it? The box below contains the solution. We hide it to

give you a chance to experience the great satisfaction that comes when you accomplish something

challenging.

Fix

Well done! Indeed, we sometimes ask players who have no neighbors to select one. We can

easily fix this mistake using primitive any? as follows:

to update-payoff
if any? link-neighbors [;; <== added line

let mate one-of link-neighbors
set payoff

item ([strategy] of mate) (item strategy payoff-matrix)
] ;; <== added line

end

to update-strategy-after-revision
ifelse random-float 1 < noise

[set strategy-after-revision (random n-of-strategies)]
[

if any? link-neighbors [;; <== added line
let observed-player one-of link-neighbors

if ([payoff] of observed-player) > payoff [
set strategy-after-revision

([strategy] of observed-player)
]

] ;; <== added line
]

end

Now our program runs as desired. We just have to improve the visualization.

5.5 Other procedures

to update-players-color

We would like to color players according to their strategy. To keep our code modular, we will

implement a separate procedure named to update-players-color for that. Can you code it?

252 | Part IV. Games on networks

Implementation of procedure to update-players-color

to update-players-color
ask players [set color 25 + 40 * strategy]

end

We should use the same colors for the strategies here as in the strategy plot, i.e. the colors that

we set in procedure to setup-graph for the strategies.

Once we have procedure to update-players-color implemented, we should call it both at the end of

procedure to setup-players and of procedure to go. With this, we can run the model and see every

individual player’s strategy (see fig. 7).

Figure 7. Snapshot of a simulation run with the current code

Visualization of the network: to relax-network and to drag-and-drop

Here we give the implementation of two procedures that will allow the user to visualize and inspect

the network more easily. These are included in our code just for visualization purposes, and do not

affect the behavior of the players.

Procedure to relax-network distributes the players on the world so they are not too close to each

other. It is based on NetLogo’s primitive layout-spring. The following video shows its beautiful

workings:

One or more interactive elements has been excluded from this version of the text. You can

view them online here: https://wisc.pb.unizin.org/agent-based-evolutionary-game-

dynamics/?p=341#video-341-2

Procedure to drag-and-drop lets the user select one player with the mouse and move it around the

world.

IV-1. The nxn game on a random network | 253

The credit for the code of these two procedures should go to Wilenski (2005a, 2005b) and his

wonderful team.

;;;;;;;;;;;;;;
;;; Layout ;;;
;;;;;;;;;;;;;;

;; Procedures taken from Wilensky's (2005a) NetLogo Preferential
;; Attachment model
;; http://ccl.northwestern.edu/netlogo/models/PreferentialAttachment
;; and Wilensky's (2005b) Mouse Drag One Example
;; http://ccl.northwestern.edu/netlogo/models/MouseDragOneExample
to relax-network

;; the number 3 here is arbitrary; more repetitions slows down the
;; model, but too few gives poor layouts
repeat 3 [

;; the more players we have to fit into
;; the same amount of space, the smaller
;; the inputs to layout-spring we'll need to use
let factor sqrt count players
;; numbers here are arbitrarily chosen for pleasing appearance
layout-spring players links

(1 / factor) (7 / factor) (3 / factor)
display ;; for smooth animation

]
;; don't bump the edges of the world
let x-offset max [xcor] of players + min [xcor] of players
let y-offset max [ycor] of players + min [ycor] of players
;; big jumps look funny, so only adjust a little each time
set x-offset limit-magnitude x-offset 0.1
set y-offset limit-magnitude y-offset 0.1
ask players [setxy (xcor - x-offset / 2) (ycor - y-offset / 2)]

end

to-report limit-magnitude [number limit]
if number > limit [report limit]
if number < (- limit) [report (- limit)]
report number

end

to drag-and-drop
if mouse-down? [

let candidate min-one-of players
[distancexy mouse-xcor mouse-ycor]

if [distancexy mouse-xcor mouse-ycor] of candidate < 1 [
;; The WATCH primitive puts a "halo" around the watched turtle.

watch candidate
while [mouse-down?] [

;; If we don't force the view to update, the user won't
;; be able to see the turtle moving around.
display
;; The SUBJECT primitive reports the turtle being watched.
ask subject [setxy mouse-xcor mouse-ycor]

254 | Part IV. Games on networks

]
;; Undoes the effects of WATCH.
reset-perspective

]
]

end

5.6. Complete code in the Code tab

extensions [nw]

globals [
payoff-matrix
n-of-strategies
n-of-players

]

breed [players player]

players-own [
strategy
strategy-after-revision
payoff

]

to setup
clear-all
setup-payoffs
setup-players
setup-graph
reset-ticks
update-graph

end

to setup-payoffs
set payoff-matrix read-from-string payoffs
set n-of-strategies length payoff-matrix

end

to setup-players
let initial-distribution

read-from-string n-of-players-for-each-strategy

if length initial-distribution != length payoff-matrix [
user-message (word "The number of items in\n"

"n-of-players-for-each-strategy (i.e. "
length initial-distribution "):\n"
n-of-players-for-each-strategy
"\nshould be equal to the number of rows\n"
"in the payoff matrix (i.e. "
length payoff-matrix "):\n"

IV-1. The nxn game on a random network | 255

payoffs
)

]

set n-of-players sum initial-distribution
set-default-shape players "circle"

build-Erdos-Renyi-network

ask players [fd 15]

ask players [set strategy -1]
let i 0
foreach initial-distribution [j ->

ask n-of j players with [strategy = -1] [
set payoff 0
set strategy i
set strategy-after-revision strategy

]
set i (i + 1)

]

set n-of-players count players
update-players-color

end

to build-Erdos-Renyi-network
nw:generate-random players links n-of-players prob-link

end

to setup-graph
set-current-plot "Strategy Distribution"
foreach (range n-of-strategies) [i ->

create-temporary-plot-pen (word i)
set-plot-pen-mode 1
set-plot-pen-color 25 + 40 * i

]
end

to go
ask players [update-payoff]
ask players [

if (random-float 1 < prob-revision) [
update-strategy-after-revision

]
]
ask players [update-strategy]

tick

update-graph
update-players-color

end

256 | Part IV. Games on networks

to update-payoff
if any? link-neighbors [

let mate one-of link-neighbors
set payoff

item ([strategy] of mate) (item strategy payoff-matrix)
]

end

to update-strategy-after-revision
ifelse random-float 1 < noise

[set strategy-after-revision (random n-of-strategies)]
[

if any? link-neighbors [
let observed-player one-of link-neighbors
if ([payoff] of observed-player) > payoff [

set strategy-after-revision
([strategy] of observed-player)

]
]

]
end

to update-strategy
set strategy strategy-after-revision

end

to update-graph
let strategy-numbers (range n-of-strategies)
let strategy-frequencies map [n ->

count players with [strategy = n] / n-of-players
] strategy-numbers

set-current-plot "Strategy Distribution"
let bar 1
foreach strategy-numbers [n ->

set-current-plot-pen (word n)
plotxy ticks bar
set bar (bar - (item n strategy-frequencies))

]
set-plot-y-range 0 1

end

to update-players-color
ask players [set color 25 + 40 * strategy]

end

;;;;;;;;;;;;;;
;;; Layout ;;;
;;;;;;;;;;;;;;

;; Procedures taken from Wilensky's (2005a) NetLogo Preferential
;; Attachment model

IV-1. The nxn game on a random network | 257

;; http://ccl.northwestern.edu/netlogo/models/PreferentialAttachment
;; and Wilensky's (2005b) Mouse Drag One Example
;; http://ccl.northwestern.edu/netlogo/models/MouseDragOneExample

to relax-network
;; the number 3 here is arbitrary; more repetitions slows down the
;; model, but too few gives poor layouts
repeat 3 [

;; the more players we have to fit into
;; the same amount of space, the smaller
;; the inputs to layout-spring we'll need to use
let factor sqrt count players
;; numbers here are arbitrarily chosen for pleasing appearance
layout-spring players links

(1 / factor) (7 / factor) (3 / factor)
display ;; for smooth animation

]
;; don't bump the edges of the world
let x-offset max [xcor] of players + min [xcor] of players
let y-offset max [ycor] of players + min [ycor] of players
;; big jumps look funny, so only adjust a little each time
set x-offset limit-magnitude x-offset 0.1
set y-offset limit-magnitude y-offset 0.1
ask players [setxy (xcor - x-offset / 2) (ycor - y-offset / 2)]

end

to-report limit-magnitude [number limit]
if number > limit [report limit]
if number < (- limit) [report (- limit)]
report number

end

to drag-and-drop
if mouse-down? [

let candidate min-one-of players
[distancexy mouse-xcor mouse-ycor]

if [distancexy mouse-xcor mouse-ycor] of candidate < 1 [
;; The WATCH primitive puts a "halo" around the watched turtle.

watch candidate
while [mouse-down?] [

;; If we don't force the view to update, the user won't
;; be able to see the turtle moving around.
display
;; The SUBJECT primitive reports the turtle being watched.
ask subject [setxy mouse-xcor mouse-ycor]

]
;; Undoes the effects of WATCH.
reset-perspective

]
]

end

258 | Part IV. Games on networks

Photo by NASA on Unsplash

6. Sample runs

Now that we have the model, we can investigate the question we posed at the motivation section

above. If you run the model, you will see that, when embedded on a sparse random network,

most players manage to eventually coordinate on the efficient strategy, achieving a much higher

payoff than in the setting where they could interact with the whole population. To speed up

your simulations, you can untick the “view updates” square at the Interface tab, and also make

sure that none of the two network visualization buttons are down. The video below shows some

representative runs.

One or more interactive elements has been excluded from this version of the text. You can

view them online here: https://wisc.pb.unizin.org/agent-based-evolutionary-game-

dynamics/?p=341#video-341-3

This is a clear example of how network structure can impact evolutionary dynamics. The dynamics

when players can only interact with a few neighbors are completely different from the dynamics

when they can interact with the whole population.

7. Exercises

You can use the following link to download the complete NetLogo model: nxn-imitate-if-better-rd-

nw.nlogo.

Exercise 1. Consider the single-optimum

coordination game [[1 0][0 2]]. We have seen

that a population of 100 agents embedded on a

G(n-of-players = 100, prob-link = 0.02)

Erdős–Rényi random network, using the imitate

if better rule with noise = 0.03, prob-revision =

0.1, and starting with 70 A-strategists and 30 B-

strategists, will most likely approach the

efficient state where most players are choosing

strategy B, and spend most of the time around

it. Please, check this observation by running

several simulations. (You can easily do that by

leaving the button go pressed down and clicking the setup button every time you want to start again.)

In this exercise, we ask you to assess the impact of prob-link (which determines the network density)

on the proportion of players who choose strategy B. In particular, we would like to see a scatter plot

with prob-link on the horizontal axis and the average proportion of B-strategists at tick 5000, across

several runs, on the vertical axis.

IV-1. The nxn game on a random network | 259

Exercise 2. In exercise 1 above, how would changing the payoff matrix to [[1 0][0 20]] affect your

answer?

Exercise 3. Using the same parameter values as in exercise 1 above, with prob-link = 0.04, the average

proportion of B-strategists at tick 5000 is approximately 0.61. Does that mean that if you run a

simulation and look at it at tick 5000, you can expect to see about 61% of agents choosing strategy

B and the other 39% using strategy A?

Exercise 4. Make the necessary changes in the code so players follow the imitate the best

neighbor decision rule, which reads as follows:

Consider the set of all your neighbors plus yourself; then adopt the strategy of one of the

agents in this set who has obtained the greatest payoff. If there is more than one agent with the

greatest payoff, choose one of them at random to imitate.

Hint to implement the imitate the best neighbor decision rule

You may want to revisit chapter III-1 of the book.

Exercise 5. Repeat the experiment you conducted in exercise 1 above, now with the imitate

the best neighbor rule, instead of the imitate if better rule adapted for networks. Before you see the

results, make a guess about what you will observe.

Exercise 6. Can you implement procedure to build-Erdos-Renyi-network without using the nw

extension?

Hint to implement procedure to build-Erdos-Renyi-network without using the nw

extension

You will have to use primitive create-links-with. Also, players’ who number may be useful

to make sure that you only consider each pair of players once.

260 | Part IV. Games on networks

IV-2. Different types of networks

1. Goal

Our goal here is to extend the model we have created in the previous chapter to study different types

of networks.

2. Motivation. Assessing the significance of network
structure

The model we will develop in this chapter will allow us to explore the importance of network

structure on evolutionary game dynamics. Consider, for instance, the 2-player 2-strategy single-

optimum coordination game of the previous chapter:

Player 2

Player 2 chooses A Player 2 chooses B

Player 1
Player 1 chooses A 1 , 1 0 , 0

Player 1 chooses B 0 , 0 2 , 2

In the previous chapter we saw that, in this game, under certain conditions:
1

• an unstructured population of 100 agents (i.e., complete network) will most likely approach the

inefficient state where all agents choose strategy A and spend most of the time around there

(see fig. 1),
2

but,

1. Conditions were that agents use the imitate if better rule with noise = 0.03, prob-revision = 0.1, and initial strategy
distribution is 70 A-strategists and 30 B-strategists.

2. This statement refers to finite-time horizons, i.e., what Binmore et al. (1995, p. 10) call the long run.

IV-2. Different types of networks | 261

Figure 1. Simulation in an unstructured population (complete network)

• in stark contrast, if we embed that population on a G(n-of-players = 100, prob-link = 0.02)

Erdős–Rényi random network, then agents will most likely approach the state where all agents

choose strategy B and spend most of the time close to it (see fig. 2).

Figure 2. Simulation in an Erdős–Rényi random network

What is different in these two networks? For a start, note that the degree (i.e. number of link-

neighbors) of players in the unstructured population model is 99 (i.e. complete network), while the

expected degree of players in the G(100,0.02) random network is just 0.02 · 99 = 1.98 ≈ 2. Thus, an

interesting question is: will agents approach the efficient state in any network where they have an

average degree of about 2? or is there something special about the random network?

To explore this question, we should embed the population on other networks with average degree

about 2, but with different structure. The following figure shows other types of networks where

players have about two link-neighbors on average.

262 | Part IV. Games on networks

Path network Ring network

Star network Preferential attachment network

Watts-Strogatz small-world network with
probability of rewiring = 0.1

Watts-Strogatz small-world network with
probability of rewiring = 0.5

Figure 3. Different types of networks with average degree about 2. The average degree is exactly 2 for the ring
and the small world networks, and it is (2 · 99 / 100) = 1.98 for the path, star and preferential attachment

network

For each of the networks shown above, do you think that we will get similar results as with the

random network? The average degree is about the same in all of them, but the network structure is

very different in each case.

Let us build a model to explore this question!

IV-2. Different types of networks | 263

3. Description of the model

The only functionality we are going to add to the program implemented in the previous chapter is the

possibility of using different network-generating algorithms to create the network. Thus, we refer to

the previous chapter to read the basic description of the model. The only information we should add

is the following:

Agents are embedded on a network which is created using a network model determined

by parameter network-model. This parameter is implemented as a chooser, with 8 possible

values:

• “Erdos-Renyi”. The network is created following the G(n-of-players, prob-link)

Erdős–Rényi random network model (Erdös and Rényi (1959)).

• “Watts-Strogatz-small-world”. The network is created using the Watts–Strogatz

model (Watts and Strogatz (1998)). This model has two parameters:

◦ avg-degree-small-world, which determines the average degree of the network,

and

◦ prob-rewiring, which determines the probability of rewiring.

Informally, the algorithm works as follows: initially, nodes are placed in a circle

and each node is linked to its closest avg-degree-small-world spatial neighbors

(considering both sides). This forms a regular
3

ring lattice, where every node is

linked to exactly avg-degree-small-world other nodes. Then, starting at any one node,

consider each of her original links that go clockwise and, with probability prob-

rewiring, rewire its end at random. Then go to the next node clockwise, and repeat

until all nodes have been considered. Self-links (i.e., loops) and duplicated links (i.e.,

more than one link between two nodes) are not allowed. See example with avg-

degree-small-world = 2 and prob-rewiring = 0.1.

• “preferential-attachment”. The network is created following the Barabási–Albert

model (Barabási and Albert (1999)). This model has one parameter, i.e. min-degree,

which determines the minimum degree that a node can have. Informally, the network

is created starting from a complete network of min-degree nodes, and then

sequentially adding new nodes. Each new node comes with min-degree additional

links to the network, which the new node will use to link to existing nodes with

probability proportional to the existing nodes’ degree. See example with min-degree

= 1.

3. A regular network is a network where every node has the same degree.

264 | Part IV. Games on networks

A wheel network A square grid network

• “ring”. The network created is a ring, i.e. a network where each node is linked with

exactly two other nodes. (See example.)

• “star”. The network created is a star, i.e. a network where one node is linked with

every other node, and there are no more links. (See example.)

• “wheel”. The network created is a wheel, i.e. a ring network with one extra node that

is linked with every other node. (See example.)

• “grid-4-nbrs”. The network created is a square grid network. In this case, the

program will compute the largest integer no greater than the square root of the

number of players, and build a square grid network with that many players in each

row and column. (See example.)

• “path”. The network created is a path, i.e. a ring network where one link has been

removed. (See example.)

The network is created once at the beginning of the simulation and it is kept fixed for the

whole simulation. Players can only interact with their link-neighbors in the network.

Figure 4. A wheel network and a square grid network, each with 100 nodes

4. Interface design

We depart from the model we developed in the previous chapter (so if you want to preserve it, now

is a good time to duplicate it).

IV-2. Different types of networks | 265

Figure 5. Interface design

The new interface (see figure 5 above) includes one new chooser and three new sliders at the right

side of the interface, where we are placing every parameter related to networks. To be precise, we

have to add:

• One chooser for new parameter network-model (with possible values “Erdos-Renyi”, “Watts-

Strogatz-small-world”, “preferential-attachment”, “ring”, “star”, “wheel”, “grid-4-nbrs” and

“path”).

• Two sliders for the Watts-Strogatz small world networks: one for parameter avg-degree-small-

world (with minimum = 0, maximum = 20, and increment = 2), and another one for parameter

prob-rewiring (with minimum = 0, maximum = 1, and increment = 0.01).

• One slider for the preferential-attachment networks, for parameter min-degree (with minimum

= 1, maximum = 5, and increment = 1).

You may want to add some notes above the sliders, as in figure 5, to let the user know the network

model for which each parameter is relevant.

5. Code

5.1. Skeleton of the code

Since we only have to modify how the network is created, and this is something that is conducted

in procedure to setup-players, we will only have to modify that procedure. Nonetheless, to make

our code modular and elegant, we will create a new procedure named to build-network where the

network will be created, and some other procedures which will run the different network-generating

algorithms (see fig. 6).

266 | Part IV. Games on networks

Figure 6. Skeleton of procedure to setup. The dashed green rectangle highlights the main addition in the code.
The dashed blue rectangle highlights the main modification in the code

5.2. Procedures to create networks

In the same way that we programmed a procedure to build networks according to the Erdős–Rényi

random network model (i.e., to build-Erdos-Renyi-network), we will have to create new procedures

for the other network-generating algorithms. To do this, the nw extension will be invaluable.

All procedures we will program to generate networks will be very short (two lines long, at the most)

so, in the following sections, rather than providing you with the code, we will just give you the name

of the key command you will have to use. We advise you to read the documentation of the key

command and try to implement the procedure by yourself. It is not going to be easy, but we know

you are ready for the challenge and, if you try this, you will become an even better programmer.

Also, please, do test your code before looking at the solution, and try to fix it. Your first attempts at

the code will most likely contain several errors. Being able to understand and fix errors is one of the

most important skills we need to develop. Errors are great opportunities to learn. Embrace them as

an integral part of the learning process, and enjoy fixing them!

to build-Watts-Strogatz-small-world-network

Have a look at the documentation of command nw:generate-watts-strogatz and try to

IV-2. Different types of networks | 267

implement this procedure. Recall that you will have to use parameters avg-degree-small-world and

prob-rewiring.

Implementation of procedure to build-Watts-Strogatz-small-world-network

to build-Watts-Strogatz-small-world-network
nw:generate-watts-strogatz players links n-of-players

(avg-degree-small-world / 2) prob-rewiring
end

to build-preferential-attachment-network

Have a look at the documentation of command nw:generate-preferential-attachment and

try to implement this procedure. Recall that you will have to use parameter min-degree.

Implementation of procedure to build-preferential-attachment-network

to build-preferential-attachment-network
nw:generate-preferential-attachment players links n-of-players

min-degree
end

to build-ring-network

Have a look at the documentation of command nw:generate-ring and try to implement this

procedure.

Implementation of procedure to build-ring-network

to build-ring-network
nw:generate-ring players links n-of-players

end

268 | Part IV. Games on networks

to build-star-network

Have a look at the documentation of command nw:generate-star and try to implement this

procedure.

Implementation of procedure to build-star-network

to build-star-network
nw:generate-star players links n-of-players

end

to build-grid-4-nbrs-network

Have a look at the documentation of command nw:generate-lattice-2d and try to implement

this procedure. Recall that we want to compute the largest integer no greater than the square root

of the number of players, and build a square grid network with that many players in each row and

column.

Implementation of procedure to build-grid-4-nbrs-network

to build-grid-4-nbrs-network
let players-per-line (floor sqrt n-of-players)
nw:generate-lattice-2d players links

players-per-line players-per-line false
end

to build-wheel-network

Have a look at the documentation of command nw:generate-wheel and try to implement this

procedure.

Implementation of procedure to build-wheel-network

IV-2. Different types of networks | 269

to build-wheel-network
nw:generate-wheel players links n-of-players

end

to build-path-network

There is no command to create a path network in the nw extension, but you can easily create it

departing from a ring network. Give it a try!

Implementation of procedure to build-path-network

to build-path-network
build-ring-network
ask one-of links [die]

end

5.3. Procedure to build-network

Our next challenge is to create procedure to build-network, which will run all the commands related

to the creation of the network. Currently, some of these commands are in procedure to setup-

players, so we should move them to the new procedure. In to build-network we should also run

the network-generating algorithm selected by the user in chooser network-model. Taking all this into

account, we could program the new procedure as follows:

to build-network
set-default-shape players "circle"
;; the line above comes from setup-players
;; and it should be included before we
;; create the network (which creates the players)

(ifelse
network-model = "Erdos-Renyi"

[build-Erdos-Renyi-network]
network-model = "Watts-Strogatz-small-world"

[build-Watts-Strogatz-small-world-network]
network-model = "preferential-attachment"

[build-preferential-attachment-network]
network-model = "ring"

[build-ring-network]
network-model = "star"

270 | Part IV. Games on networks

[build-star-network]
network-model = "grid-4-nbrs"

[build-grid-4-nbrs-network]
network-model = "wheel"

[build-wheel-network]
network-model = "path"

[build-path-network]
)

ask players [fd 15]
;; the line above comes from setup-players
;; and it should be included after we
;; have created the players

end

The ifelse block of code above can be replaced by one simple line using command run (a primitive

that can take a string containing the name of a command as an input, and it runs the command). Can

you implement that line?

Implementation using run

to build-network
set-default-shape players "circle"
run (word "build-" network-model "-network")
ask players [fd 15]

end

5.4. Procedure to setup-players

Once we have implemented procedure to build-network, we should call it from procedure to setup-

players and clean up a little bit. The new implementation of to setup-players could look as follows:

to setup-players
let initial-distribution

read-from-string n-of-players-for-each-strategy

if length initial-distribution != length payoff-matrix [
user-message (word "The number of items in\n"

"n-of-players-for-each-strategy (i.e. "
length initial-distribution "):\n"
n-of-players-for-each-strategy
"\nshould be equal to the number of rows\n"
"in the payoff matrix (i.e. "

IV-2. Different types of networks | 271

length payoff-matrix "):\n"
payoffs

)
]

set n-of-players sum initial-distribution

;; the tasks below take place in
;; to build-network now

;; set-default-shape players "circle" <== deleted line
;; build-Erdos-Renyi-network <== deleted line
;; ask players [fd 15] <== deleted line

build-network ;; <== new line

ask players [set strategy -1]
let i 0
foreach initial-distribution [j ->

ask n-of j players with [strategy = -1] [
set payoff 0
set strategy i
set strategy-after-revision strategy

]
set i (i + 1)

]

set n-of-players count players
update-players-color

end

5.5. Other procedures

Note that there is no need to modify the code of any other procedure.

5.6. Final fixes

The bulk of the code is done, but there are still a couple of minor issues we should deal with. We

present them below as instructions that will throw an error. Your goal is to fix the problem.

Run the model with 3 agents embedded on a wheel network

If you try to do this, you will get an error because you need at least 4 agents to create a wheel.

To fix this problem, you could modify procedure to setup-players to make sure that there are

at least 3 agents, and issue a message if not:

272 | Part IV. Games on networks

to setup-players
let initial-distribution

read-from-string n-of-players-for-each-strategy

if length initial-distribution != length payoff-matrix [
user-message (word "The number of items in\n"

"n-of-players-for-each-strategy (i.e. "
length initial-distribution "):\n"
n-of-players-for-each-strategy
"\nshould be equal to the number of rows\n"
"in the payoff matrix (i.e. "
length payoff-matrix "):\n"
payoffs

)
]

set n-of-players sum initial-distribution
ifelse n-of-players < 4 ;<==

[user-message "There should be at least 4 players"] ;<==
[;<==

build-network

ask players [set strategy -1]
let i 0
foreach initial-distribution [j ->

ask up-to-n-of j players with [strategy = -1] [
set payoff 0
set strategy i
set strategy-after-revision strategy

]
set i (i + 1)

]

set n-of-players count players
update-players-color

] ;<==
end

Create a grid-4-nbrs with initial distribution [20 15]

If you try to do this, you will get the error “Requested 15 random agents from a set of

only 5 agents”. This is because procedure to build-grid-4-nbrs-network creates a network of

agents. Then, at the foreach loop in procedure to setup-players, initially,

20 random agents out of the 25 with strategy = -1 will be assigned strategy 0. In the second

IV-2. Different types of networks | 273

step of the foreach loop, the code asks 15 agents with strategy = -1 to set their strategy to

1, but there are only 5 agents with strategy -1. Thus the error. To fix it, you can use reporter

up-to-n-of instead of n-of.

5.7. Complete code in the Code tab

The Code tab is ready!

extensions [nw]

globals [
payoff-matrix
n-of-strategies
n-of-players

]

breed [players player]

players-own [
strategy
strategy-after-revision
payoff

]

;;;;;;;;;;;;;
;;; SETUP ;;;
;;;;;;;;;;;;;

to setup
clear-all
setup-payoffs
setup-players
setup-graph
reset-ticks
update-graph

end

to setup-payoffs
set payoff-matrix read-from-string payoffs
set n-of-strategies length payoff-matrix

end

to setup-players
let initial-distribution

read-from-string n-of-players-for-each-strategy

if length initial-distribution != length payoff-matrix [
user-message (word "The number of items in\n"

"n-of-players-for-each-strategy (i.e. "

274 | Part IV. Games on networks

length initial-distribution "):\n"
n-of-players-for-each-strategy
"\nshould be equal to the number of rows\n"
"in the payoff matrix (i.e. "
length payoff-matrix "):\n"
payoffs

)
]

set n-of-players sum initial-distribution
ifelse n-of-players < 4

[user-message "There should be at least 4 players"]
[

build-network

ask players [set strategy -1]
let i 0
foreach initial-distribution [j ->

ask up-to-n-of j players with [strategy = -1] [
set payoff 0
set strategy i
set strategy-after-revision strategy

]
set i (i + 1)

]

set n-of-players count players
update-players-color

]
end

to setup-graph
set-current-plot "Strategy Distribution"
foreach (range n-of-strategies) [i ->

create-temporary-plot-pen (word i)
set-plot-pen-mode 1
set-plot-pen-color 25 + 40 * i

]
end

;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; NETWORK CONSTRUCTION ;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;

to build-network
set-default-shape players "circle"
run (word "build-" network-model "-network")
ask players [fd 15]

end

to build-Erdos-Renyi-network
nw:generate-random players links n-of-players

prob-link

IV-2. Different types of networks | 275

end

to build-Watts-Strogatz-small-world-network
nw:generate-watts-strogatz players links n-of-players

(avg-degree-small-world / 2) prob-rewiring
end

to build-preferential-attachment-network
nw:generate-preferential-attachment players links n-of-players

min-degree
end

to build-ring-network
nw:generate-ring players links n-of-players

end

to build-star-network
nw:generate-star players links n-of-players

end

to build-grid-4-nbrs-network
let players-per-line (floor sqrt n-of-players)
nw:generate-lattice-2d players links

players-per-line players-per-line false
end

to build-wheel-network
nw:generate-wheel players links n-of-players

end

to build-path-network
build-ring-network
ask one-of links [die]

end

;;;;;;;;;;
;;; GO ;;;
;;;;;;;;;;

to go
ask players [update-payoff]
ask players [

if (random-float 1 < prob-revision) [
update-strategy-after-revision

]
]
ask players [update-strategy]

tick
update-graph
update-players-color

end

276 | Part IV. Games on networks

;;;;;;;;;;;;;;;;;;;;;;;;;
;;; UPDATE PROCEDURES ;;;
;;;;;;;;;;;;;;;;;;;;;;;;;

to update-payoff
if any? link-neighbors [

let mate one-of link-neighbors
set payoff

item ([strategy] of mate) (item strategy payoff-matrix)
]

end

to update-strategy-after-revision
ifelse random-float 1 < noise

[set strategy-after-revision (random n-of-strategies)]
[

if any? link-neighbors [
let observed-player one-of link-neighbors
if ([payoff] of observed-player) > payoff [

set strategy-after-revision
([strategy] of observed-player)

]
]

]
end

to update-strategy
set strategy strategy-after-revision

end

to update-graph
let strategy-numbers (range n-of-strategies)
let strategy-frequencies map [n ->

count players with [strategy = n] / n-of-players
] strategy-numbers

set-current-plot "Strategy Distribution"
let bar 1
foreach strategy-numbers [n ->

set-current-plot-pen (word n)
plotxy ticks bar
set bar (bar - (item n strategy-frequencies))

]
set-plot-y-range 0 1

end

to update-players-color
ask players [set color 25 + 40 * strategy]

end

;;;;;;;;;;;;;;
;;; LAYOUT ;;;
;;;;;;;;;;;;;;

IV-2. Different types of networks | 277

;; Procedures taken from Wilensky's (2005a) NetLogo Preferential
;; Attachment model
;; http://ccl.northwestern.edu/netlogo/models/PreferentialAttachment
;; and Wilensky's (2005b) Mouse Drag One Example
;; http://ccl.northwestern.edu/netlogo/models/MouseDragOneExample
to relax-network

;; the number 3 here is arbitrary; more repetitions slows down the
;; model, but too few gives poor layouts
repeat 3 [

;; the more players we have to fit into
;; the same amount of space, the smaller
;; the inputs to layout-spring we'll need to use
let factor sqrt count players
;; numbers here are arbitrarily chosen for pleasing appearance
layout-spring players links

(1 / factor) (7 / factor) (3 / factor)
display ;; for smooth animation

]
;; don't bump the edges of the world
let x-offset max [xcor] of players + min [xcor] of players
let y-offset max [ycor] of players + min [ycor] of players
;; big jumps look funny, so only adjust a little each time
set x-offset limit-magnitude x-offset 0.1
set y-offset limit-magnitude y-offset 0.1
ask players [setxy (xcor - x-offset / 2) (ycor - y-offset / 2)]

end

to-report limit-magnitude [number limit]
if number > limit [report limit]
if number < (- limit) [report (- limit)]
report number

end

to drag-and-drop
if mouse-down? [

let candidate min-one-of players
[distancexy mouse-xcor mouse-ycor]

if [distancexy mouse-xcor mouse-ycor] of candidate < 1 [
;; The WATCH primitive puts a "halo" around the watched turtle.

watch candidate
while [mouse-down?] [

;; If we don't force the view to update, the user won't
;; be able to see the turtle moving around.
display
;; The SUBJECT primitive reports the turtle being watched.
ask subject [setxy mouse-xcor mouse-ycor]

]
;; Undoes the effects of WATCH.
reset-perspective

]
]

end

278 | Part IV. Games on networks

6. Sample runs

Now that we have the model, we can investigate the question we posed at the motivation section

above. To obtain robust statistics, we can conduct an experiment where we run 1000 runs for

different types of networks with average degree about 2, and for each type of network we gather the

average percentage of players with strategy B at tick 5000 (across the 1000 runs).

The baseline settings will be the same as in the previous chapter (i.e.: noise = 0.03, prob-revision =

0.1, and initial strategy distribution [70 30]), and we will consider the following network-generating

algorithms and parameter values:

• “Erdos-Renyi”, with prob-link = 0.02

• “Watts-Strogatz-small-world”, with avg-degree-small-world = 2 and five different values for

prob-rewiring: {0, 0.25, 0.5, 0.75, 1}

• “preferential-attachment” with min-degree = 1

• “ring”

• “star”

• “path”

Try to set up this experiment by yourself. You can find our setup below.

Experiment setup

We have set up the following two experiments in BehaviorSpace:

1. One for all the runs that do not use the network model “Watts-Strogatz-small-world”:

IV-2. Different types of networks | 279

Experiment for all the runs that do not use network model
“Watts-Strogatz-small-world”

The full setting of variables for this experiment is:

["network-model" "Erdos-Renyi" "preferential-attachment" "ring" "star" "path"]
["prob-link" 0.02]
["min-degree" 1]
["payoffs" "[[1 0]\n [0 2]]"]
["n-of-players-for-each-strategy" "[70 30]"]
["prob-revision" 0.1]
["noise" 0.03]
["avg-degree-small-world" 2]
["prob-rewiring" 0]

2. And a second experiment for all the runs that use the network model “Watts-Strogatz-small-

world”:

280 | Part IV. Games on networks

Experiment for all the runs that use network model “Watts-Strogatz-small-world”

The full setting of variables for this experiment is:

["network-model" "Watts-Strogatz-small-world"]
["avg-degree-small-world" 2]
["prob-rewiring" [0 0.25 1]]
["payoffs" "[[1 0]\n [0 2]]"]
["prob-revision" 0.1]
["noise" 0.03]
["n-of-players-for-each-strategy" "[70 30]"]
["prob-link" 0.02]
["min-degree" 1]

We obtained the data in table format and, with the help of a pivot table (within an Excel spreadsheet),

we easily created the following table:

IV-2. Different types of networks | 281

Network model
Average

percentage of
B-strategists

Std. error of the
average4

Erdos-Renyi, with
prob-link = 0.02

87.18% 0.17%

Watts-Strogatz-small-world, with
avg-degree-small-world = 2 and

—> prob-rewiring = 0 95.56% 0.10%

—> prob-rewiring = 0.25 94.92% 0.12%

—> prob-rewiring = 0.50 94.73% 0.13%

—> prob-rewiring = 0.75 94.39% 0.16%

—> prob-rewiring = 1.00 94.31% 0.15%

preferential-attachment
with min-degree = 1

93.95% 0.23%

ring 95.65% 0.09%

star 50.33% 1.50%

path 95.48% 0.10%

Looking at the table, we can see that under most network models, agents are able to coordinate

on the efficient strategy regardless of the network structure, but there is one exception: the star

network. See the following video:

One or more interactive elements has been excluded from this version of the text. You can

view them online here: https://wisc.pb.unizin.org/agent-based-evolutionary-game-

dynamics/?p=343#video-343-1

Under this configuration, the population spends most of the time near one of the two monomorphic

states (where all players are choosing the same strategy), with frequent switches between the two

regimes. Thus, the 50.33% average does not denote that at tick 5000 we can expect to see half the

population using strategy A (strategy 0 in the program) and the other half strategy B (strategy 1 in the

program). What we can observe is most agents choosing strategy A with probability close to 50% and

most agents choosing strategy B with probability close to 50%. This bimodal distribution explains the

high standard error of the average, compared with the other networks.

4. The standard error of the average equals the standard deviation of the sample divided by the square root of the sample size (1000
in our case).

282 | Part IV. Games on networks

A star network with 100 players

Thus, in this particular case,
5

it seems that, for most networks with average degree about 2, we can

expect most agents to coordinate on efficient strategy B, but there is at least one network (e.g. the

star network) for which this statement is not true.

7. Exercises

You can use the following link to download the complete NetLogo model: nxn-imitate-if-better-

networks.nlogo.

Exercise 1. In this chapter we have seen that if

players are embedded on a star network,

simulations with nxn-imitate-if-better-

networks.nlogo with low (but strictly positive) noise

will spend most of the time near one of the two

monomorphic states (where all players are choosing

the same strategy), with frequent switches between

the two regimes. Furthermore, the long-run fraction

of agents that use strategy B seems to be 50% Can

you explain why this is the case?

Hint: When does the central player change

strategy? When do the players at the periphery

change strategy?

Exercise 2. In this chapter we have implemented several network-generating algorithms. Some of

these can generate a greater number of different networks than others. Can you fill in the following

table assuming there are N distinguishable nodes? (i.e., a path network 1-2-3 is different from a path

network 1-3-2). Assume N > 4.

5. We are assuming that agents use the imitate if better rule with noise = 0.03, prob-revision = 0.1, and initial strategy
distribution is 70 A-strategists and 30 B-strategists.

IV-2. Different types of networks | 283

Network model
Number of

different networks
that can appear

Expected
degree

Do all generated
networks have the same

average degree?

Do all nodes of all
generated

networks have the
same degree?

Erdős–Rényi, with
prob-link =

ring

star

wheel

path

To fill in the last three columns, consider the following notes:

Expected degree () is the expected degree of a node before the specific network is created.

Expected degree is a property of the network model.

Average degree () of a specific (already created) network is the average of every node’s

degree. In general, a network model may produce different networks, with potentially different

average degrees. However, in some network models, all specific networks that are generated with

that model have the same average degree; naturally, in those cases, the average degree is the same

as the expected degree, but it is useful to think about whether every network generated by a certain

network model has the same average degree or not.

Finally, in some network models, all nodes of all specific networks that are generated with that model

have the same degree (). It is also useful to think about whether this is the case for each of the

network models. Naturally, in those cases, the degree of every node is the same as the average

degree of the specific network and the same as the expected degree of the network model.

Exercise 3. Try to answer the following questions:

1. It is possible that the Erdős–Rényi network model produces a ring network?

2. It is possible that the Erdős–Rényi network model produces a star network?

3. It is possible that the Erdős–Rényi network model produces a wheel network?

4. It is possible that the Erdős–Rényi network model produces a path network?

5. It is possible that the Watts-Strogatz network model produces a ring network?

6. It is possible that the Watts-Strogatz network model produces a star network?

7. It is possible that the Watts-Strogatz network model produces a wheel network?

8. It is possible that the Watts-Strogatz network model produces a path network?

9. Assume the number of nodes is N. Is the Erdős–Rényi network model with prob-link =

2/(N-1) the same as the Watts-Strogatz network model with avg-degree-small-world = 2 and

prob-rewiring = 1?

284 | Part IV. Games on networks

Exercise 4. Can you implement procedure to build-star-network without using the nw

extension?

Hint to implement procedure to build-star-network without using the nw extension

You will have to use primitive create-links-with.

Exercise 5. Can you implement procedure to build-ring-network without using the nw

extension?

Hint to implement procedure to build-ring-network without using the nw extension

You may want to build a list with all the players using sort and then use primitive foreach
over two lists. The following sketch may be of help:

1 ~ 2 ~ 3 ~ 4 ~ ... ~ (n-1) ~ n
| | | | | |
n ~ 1 ~ 2 ~ 3 ~ ... ~ (n-2) ~ (n-1)

You can create the second list from the first one using fput, last and but-last.

Exercise 6. Can you implement procedure to build-wheel-network without using the nw

extension?

Hint to implement procedure to build-wheel-network without using the nw extension

You may want to start building a ring network.

IV-2. Different types of networks | 285

Path network (2 at 1; 98 at 2) Ring network (100 at 2)

Star network (99 at 1; 1 at 99) Preferential attachment network

IV-3. Implementing network metrics

1. Goal

Our goal in this chapter is to include some network metrics in our model. These metrics will give us

information about the structure of the generated network. In particular, we will compute:

• The network density, which is the number of links present in the network divided by the total

number of links that could exist.

• The size of the largest component. A component is a maximal set of connected nodes, i.e. a

maximal group of nodes such that there is a path from each node to every other node.

• The average local clustering coefficient. The local clustering coefficient of a node is the number

of existing links between its neighbors divided by the total number of links that could possibly

exist between them.
1

In a social network of friendships, this metric would measure the extent

to which your friends are friends among themselves.

• The degree distribution, which shows the number of nodes that have degree k (with k = 0, 1,

2, 3…). As an example, figure 1 below shows the degree distribution of various networks with

100 nodes.
2

1. By default, the local clustering coefficient is not defined for nodes with less than 2 neighbors. Here, we assume that
the coefficient is 0 in those cases.

2. In these histograms, note that the bin for x neighbors goes from x to (x+1). For instance, in the distribution on the top
left of figure 1, which corresponds to the path network, there are no nodes with degree 0, two nodes with degree 1,
and 98 nodes with degree 2.

286 | Part IV. Games on networks

Watts-Strogatz small-world network with average
degree 2 and probability of rewiring = 0.1

Watts-Strogatz small-world network with average
degree 2 and probability of rewiring = 0.5

10×10 square grid network (4 at 2; 32 at 3; 64 at 4) Wheel network (99 at 3; 1 at 99)

Figure 1. Degree distribution of different types of networks with 100 nodes

Note that the degree of a node is the number of nodes that are at (geodesic) distance 1; in our

model we will also compute the number of nodes that are within distances greater than 1.

2. Motivation. Reassessing the significance of network
structure

Let us revisit the 2-player 2-strategy single-optimum coordination game of the previous chapter:

Player 2

Player 2 chooses A Player 2 chooses B

Player 1
Player 1 chooses A 1 , 1 0 , 0

Player 1 chooses B 0 , 0 2 , 2

In the previous chapter we saw that, in this game, under certain conditions,
3

a population of 100

agents embedded on a network with average degree about 2, will most likely approach the state

where all agents choose strategy B and spend most of the time close to it, regardless of the network

structure. The star network was an exception, but the result seems to hold for most network

structures. Network structure did not seem to play a significant role in networks with very high

3. Conditions were that agents use the imitate if better rule with noise = 0.03, prob-revision = 0.1, and initial strategy
distribution is 70 A-strategists and 30 B-strategists.

IV-3. Implementing network metrics | 287

density either; in those networks, given our conditions, agents tend to approach the inefficient state

and spend most of the time around there.

However, for moderately low densities (e.g. average degree about 10), network structure clearly plays

a role, as you can see in the figures below. Figures 2 and 3 show two networks with average degree

about 10, but completely different structure. Figure 2 shows a random network generated with the

Erdős–Rényi model, and figure 3 shows a ring lattice. In the random network, most simulation runs

approach the inefficient state and stay around it, while in the ring lattice, most simulations approach

and stay around the efficient state.

Figure 2. On the left, an Erdős–Rényi random network with average degree about 10 (prob-link = 0.1). On the
right, a representative run of our model in that network

Figure 3. On the left, a ring lattice where all players have degree 10, generated using the Watts–Strogatz
model with prob-rewiring = 0. On the right, a representative run of our model in that network

For those cases where the average degree is certainly not enough to predict whether the population

288 | Part IV. Games on networks

will approach the efficient state or not, we would like to explore whether there is any other property

of the network that may help us predict the most likely outcome of the simulation. In particular, we

hypothesize that the average local clustering coefficient may be useful, since this is a metric that is

very different in the two networks shown in figures 2 and 3. For sufficiently large networks, the local

clustering coefficient in Erdős–Rényi random networks is about prob-link for every node (so it is about

0.1 in the random network above),
4

while it is exactly for all nodes in ring lattices of degree

(so it is exactly 2/3 ≈ 0.67 in the ring lattice above). So, does clustering help to approach the efficient

state in our model?

Let us extend our model to explore this question!

3. Description of the model

We will not make any modification on the formal model our program implements. Thus, we refer

you to the previous chapter to read the description of the model. The only paragraph we should add

(about the program itself) is the following:

The program computes the following metrics for the generated network:

• The network density

• The size of the largest component.

• The average local clustering coefficient.

• The histogram for the number of players within distance link-radius (which is a

new parameter in the model). If link-radius = 1, this histogram shows the degree

distribution. If link-radius = 2, the histogram gives information about how many

players can be reached through 2 or fewer links. In general, this histogram shows the

number of players that have k other players within distance link-radius (with k = 0, 1,

2, 3…).

• The average number of (other) players within distance link-radius.

4. Interface design

We depart from the model we developed in the previous chapter (so if you want to preserve it, now

is a good time to duplicate it).

4. In Erdős–Rényi random networks, the probability that any two nodes are neighbors equals prob-link.

IV-3. Implementing network metrics | 289

Figure 4. Interface design

The new interface (see figure 4 above) includes a new plot, a new chooser, a new button and four

new monitors, all of them placed below the “Strategy Distribution” plot. To be precise, we have to

add:

• One plot for the histogram. The horizontal axis should show the number of reachable

neighbors (i.e., neighbors within distance link-radius) and the vertical axis should show how

many players have the corresponding number of reachable neighbors.

Let us create a plot with the following setup:

Settings for plot “Neighbors within link-radius”

And we have to make sure that we set up the default pen to draw bars, by clicking on

the pencil symbol and setting the mode to “Bar”:

290 | Part IV. Games on networks

Settings for the pencil in plot “Neighbors within link-radius”

• One chooser for new parameter link-radius, with possible values 1, 2, 3, 4, 5, 10, 20 and

“Infinity”.

Let us create a chooser with the following setup:

Settings for the chooser of global variable link-radius

• One button, to update the histogram.

In the Code tab, let us write the procedure to plot-accessibility, without including any

code inside for now. This procedure will be in charge of updating the histogram.

to plot-accessibility
;; empty for now

end

IV-3. Implementing network metrics | 291

Now we can create the button to run plot-accessibility. The user will have to click on

this button after changing the value of parameter link-radius, so the new distribution

is computed. Since this button only deals with informational aspects of the model,

you may want to use the primitive with-local-randomness, which guarantees

that this piece of code does not interfere with the generation of pseudorandom

numbers for the rest of the model.

Settings for the button to update plot “Neighbors within
link-radius”

• Four monitors

1. Let us create a monitor to show the average number of neighbors within distance

link-radius. We will store this value in a new global variable named avg-nbrs-within-

radius. Thus, before creating the monitor, please add this new global variable in the

Code tab.

Settings for the monitor of global variable avg-nbrs-within-radius

2. Let us create a monitor to show the average local clustering coefficient. We

292 | Part IV. Games on networks

will store this value in a new global variable named avg-clustering-coefficient. Thus,

before creating the monitor, please add this new global variable in the Code tab.

Settings for the monitor of global variable
avg-clustering-coefficient

3. Let us create a monitor to show the size of the largest component. We will store

this value in a new global variable named size-of-largest-component. Thus, before

creating the monitor, please add this new global variable in the Code tab.

Settings for the monitor of global variable
size-of-largest-component

4. And finally, let us create a monitor to show the network density. The maximum

number of undirected links in a -node simple network is , so the density of

a simple undirected network with links is .
5

Since the formula to

compute the density is very simple, we can write it up directly in the monitor window.

5. A simple network is one without self-links and with no more than one link between any pair of nodes.

IV-3. Implementing network metrics | 293

Settings for the monitor of the network density

5. Code

5.1. Skeleton of the code

To keep our code beautiful and tidy, we will gather all the computations of the network metrics in a

new procedure named to compute-network-metrics. It makes sense to run this new procedure soon

after the network has been created, in procedure to setup (see fig. 5), since the network does not

change over the course of the simulation. Procedure to compute-network-metrics will call three new

procedures:

• to plot-accessibility, which will compute and show the histogram for the number of players

within distance link-radius, and will also set the value of avg-nbrs-within-radius.

• to compute-avg-clustering-coefficient, which will compute the value of avg-clustering-

coefficient.

• to compute-size-of-largest-component, which will compute the value of size-of-largest-

component.

Figure 5. Skeleton of procedure to setup

294 | Part IV. Games on networks

5.2. Global variables and individually-owned variables

Global variables

If you have already added global variables avg-nbrs-within-radius, avg-clustering-coefficient, and

size-of-largest-component, then there is no need to add or remove any other global variables in our

code. The current global variables are:

globals [
payoff-matrix
n-of-strategies
n-of-players

avg-nbrs-within-radius ;; <== new line
avg-clustering-coefficient ;; <== new line
size-of-largest-component ;; <== new line

]

Individually-owned variables

There is no need to add or remove any individually-owned variables in our code.

5.3. Procedure to compute-network-metrics

Procedure to compute-network-metrics is just a container that gathers all the procedures in charge

of computing the different network metrics (see fig. 5). We use this container to keep our code nice

and modular. Its implementation is particularly simple:

to compute-network-metrics
plot-accessibility
compute-avg-clustering-coefficient
compute-size-of-largest-component

end

As shown in fig. 5, we should call this new procedure at the end of setup:

to setup
clear-all
setup-payoffs
setup-players
setup-graph
reset-ticks
update-graph
compute-network-metrics ;; <== new line

end

IV-3. Implementing network metrics | 295

5.4. Procedures to compute network metrics

In this section we implement the three procedures that compute the different network metrics.

to plot-accessibility

This procedure should compute and plot the accessibility histogram (i.e. the “Neighbors within link-

radius” histogram). To do this, the reporter nw:turtles-in-radius is very useful, since it returns

the set of neighbors that are within a certain (geodesic) distance of the calling player in the network.

Thus, we just have to count the number of neighbors in this set for every player, after having set the

required radius to link-radius:

to plot-accessibility

let n-of-nbrs-of-each-player
[(count nw:turtles-in-radius link-radius) - 1] of players

;; - 1 because nw:turtles-in-radius includes the calling player

end

Note, however, that parameter link-radius may take the value “Infinity”, to see the number of players

that players can reach through any number of links. To compute this, note that the greatest possible

distance between any two players connected in the network is the number of players in the network

minus 1. Thus, if link-radius equals “Infinity”, we may call reporter nw:turtles-in-radius with

the value of (n-of-players – 1). To implement this elegantly, we define a local variable named steps, as

follows.

to plot-accessibility
let steps link-radius
if link-radius = "Infinity" [set steps (n-of-players - 1)]

let n-of-nbrs-of-each-player
[(count nw:turtles-in-radius steps) - 1] of players

;; - 1 because nw:turtles-in-radius includes the calling player
end

Now that we have the list of the number of reachable neighbors for each player, we can plot the

histogram using the histogram command. Note, however, that there is an issue we have to be

careful about when using histogram. In the produced histogram, the height of the bin that goes

from x to (x+1) will be the frequency of all the values in the range [x, x+1), which in this case is just

the integer value x. Thus, to include a bin for the maximum value in the list, we should set the upper

limit of the horizontal range of the plot to the maximum value of the list plus 1. If we do not add this

1, we will not see the bin corresponding to the maximum number in the list.

Finally, in this procedure we should also compute the mean of the distribution and store it in global

variable avg-nbrs-within-radius.

296 | Part IV. Games on networks

to plot-accessibility
let steps link-radius
if link-radius = "Infinity" [set steps (n-of-players - 1)]
let n-of-nbrs-of-each-player

[(count nw:turtles-in-radius steps) - 1] of players

let max-n-of-nbrs-of-each-player max n-of-nbrs-of-each-player
set-current-plot "Neighbors within link-radius"
set-plot-x-range 0 (max-n-of-nbrs-of-each-player + 1)

;; + 1 to make room for the width of the last bar
histogram n-of-nbrs-of-each-player
set avg-nbrs-within-radius mean n-of-nbrs-of-each-player

end

to compute-avg-clustering-coefficient

Have a look at the documentation of reporter nw:clustering-coefficient and try to

implement this procedure.

Implementation of procedure to compute-avg-clustering-coefficient

to compute-avg-clustering-coefficient
set avg-clustering-coefficient

mean [nw:clustering-coefficient] of players
end

to compute-size-of-largest-component

Have a look at the documentation of reporter nw:weak-component-clusters and try to

implement this procedure.

Implementation of procedure to compute-size-of-largest-component

to compute-size-of-largest-component
set size-of-largest-component max map count nw:weak-component-clusters

end

IV-3. Implementing network metrics | 297

5.5. Other procedures

Note that there is no need to modify the code of any other procedure.

5.6. Complete code in the Code tab

We have finished our model!

extensions [nw]

globals [
payoff-matrix
n-of-strategies
n-of-players

avg-nbrs-within-radius
avg-clustering-coefficient
size-of-largest-component

]

breed [players player]

players-own [
strategy
strategy-after-revision
payoff

]

;;;;;;;;;;;;;
;;; SETUP ;;;
;;;;;;;;;;;;;

to setup
clear-all
setup-payoffs
setup-players
setup-graph
reset-ticks
update-graph
compute-network-metrics

end

to setup-payoffs
set payoff-matrix read-from-string payoffs
set n-of-strategies length payoff-matrix

end

to setup-players
let initial-distribution

read-from-string n-of-players-for-each-strategy

if length initial-distribution != length payoff-matrix [
user-message (word "The number of items in\n"

298 | Part IV. Games on networks

"n-of-players-for-each-strategy (i.e. "
length initial-distribution "):\n"
n-of-players-for-each-strategy
"\nshould be equal to the number of rows\n"
"in the payoff matrix (i.e. "
length payoff-matrix "):\n"
payoffs

)
]

set n-of-players sum initial-distribution
ifelse n-of-players < 4

[user-message "There should be at least 4 players"]
[

build-network

ask players [set strategy -1]
let i 0
foreach initial-distribution [j ->

ask up-to-n-of j players with [strategy = -1] [
set payoff 0
set strategy i
set strategy-after-revision strategy

]
set i (i + 1)

]

set n-of-players count players
update-players-color

]
end

;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; NETWORK CONSTRUCTION ;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;

to build-network
set-default-shape players "circle"
run (word "build-" network-model "-network")
ask players [fd 15]

end

to build-Erdos-Renyi-network
nw:generate-random players links n-of-players

prob-link
end

to build-Watts-Strogatz-small-world-network
nw:generate-watts-strogatz players links n-of-players

(avg-degree-small-world / 2) prob-rewiring
end

to build-preferential-attachment-network

IV-3. Implementing network metrics | 299

nw:generate-preferential-attachment players links n-of-players
min-degree

end

to build-ring-network
nw:generate-ring players links n-of-players

end

to build-star-network
nw:generate-star players links n-of-players

end

to build-grid-4-nbrs-network
let players-per-line (floor sqrt n-of-players)
nw:generate-lattice-2d players links

players-per-line players-per-line false
end

to build-wheel-network
nw:generate-wheel players links n-of-players

end

to build-path-network
build-ring-network
ask one-of links [die]

end

;;;;;;;;;;
;;; GO ;;;
;;;;;;;;;;

to go
ask players [update-payoff]
ask players [

if (random-float 1 < prob-revision) [
update-strategy-after-revision

]
]
ask players [update-strategy]

tick
update-graph
update-players-color

end

;;;;;;;;;;;;;;;;;;;;;;;;;
;;; UPDATE PROCEDURES ;;;
;;;;;;;;;;;;;;;;;;;;;;;;;

to update-payoff
if any? link-neighbors [

let mate one-of link-neighbors
set payoff

300 | Part IV. Games on networks

item ([strategy] of mate) (item strategy payoff-matrix)
]

end

to update-strategy-after-revision
ifelse random-float 1 < noise

[set strategy-after-revision (random n-of-strategies)]
[

if any? link-neighbors [
let observed-player one-of link-neighbors
if ([payoff] of observed-player) > payoff [

set strategy-after-revision
([strategy] of observed-player)

]
]

]
end

to update-strategy
set strategy strategy-after-revision

end

;;;;;;;;;;;;;
;;; PLOTS ;;;
;;;;;;;;;;;;;

to setup-graph
set-current-plot "Strategy Distribution"
foreach (range n-of-strategies) [i ->

create-temporary-plot-pen (word i)
set-plot-pen-mode 1
set-plot-pen-color 25 + 40 * i

]
end

to update-graph
let strategy-numbers (range n-of-strategies)
let strategy-frequencies map [n ->

count players with [strategy = n] / n-of-players
] strategy-numbers

set-current-plot "Strategy Distribution"
let bar 1
foreach strategy-numbers [n ->

set-current-plot-pen (word n)
plotxy ticks bar
set bar (bar - (item n strategy-frequencies))

]
set-plot-y-range 0 1

end

to update-players-color
ask players [set color 25 + 40 * strategy]

IV-3. Implementing network metrics | 301

end

;;;;;;;;;;;;;;;;;;;;;;;
;;; NETWORK METRICS ;;;
;;;;;;;;;;;;;;;;;;;;;;;

to compute-network-metrics
plot-accessibility
compute-avg-clustering-coefficient
compute-size-of-largest-component

end

to plot-accessibility
let steps link-radius
if link-radius = "Infinity" [set steps (n-of-players - 1)]
let n-of-nbrs-of-each-player

[(count nw:turtles-in-radius steps) - 1] of players

let max-n-of-nbrs-of-each-player max n-of-nbrs-of-each-player
set-current-plot "Neighbors within link-radius"
set-plot-x-range 0 (max-n-of-nbrs-of-each-player + 1)

;; + 1 to make room for the width of the last bar
histogram n-of-nbrs-of-each-player
set avg-nbrs-within-radius mean n-of-nbrs-of-each-player

end

to compute-avg-clustering-coefficient
set avg-clustering-coefficient

mean [nw:clustering-coefficient] of players
end

to compute-size-of-largest-component
set size-of-largest-component max map count nw:weak-component-clusters

end

;;;;;;;;;;;;;;
;;; LAYOUT ;;;
;;;;;;;;;;;;;;

;; Procedures taken from Wilensky's (2005a) NetLogo Preferential
;; Attachment model
;; http://ccl.northwestern.edu/netlogo/models/PreferentialAttachment
;; and Wilensky's (2005b) Mouse Drag One Example
;; http://ccl.northwestern.edu/netlogo/models/MouseDragOneExample
to relax-network

;; the number 3 here is arbitrary; more repetitions slows down the
;; model, but too few gives poor layouts
repeat 3 [

;; the more players we have to fit into
;; the same amount of space, the smaller
;; the inputs to layout-spring we'll need to use
let factor sqrt count players
;; numbers here are arbitrarily chosen for pleasing appearance

302 | Part IV. Games on networks

layout-spring players links
(1 / factor) (7 / factor) (3 / factor)

display ;; for smooth animation
]
;; don't bump the edges of the world
let x-offset max [xcor] of players + min [xcor] of players
let y-offset max [ycor] of players + min [ycor] of players
;; big jumps look funny, so only adjust a little each time
set x-offset limit-magnitude x-offset 0.1
set y-offset limit-magnitude y-offset 0.1
ask players [setxy (xcor - x-offset / 2) (ycor - y-offset / 2)]

end

to-report limit-magnitude [number limit]
if number > limit [report limit]
if number < (- limit) [report (- limit)]
report number

end

to drag-and-drop
if mouse-down? [

let candidate min-one-of players
[distancexy mouse-xcor mouse-ycor]

if [distancexy mouse-xcor mouse-ycor] of candidate < 1 [
;; The WATCH primitive puts a "halo" around the watched turtle.

watch candidate
while [mouse-down?] [

;; If we don't force the view to update, the user won't
;; be able to see the turtle moving around.
display
;; The SUBJECT primitive reports the turtle being watched.
ask subject [setxy mouse-xcor mouse-ycor]

]
;; Undoes the effects of WATCH.
reset-perspective

]
]

end

6. Sample runs

Now that we have the model, we can investigate the question we posed at the motivation section

above, i.e.: is the (average local) clustering coefficient of a network useful to predict the likelihood of

approaching the efficient state?

To investigate this question, the Watts–Strogatz model is very convenient, since it allows us to create

networks with a fixed average degree, but with different clustering, simply by modifying the value

of prob-rewiring. Figure 6 below shows several box plots of the clustering coefficient for different

networks of average degree 10, obtained by running the Watts–Strogatz model with values of prob-

IV-3. Implementing network metrics | 303

rewiring equal to 0, 0.1, 0.2, …, 1. As you can see in figure 6, the greater the value of prob-rewiring,

the lower the clustering.

Figure 6. Box plots of the (average local) clustering coefficient for different networks obtained with the
Watts–Strogatz model, using avg-degree-small-world = 10 and different values of prob-rewiring. Each box

plot summarizes a set of 1000 networks created with a certain value of prob-rewiring. The white line marks
the median of the sample distribution, while the black line marks the mean

Our goal now is to investigate whether clustering favors approaching the efficient state in networks

of average degree 10 under our baseline conditions (i.e.: noise = 0.03, prob-revision = 0.1, and initial

strategy distribution [70 30]). For that, we can run a computational experiment on Watts–Strogatz

networks like the ones shown in figure 6 and, for each run, record both the average local clustering

coefficient and the percentage of B-strategists by tick 5000.

Try to set up this experiment by yourself. You can find our setup below.

Experiment setup

We have set up the following experiment in BehaviorSpace:

304 | Part IV. Games on networks

Experiment to study the effect of clustering

The full setting of variables for this experiment is:

["network-model" "Watts-Strogatz-small-world"]
["avg-degree-small-world" 10]
["prob-rewiring" [0 0.1 1]]
["payoffs" "[[1 0]\n [0 2]]"]
["n-of-players-for-each-strategy" "[70 30]"]
["prob-revision" 0.1]
["noise" 0.03]
["prob-link" 0.1]
["min-degree" 5]
["link-radius" 1]

We ran this experiment and, looking at the data, it was clear that –at tick 5000– most simulations

were at one of two possible regimes: an inefficient one, where very few players (≤ 5%) were B-

strategists, and an efficient regime, where most players (≥ 95%) were B-strategists. Thus, we decided

to compute the fraction of runs in each of these two regimes, and also the fraction of those runs in

IV-3. Implementing network metrics | 305

none of the two regimes.
6

These fractions are shown in the following table, for different values of the

(rounded) average local clustering coefficient, together with the standard errors (in brackets):
7

Rounded
average
local
clustering
coefficient

Total
number
of runs

Percentage of runs where
the percentage of

B-strategists is no more
than 5% (inefficient

regime)

Percentage of runs
where the percentage

of B-strategists is in
the range (5%, 95%)

Percentage of runs where
the percentage of

B-strategists is no less
than 95% (efficient

regime)

0.1 5380 84.14% (0.50%) 1.64% (0.17%) 14.22% (0.48%)

0.2 1710 79.36% (0.98%) 1.81% (0.32%) 18.83% (0.95%)

0.3 1037 69.33% (1.43%) 2.12% (0.45%) 28.54% (1.40%)

0.4 879 53.58% (1.68%) 2.84% (0.56%) 43.57% (1.67%)

0.5 980 26.73% (1.41%) 1.53% (0.39%) 71.73% (1.44%)

0.6 14 14.29% (9.71%) 0.00% (0.00%) 85.71% (9.71%)

0.7 1000 7.00% (0.81%) 1.90% (0.43%) 91.10% (0.90%)

Table 1. Results of a computational experiment of our model run on Watts–Strogatz networks of
avg-degree-small-world = 10 and values of prob-rewiring equal to 0, 0.1, 0.2, …, 1. Baseline conditions: noise =

0.03, prob-revision = 0.1, and initial strategy distribution [70 30]

The main insights from the data shown in table 1 above are summarized in figure 7 below.

6. This is something that can be easily done in an Excel spreadsheet, by defining a column for each regime, such that the
value of the corresponding row equals 1 if the run is in the regime and 0 otherwise. The average of this column is the
fraction of runs at the regime.

7. The frequency of the event "the population is at a certain regime" calculated over n simulation runs can be seen as
the mean of a sample of n i.i.d. Bernouilli random variables where success denotes that the event occurred and failure
denotes that it did not. Thus, the frequency f is the maximum likelihood (unbiased) estimator of the exact probability
with which the event occurs. The standard error of the calculated frequency f is the standard deviation of the sample
divided by the square root of the sample size. In this particular case, the formula reads:

Std. error (f, n) = (f (1 — f) / (n — 1))1/2

306 | Part IV. Games on networks

Figure 7. Summary of the results reported in table 1

Looking at figure 7 it is clear that, as suspected, a higher clustering coefficient seems to increase the

likelihood of approaching the efficient regime. However, note that this experiment has only explored

networks obtained with the Watts–Strogatz model, so we do not really know whether this relation

holds for other network models.

To investigate whether similar results hold for other networks, we run the same experiment as before,

but with Erdős–Rényi networks and preferential attachment networks. The clustering coefficient

obtained in 1000 networks created with each of these models are shown in figure 8 below:

IV-3. Implementing network metrics | 307

Figure 8. Box plots of the (average local) clustering coefficient for 1000 networks with 100 nodes. On
the left, 1000 networks created with the Erdős–Rényi model, using prob-link = 0.1. On the right, 1000
preferential-attachment networks created with the Barabási–Albert model, using min-degree = 5. In
each box plot, the white line marks the median of the sample distribution, while the black line marks

the mean

The rounded average local clustering coefficient of every Erdős–Rényi network in figure 8 is 0.1,

while this value is 0.2 for 970 of the 1000 preferential-attachment networks and 0.3 for the other

30. Let us now see the proportion of runs at each of the regimes (standard errors in brackets):

Network
model

Rounded
average

local
clustering

coefficient

Total
number
of runs

Percentage of runs
where the percentage

of B-strategists is no
more than 5%

(inefficient regime)

Percentage of
runs where the

percentage of
B-strategists is in

the range (5%,
95%)

Percentage of runs
where the

percentage of
B-strategists is no

less than 95%
(efficient regime)

Erdős–Rényi 0.1 1000 82.20% (1.21%) 1.50% (0.38%) 16.30% (1.17%)

Preferential
attachment

0.2 970 81.96% (1.24%) 2.37% (0.49%) 15.67% (1.17%)

Preferential
attachment

0.3 30 73.33% (8.21%) 0.00% (0.00%) 26.67% (8.21%)

Table 2. Results of a computational experiment of our model run on 1000 Erdős–Rényi networks
with prob-link = 0.1 and 1000 preferential attachment networks with min-degree = 5. Baseline conditions:

noise = 0.03, prob-revision = 0.1, and initial strategy distribution [70 30]

The main insights from the data shown in table 2 above are summarized in figure 9 below.

308 | Part IV. Games on networks

Figure 9. Summary of the results reported in table 2

Comparing figure 7 and figure 9, it seems that the results obtained for Watts–Strogatz networks

apply reasonably well to Erdős–Rényi networks and preferential attachment networks too. However,

it is important not to draw conclusions beyond these network models. It is not difficult to design

networks where the effect of clustering differs significantly from that observed in the network

models above. The following two examples illustrate this observation.

Let us start with a network with low clustering but with a high proportion of runs at the efficient

regime by tick 5000. Consider the following method to build a (regular) undirected network: place

the nodes in a circle, and link every node to its 10 closest spatial neighbors, after having ignored the

four closest ones (i.e. ignore the two closest nodes at each side). The links of node 0 in this network

are illustrated in figure 10. This network is similar to a ring lattice, but there is a gap of two nodes at

either side of every node. Thus, we call this network a gap-2 ring lattice of degree 10.

Figure 10. Sketch of a gap-2 ring lattice of degree 10. In black, the 10 links of node 0. In grey, the 9 links that
exist between the neighbors of node 0

The local clustering coefficient of every node in this network is . Thus, if this was a

Watts–Strogatz network or a preferential attachment network, we would expect that approximately

80% of the runs would be at the inefficient regime by tick 5000 (see figure 7 and figure 9). However,

we have run a 1000-run experiment to assess this, and the actual proportion of runs at the inefficient

IV-3. Implementing network metrics | 309

regime by tick 5000 in this type of network is only approximately 35%. It is more likely to reach the

efficient regime (about 63% of the runs do it), even though the clustering coefficient is only 0.2.

Our second example illustrates the other extreme: a network with high clustering coefficient but with

a low proportion of runs at the efficient regime by tick 5000. For this, we built a complete network

with 27 nodes, and then we added 73 nodes; each of the new 73 nodes links to two random nodes

within the set of the 27 original nodes (see figure 11).

Figure 11. A complete network with 27 nodes, to
which we add 73 extra nodes, each with two
neighbors in the original complete network

The average degree of this network is , and the average local clustering

coefficient was greater than 0.9 in all the networks created for our 1000-run experiment. With such

a high clustering coefficient, one would expect that more than 90% of the runs would approach the

efficient regime (see figure 7). However, in our 1000-run experiment, only 23.20% of the runs were

at the efficient regime by tick 5000 (and 74.70% were at the inefficient regime).

To conclude, it is important to realize that each network model implies a probability distribution over

a set of networks, and the mass of this probability distribution is often concentrated on a very small

proportion of networks. To put things in perspective, note that the set of all possible undirected

networks with distinguishable nodes is . For , this number is already greater than the

number of protons in the observable universe (i.e. the Eddington number). When we create networks

in our computers –using any model–, we are inevitably exploring a tiny proportion of all the possible

networks that exist, and most often this proportion will not be representative of all the possible

networks. Thus, one has to be very cautious when formulating statements about the effect of any

network metric on any dynamic, if the statements are only based on simulations.

310 | Part IV. Games on networks

A ring lattice with 20 nodes and
degree 4

7. Exercises

You can use the following link to download the complete NetLogo model: nxn-imitate-if-better-

networks-metrics.nlogo.

Exercise 1. Consider a ring lattice (i.e. the network generated with

the Watts–Strogatz model using prob-rewiring = 0) where nodes

have (even) degree . Assume that the number of nodes is greater

than . Can you prove that every node’s local clustering

coefficient is exactly ?

Exercise 2. Can you implement a procedure to build ring

lattices with arbitrary even degree without using the nw extension?

Hint to implement a procedure to build ring lattices without using the nw extension

create-link-with player ((who + i) mod n-of-players)

Exercise 3. In this chapter we defined a type of network that we named gap-2 ring lattice

of degree 10 (see figure 10). Can you implement a procedure to build networks of this type with

arbitrary even degree and arbitrary gap?

Exercise 4. Using the code you have created in exercise 3, run a BehaviorSpace experiment to fill in

the following table for gap-x ring lattices of 100 nodes with degree 10:

IV-3. Implementing network metrics | 311

Gap

Local
clustering

coefficient
of every

node

Percentage of runs where
the percentage of

B-strategists is no more
than 5% (inefficient regime)

Percentage of runs
where the percentage

of B-strategists is in the
range (5%, 95%)

Percentage of runs where
the percentage of

B-strategists is no less than
95% (efficient regime)

0

1

2

3

4

5

Exercise 5. In this chapter we built a complete network with 27 nodes. Then, we added 73 extra

nodes and linked each of these new nodes to two random nodes within the set of the 27 original

nodes (see figure 11). Can you implement a procedure to build this network?

Exercise 6. Using the code you have created in exercise 5, replicate the 1000-run BehaviorSpace

experiment that allowed us to say that in that network “only 23.20% of the runs were at the efficient

regime by tick 5000 (and 74.70% were at the inefficient regime)”.

312 | Part IV. Games on networks

IV-4. Other ways of computing payoffs and
other decision rules

1. Goal

Our goal in this chapter is to extend the model we have created in the previous chapter by adding

two features that can have a major impact on the dynamics of evolutionary models run on networks:

• The possibility to model different ways of computing payoffs. In our current model, agents

obtain their payoffs by playing with one of their neighbors, chosen at random. This means that

every agent obtains just one payoff, regardless of their network degree. In this chapter we will

allow for the possibility that agents play with all their neighbors. When agents play with all

their neighbors, they may consider the average payoff or, alternatively, the total (accumulated)

payoff.

• The possibility to model other decision rules besides the imitate if better rule. In particular, we

will implement all the decision rules we implemented in chapter III-4 for games played on grids.

2. Motivation. Cooperation on scale-free networks

In a series of highly-cited papers, Santos, Pacheco and colleagues (Santos and Pacheco (2005, 2006);

Santos et al. (2006a, 2006b)) showed that scale-free networks can greatly promote cooperation in

the Prisoner’s Dilemma (figure 1).

Fig. 1. A preferential attachment network where
hubs are cooperating (green)

In their model, agents play with all their neighbors and their payoff is the total (accumulated) payoff

IV-4. Other ways of computing payoffs and other decision rules | 313

over all their interactions in the tick. In this chapter we are going to extend our model so we can

replicate some of their results and check their robustness to different factors. Let’s do it!

3. Description of the model

The model we are going to develop here is a generalization of the model implemented in the previous

chapter. In particular, we are going to add the following three parameters:

• play-with. This parameter is used to determine how agents’ payoffs are computed in each tick.

It will be implemented with a chooser, with three possible values:

◦ “one-random-nbr“: agents play with one of their neighbors chosen at random.

◦ “all-nbrs-AVG-payoff“: agents play with all their neighbors and use the average payoff.

◦ “all-nbrs-TOTAL-payoff“: agents play with all their neighbors and use the total

(accumulated) payoff.

• decision-rule. This parameter determines the decision rule that agents will follow to update

their strategies, just like in the model we developed in chapter III-4. Note that all decision rules

use the agents’ payoffs, and these are computed following the method prescribed by parameter

play-with. Parameter decision-rule will be implemented with a chooser, with six possible values:

◦ “best-neighbor“. This is the imitate the best neighbor rule we implemented in chapter

III-4.

◦ “imitate-if-better“. This is the imitate if better rule adapted to networks.

◦ “imitative-pairwise-difference“. This is the imitative pairwise-difference rule implemented

in chapter III-4.

◦ “imitative-positive-proportional-m“. This is the imitative-positive-proportional-m rule

implemented in chapter III-4.

◦ “Fermi-m“. This is the Fermi-m rule implemented in chapter III-4.

◦ “Santos-Pacheco“. To facilitate the replication of previous results in the literature, we will

also implement a variant of the imitative pairwise-difference rule initially proposed by

Santos and Pacheco (2005).
1

Under this rule, the revising agent looks at one of her

neighbors at random and copies her strategy with probability , where

denotes agent ‘s payoff, is the maximum payoff difference in the payoff matrix, and

denotes agent ‘s degree.

• m. This is the parameter that controls the intensity of selection in decision rules imitative-

positive-proportional-m and Fermi-m (see description in chapter III-4).

Everything else stays as described in the previous chapter.

1. This variant has been used in several papers, such as Santos and Pacheco (2006), Santos et al. (2006a, 2006b), Gómez-
Gardeñes et al. (2007) and Poncela et al. (2007).

314 | Part IV. Games on networks

4. Interface design

We depart from the model we developed in the previous chapter (so if you want to preserve it, now

is a good time to duplicate it).

Figure 2. Interface design

The new interface (see figure 2 above) includes:

• One chooser for new parameter play-with (with possible values “one-random-nbr“, “all-nbrs-

AVG-payoff” and “all-nbrs-TOTAL-payoff“).

• One chooser for new parameter decision-rule (with possible values “best-neighbor“, “imitate-if-

better“, “imitative-pairwise-difference“, “imitative-positive-proportional-m“, “Fermi-m” and “Santos-

Pacheco“).

• A slider for parameter m (with minimum = 0 and increment = 0.1).

5. Code

5.1. Skeleton of the code

The main changes we will make to our model will take place in procedures to update-payoff and to

update-strategy-after-revision. We will also modify other procedures such as to go, to setup-payoffs,

and to setup-players, but those changes will be less significant. The skeleton of procedure to go is

shown in figure 3.

IV-4. Other ways of computing payoffs and other decision rules | 315

Figure 3. Skeleton of procedure to go. The dashed green rectangle highlights the main addition in the code.
The dashed blue rectangles highlight the main modifications in the code

5.2. Extension I. Different ways of computing payoffs

To implement different ways of computing payoffs, we should modify to update-payoff, so it runs a

different procedure depending on the value of parameter play-with, as shown in figure 4.

Figure 4. Calls to other procedures from procedure to update-payoff

Given the names we have chosen for the new procedures to be implemented (to play-with-one-

random-nbr, to play-with-all-nbrs-TOTAL-payoff and to play-with-all-nbrs-AVG-payoff), the new

code for procedure to update-payoff is particularly simple:

to update-payoff
if any? link-neighbors [

run (word "play-with-" play-with)
]

end

To fully understand the code above, note that if the value of parameter play-with is “one-random-nbr“,

then the code:

316 | Part IV. Games on networks

(word "play-with-" play-with)

will report the string “play-with-one-random-nbr”.

Therefore, the code:

run (word "play-with-" play-with)

will run procedure to play-with-one-random-nbr, as desired.

Now we can implement the new payoff-computing procedures. The first one, to play-with-one-

random-nbr, is not particularly difficult having seen the previous implementation of to update-payoff.

Can you try to do it?

Implementation of procedure to play-with-one-random-nbr

Yes, well done!

to play-with-one-random-nbr
let mate one-of link-neighbors
set payoff item ([strategy] of mate) (item strategy payoff-matrix)

end

Let us now implement to play-with-all-nbrs-TOTAL-payoff. For this one, looking at the

implementation of procedure to play in the model we developed in chapter III-4 will be very useful.

Note, however, that in our new model we are not going to allow agents to play with themselves, so

the variable named my-coplayers will have to be replaced by a Netlogo primitive. Can you give it a

try?

Implementation of procedure to play-with-all-nbrs-TOTAL-payoff

Awesome!

to play-with-all-nbrs-TOTAL-payoff
let n-of-coplayers-with-strategy-? n-values n-of-strategies [i ->

count link-neighbors with [strategy = i]]
let my-payoffs (item strategy payoff-matrix)
set payoff sum (map * my-payoffs n-of-coplayers-with-strategy-?)

end

IV-4. Other ways of computing payoffs and other decision rules | 317

Finally, let us implement to play-with-all-nbrs-AVG-payoff. To do this, it is very tempting to start by

copying and pasting the code of procedure to play-with-all-nbrs-TOTAL-payoff but please, don’t do

it! Duplicating code is not good practice because it makes the process of detecting and fixing errors

much harder, and leads to code that is difficult to read and maintain. Can you implement procedure to

play-with-all-nbrs-AVG-payoff without rewriting any of the code written in procedure to play-with-

all-nbrs-TOTAL-payoff?

Implementation of procedure to play-with-all-nbrs-AVG-payoff

If you did this correctly, you do deserve a medal right now!

to play-with-all-nbrs-AVG-payoff
play-with-all-nbrs-TOTAL-payoff
set payoff (payoff / count link-neighbors)

end

With this, we have finished the implementation of the first extension to the model.

5.3. Extension II. Different decision rules

The implementation of the decision rule takes place in procedure to update-strategy-after-revision,

so we will have to modify its code. Just like we did in chapter III-4, we will make the implementation

of decision rules elegant and modular by coding a different procedure for each decision rule and by

dealing with noise in a unified way. Figure 5 shows the skeleton of our new procedure to update-

strategy-after-revision.

318 | Part IV. Games on networks

Figure 5. Calls to other procedures from procedure to update-strategy-after-revision

Given the skeleton shown in figure 5 and bearing in mind how we use NetLogo primitive run in our

current implementation of procedure to update-payoff, can you venture a simple implementation for

our new procedure to update-strategy-after-revision?

Implementation of procedure to update-strategy-after-revision

to update-strategy-after-revision
ifelse random-float 1 < noise

[set strategy-after-revision (random n-of-strategies)]
[if any? link-neighbors [run (word decision-rule "-rule")]]

end

Now we just have to implement the procedures for each of the six decision rules. This should be

relatively easy given that we have implemented very similar rules in chapter III-4, but we have to

keep in mind that:

• now the agents’ payoffs may come in three different flavors, depending on the value of

parameter play-with, and

• the set of neighbors in our network model is the set of link-neighbors.

Let us start with procedure to best-neighbor-rule. It will be useful to look at our implementation of

IV-4. Other ways of computing payoffs and other decision rules | 319

this rule for games played on grids. Just like we did in that model, you may want to define a new

individually-owned variable named my-nbrs-and-me (and set its value at procedure to setup-players).

Implementation of procedure to best-neighbor-rule

We start by defining the new players-own variable my-nbrs-and-me.

players-own [
strategy
strategy-after-revision
payoff
my-nbrs-and-me ;; <== new line

]

Then, we set its value at procedure to setup-players.

to setup-players
...

ifelse n-of-players < 4
[user-message "There should be at least 4 players"]
[

build-network
ask players [set strategy -1]
let i 0
foreach initial-distribution [j ->

ask up-to-n-of j players with [strategy = -1] [
set payoff 0
set strategy i
set strategy-after-revision strategy
set my-nbrs-and-me ;; <== new line

(turtle-set link-neighbors self) ;; <== new line
]
set i (i + 1)

]
set n-of-players count players
update-players-color

]
end

Once this is done, we can just copy our implementation of this rule for games played on grids.

to best-neighbor-rule
set strategy-after-revision

[strategy] of one-of my-nbrs-and-me with-max [payoff]

320 | Part IV. Games on networks

end

Note that this code will work correctly no matter how payoffs are computed.

To implement procedure to imitate-if-better-rule, our implementation of procedure to imitate-if-

better-all-nbrs-rule for games played on grids will be useful, but we have to keep in mind that the

computation of agents’ payoffs is now taken care at procedure to update-payoff, so players-own

variable payoff always contains the right value of the payoff (i.e., computed according to the value of

parameter play-with).

Implementation of procedure to imitate-if-better-rule

to imitate-if-better-rule
let observed-player one-of link-neighbors
if ([payoff] of observed-player) > payoff [

set strategy-after-revision ([strategy] of observed-player)
]

end

The implementation of procedure to imitative-pairwise-difference-rule is similar to the one we did

for games played on grids but we have to bear in mind that the payoff in our model could now come

from playing just once or from playing several times. Thus, we will have to think carefully about how

to set the value of the maximum payoff difference.

Implementation of procedure to imitative-pairwise-difference-rule

A possible implementation of this procedure is as follows:

to imitative-pairwise-difference-rule
let observed-player one-of link-neighbors

;; compute difference in payoffs
let payoff-diff ([payoff] of observed-player - payoff)

IV-4. Other ways of computing payoffs and other decision rules | 321

set strategy-after-revision ifelse-value
(random-float 1 < (payoff-diff / max-payoff-difference))

[[strategy] of observed-player]
[strategy]

;; If your strategy is the better, payoff-diff is negative,
;; so you are going to stick with it.
;; If it's not, you switch with probability
;; (payoff-diff / max-payoff-difference)

end

Recall that the value of max-payoff-difference has to be set so the quotient (payoff-diff / max-

payoff-difference) does not exceed 1, i.e. max-payoff-difference ≥ payoff-diff. The problem is

that the maximum value of payoff-diff now depends on how payoffs are computed.

Let max-payoff-difference-in-matrix be the maximum payoff difference in the payoff matrix.

If agents play once (play-with = “one-random-nbr“) or their payoff is an average (play-with =

“all-nbrs-AVG-payoff“), then payoff-diff ≤ max-payoff-difference-in-matrix. However, if agents

use the total payoff (play-with = “all-nbrs-TOTAL-payoff“), then the maximum value of payoff-

diff can well be greater than max-payoff-difference-in-matrix. In that case, the maximum value

of payoff-diff could be up to max-payoff-difference-in-matrix * max-n-of-nbrs-of-each-player,

where max-n-of-nbrs-of-each-player is the maximum degree in the network.

Given all this, we should define global variables max-payoff-difference-in-matrix, max-payoff-

difference and max-n-of-nbrs-of-each-player, and set their values accordingly.

globals [
payoff-matrix
n-of-strategies
n-of-players
avg-nbrs-within-radius
avg-clustering-coefficient
size-of-largest-component

max-payoff-difference-in-matrix ;; <== new line
max-payoff-difference ;; <== new line
max-n-of-nbrs-of-each-player ;; <== new line

]

Now we should set the value of these new global variables. Let us start with the easiest

one: max-n-of-nbrs-of-each-player. This value is already computed at procedure to plot-

accessibility. The only change we have to make is to replace let with set, since this variable

is now global (because we want to read it from anywhere in the code).

322 | Part IV. Games on networks

to plot-accessibility
let steps link-radius
if link-radius = "Infinity" [set steps (n-of-players - 1)]
let n-of-nbrs-of-each-player

[(count nw:turtles-in-radius steps) - 1] of players

;; modified line below (let -> set)
set max-n-of-nbrs-of-each-player max n-of-nbrs-of-each-player
set-current-plot "Neighbors within link-radius"
set-plot-x-range 0 (max-n-of-nbrs-of-each-player + 1)

;; + 1 to make room for the width of the last bar
histogram n-of-nbrs-of-each-player

set avg-nbrs-within-radius mean n-of-nbrs-of-each-player
end

The best place to set the value of max-payoff-difference-in-matrix, is at procedure to update-

payoff.

to setup-payoffs
set payoff-matrix read-from-string payoffs
set n-of-strategies length payoff-matrix

;; new lines below
set max-payoff-difference-in-matrix

(max-of-matrix payoff-matrix) - (min-of-matrix payoff-matrix)
end

Note that we have to include the definition of two new procedures to compute the minimum

and the maximum value of a matrix:

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; SUPPORTING PROCEDURES ;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;;;;;;;;;;;;;;
;;; Matrices ;;;
;;;;;;;;;;;;;;;;
to-report max-of-matrix [matrix]

report max reduce sentence matrix
end
to-report min-of-matrix [matrix]

report min reduce sentence matrix
end

Finally, let us set the value of max-payoff-difference in a new procedure created for that

purpose.

IV-4. Other ways of computing payoffs and other decision rules | 323

to update-max-payoff-difference
set max-payoff-difference

max-payoff-difference-in-matrix *
ifelse-value play-with = "all-nbrs-TOTAL-payoff"

[max-n-of-nbrs-of-each-player][1]
end

Once this procedure has been implemented, we can call it from to go to make sure that the

value of max-payoff-difference is updated if the user changes the way payoffs are computed at

runtime.

to go
update-max-payoff-difference ;; <== new line

ask players [update-payoff]
ask players [

if (random-float 1 < prob-revision) [
update-strategy-after-revision

]
]
ask players [update-strategy]

tick

update-graph
update-players-color

end

To implement procedure to imitative-positive-proportional-m-rule, we can use the code we wrote for

games played on grids, but before we should include the extension rnd at the beginning of our

code

extensions [nw rnd]

Implementation of procedure to imitative-positive-proportional-m-rule

to imitative-positive-proportional-m-rule
let chosen-nbr rnd:weighted-one-of my-nbrs-and-me [payoff ^ m]
set strategy-after-revision [strategy] of chosen-nbr

end

324 | Part IV. Games on networks

To avoid errors when payoffs are negative, we will include procedure to check-payoffs-are-

non-negative, just like we did in the model for games played on grids.

to check-payoffs-are-non-negative
if min reduce sentence payoff-matrix < 0 [

user-message (word
"Since you are using decision-rule =\n"
"imitative-positive-proportional-m,\n"
"all elements in the payoff matrix\n"
payoffs
"\nshould be non-negative numbers.")

]
end

An appropriate place to call this procedure would be at the end of procedure to setup-payoffs,

which would then be as follows:

to setup-payoffs
set payoff-matrix read-from-string payoffs
set n-of-strategies length payoff-matrix

;; new lines below
set max-payoff-difference

(max-of-matrix payoff-matrix) - (min-of-matrix payoff-matrix)
if decision-rule = "imitative-positive-proportional-m"

[check-payoffs-are-non-negative]
end

Feel free to implement procedure to Fermi-m-rule by yourself, looking at our previous

implementation.

Implementation of procedure to Fermi-m-rule

A possible implementation of this procedure is as follows:

to Fermi-m-rule
let observed-player one-of link-neighbors

;; compute difference in payoffs
let payoff-diff ([payoff] of observed-player - payoff)

IV-4. Other ways of computing payoffs and other decision rules | 325

set strategy-after-revision ifelse-value
(random-float 1 < (1 / (1 + exp (- m * payoff-diff))))

[[strategy] of observed-player]
[strategy]

end

Finally, looking at the description of “Santos-Pacheco” rule, please try to implement procedure to

Santos-Pacheco-rule.

Implementation of procedure to Santos-Pacheco-rule

A possible implementation of this procedure is as follows:

to Santos-Pacheco-rule
let observed-player one-of link-neighbors

;; compute difference in payoffs
let payoff-diff ([payoff] of observed-player - (payoff))

let degree count link-neighbors
let degree-of-observed-player

[count link-neighbors] of observed-player

set strategy-after-revision ifelse-value
(random-float 1 < (payoff-diff / (max-payoff-difference-in-matrix *

max (list degree degree-of-observed-player))))
[[strategy] of observed-player]
[strategy]

end

With this, we have finished the implementation of the second extension to the model.

326 | Part IV. Games on networks

5.4. Complete code in the Code tab

We have finished our model!

extensions [nw rnd]

globals [
payoff-matrix
n-of-strategies
n-of-players

avg-nbrs-within-radius
avg-clustering-coefficient
size-of-largest-component

max-payoff-difference-in-matrix ;; <== new line
max-payoff-difference ;; <== new line
max-n-of-nbrs-of-each-player ;; <== new line

]

breed [players player]

players-own [
strategy
strategy-after-revision
payoff

my-nbrs-and-me ;; <== new line
]

;;;;;;;;;;;;;
;;; SETUP ;;;
;;;;;;;;;;;;;

to setup
clear-all
setup-payoffs
setup-players
setup-graph
reset-ticks
update-graph
compute-network-metrics

end

to setup-payoffs
set payoff-matrix read-from-string payoffs
set n-of-strategies length payoff-matrix

;; new lines below
set max-payoff-difference-in-matrix

(max-of-matrix payoff-matrix) - (min-of-matrix payoff-matrix)
if decision-rule = "imitative-positive-proportional-m"

[check-payoffs-are-non-negative]

IV-4. Other ways of computing payoffs and other decision rules | 327

end

to setup-players
let initial-distribution

read-from-string n-of-players-for-each-strategy

if length initial-distribution != length payoff-matrix [
user-message (word "The number of items in\n"

"n-of-players-for-each-strategy (i.e. "
length initial-distribution "):\n"
n-of-players-for-each-strategy
"\nshould be equal to the number of rows\n"
"in the payoff matrix (i.e. "
length payoff-matrix "):\n"
payoffs

)
]

set n-of-players sum initial-distribution
ifelse n-of-players < 4

[user-message "There should be at least 4 players"]
[

build-network

ask players [set strategy -1]
let i 0
foreach initial-distribution [j ->

ask up-to-n-of j players with [strategy = -1] [
set payoff 0
set strategy i
set strategy-after-revision strategy
set my-nbrs-and-me ;; <== new line

(turtle-set link-neighbors self) ;; <== new line
]
set i (i + 1)

]

set n-of-players count players
update-players-color

]
end

;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; NETWORK CONSTRUCTION ;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;

to build-network
set-default-shape players "circle"
run (word "build-" network-model "-network")
ask players [fd 15]

end

to build-Erdos-Renyi-network

328 | Part IV. Games on networks

nw:generate-random players links n-of-players prob-link
end

to build-Watts-Strogatz-small-world-network
nw:generate-watts-strogatz players links n-of-players

(avg-degree-small-world / 2) prob-rewiring
end

to build-preferential-attachment-network
nw:generate-preferential-attachment players links n-of-players

min-degree
end

to build-ring-network
nw:generate-ring players links n-of-players

end

to build-star-network
nw:generate-star players links n-of-players

end

to build-grid-4-nbrs-network
let players-per-line (floor sqrt n-of-players)
nw:generate-lattice-2d players links

players-per-line players-per-line false
end

to build-wheel-network
nw:generate-wheel players links n-of-players

end

to build-path-network
build-ring-network
ask one-of links [die]

end

;;;;;;;;;;
;;; GO ;;;
;;;;;;;;;;

to go
update-max-payoff-difference ;; <== new line
ask players [update-payoff]
ask players [

if (random-float 1 < prob-revision) [
update-strategy-after-revision

]
]
ask players [update-strategy]

tick

update-graph

IV-4. Other ways of computing payoffs and other decision rules | 329

update-players-color
end

;;;;;;;;;;;;;;;;;;;;;;;;;
;;; UPDATE PROCEDURES ;;;
;;;;;;;;;;;;;;;;;;;;;;;;;

to update-payoff
if any? link-neighbors [

run (word "play-with-" play-with)
]

end

to play-with-one-random-nbr
let mate one-of link-neighbors
set payoff item ([strategy] of mate) (item strategy payoff-matrix)

end

to play-with-all-nbrs-TOTAL-payoff
let n-of-coplayers-with-strategy-? n-values n-of-strategies [i ->

count link-neighbors with [strategy = i]]
let my-payoffs (item strategy payoff-matrix)
set payoff sum (map * my-payoffs n-of-coplayers-with-strategy-?)

end

to play-with-all-nbrs-AVG-payoff
play-with-all-nbrs-TOTAL-payoff
set payoff (payoff / count link-neighbors)

end

to update-max-payoff-difference
set max-payoff-difference

max-payoff-difference-in-matrix *
ifelse-value play-with = "all-nbrs-TOTAL-payoff"

[max-n-of-nbrs-of-each-player][1]
end

to update-strategy-after-revision
ifelse random-float 1 < noise

[set strategy-after-revision (random n-of-strategies)]
[if any? link-neighbors [run (word decision-rule "-rule")]]

end

to best-neighbor-rule
set strategy-after-revision [strategy] of

one-of my-nbrs-and-me with-max [payoff]
end

to imitate-if-better-rule
let observed-player one-of link-neighbors
if ([payoff] of observed-player) > payoff [

set strategy-after-revision ([strategy] of observed-player)
]

330 | Part IV. Games on networks

end

to imitative-pairwise-difference-rule
let observed-player one-of link-neighbors

;; compute difference in payoffs
let payoff-diff ([payoff] of observed-player - payoff)

set strategy-after-revision ifelse-value
(random-float 1 < (payoff-diff / max-payoff-difference))

[[strategy] of observed-player]
[strategy]

;; If your strategy is the better, payoff-diff is negative,
;; so you are going to stick with it.
;; If it's not, you switch with probability
;; (payoff-diff / max-payoff-difference)

end

to imitative-positive-proportional-m-rule
let chosen-nbr rnd:weighted-one-of my-nbrs-and-me [payoff ^ m]
set strategy-after-revision [strategy] of chosen-nbr

end

to Fermi-m-rule
let observed-player one-of link-neighbors

;; compute difference in payoffs
let payoff-diff ([payoff] of observed-player - payoff)

set strategy-after-revision ifelse-value
(random-float 1 < (1 / (1 + exp (- m * payoff-diff))))

[[strategy] of observed-player]
[strategy]

end

to Santos-Pacheco-rule
let observed-player one-of link-neighbors

;; compute difference in payoffs
let payoff-diff ([payoff] of observed-player - (payoff))

let degree count link-neighbors
let degree-of-observed-player

[count link-neighbors] of observed-player

set strategy-after-revision ifelse-value
(random-float 1 < (payoff-diff / (max-payoff-difference-in-matrix *

max (list degree degree-of-observed-player))))
[[strategy] of observed-player]
[strategy]

end

IV-4. Other ways of computing payoffs and other decision rules | 331

to update-strategy
set strategy strategy-after-revision

end

;;;;;;;;;;;;;
;;; PLOTS ;;;
;;;;;;;;;;;;;

to setup-graph
set-current-plot "Strategy Distribution"
foreach (range n-of-strategies) [i ->

create-temporary-plot-pen (word i)
set-plot-pen-mode 1
set-plot-pen-color 25 + 40 * i

]
end

to update-graph
let strategy-numbers (range n-of-strategies)
let strategy-frequencies map [n ->

count players with [strategy = n] / n-of-players
] strategy-numbers

set-current-plot "Strategy Distribution"
let bar 1
foreach strategy-numbers [n ->

set-current-plot-pen (word n)
plotxy ticks bar
set bar (bar - (item n strategy-frequencies))

]
set-plot-y-range 0 1

end

to update-players-color
ask players [set color 25 + 40 * strategy]

end

;;;;;;;;;;;;;;;;;;;;;;;
;;; NETWORK METRICS ;;;
;;;;;;;;;;;;;;;;;;;;;;;

to compute-network-metrics
plot-accessibility
compute-avg-clustering-coefficient
compute-size-of-largest-component

end

to plot-accessibility
let steps link-radius
if link-radius = "Infinity" [set steps (n-of-players - 1)]
let n-of-nbrs-of-each-player

[(count nw:turtles-in-radius steps) - 1] of players

332 | Part IV. Games on networks

;; modified line below (let -> set)
set max-n-of-nbrs-of-each-player max n-of-nbrs-of-each-player
set-current-plot "Neighbors within link-radius"
set-plot-x-range 0 (max-n-of-nbrs-of-each-player + 1)

;; + 1 to make room for the width of the last bar
histogram n-of-nbrs-of-each-player

set avg-nbrs-within-radius mean n-of-nbrs-of-each-player
end

to compute-avg-clustering-coefficient
set avg-clustering-coefficient

mean [nw:clustering-coefficient] of players
end

to compute-size-of-largest-component
set size-of-largest-component max map count nw:weak-component-clusters

end

;;;;;;;;;;;;;;
;;; LAYOUT ;;;
;;;;;;;;;;;;;;

;; Procedures taken from Wilensky's (2005a) NetLogo Preferential
;; Attachment model
;; http://ccl.northwestern.edu/netlogo/models/PreferentialAttachment
;; and Wilensky's (2005b) Mouse Drag One Example
;; http://ccl.northwestern.edu/netlogo/models/MouseDragOneExample
to relax-network

;; the number 3 here is arbitrary; more repetitions slows down the
;; model, but too few gives poor layouts
repeat 3 [

;; the more players we have to fit into
;; the same amount of space, the smaller
;; the inputs to layout-spring we'll need to use
let factor sqrt count players
;; numbers here are arbitrarily chosen for pleasing appearance
layout-spring players links

(1 / factor) (7 / factor) (3 / factor)
display ;; for smooth animation

]
;; don't bump the edges of the world
let x-offset max [xcor] of players + min [xcor] of players
let y-offset max [ycor] of players + min [ycor] of players
;; big jumps look funny, so only adjust a little each time
set x-offset limit-magnitude x-offset 0.1
set y-offset limit-magnitude y-offset 0.1
ask players [setxy (xcor - x-offset / 2) (ycor - y-offset / 2)]

end

to-report limit-magnitude [number limit]
if number > limit [report limit]
if number < (- limit) [report (- limit)]

IV-4. Other ways of computing payoffs and other decision rules | 333

report number
end

to drag-and-drop
if mouse-down? [

let candidate min-one-of players
[distancexy mouse-xcor mouse-ycor]

if [distancexy mouse-xcor mouse-ycor] of candidate < 1 [
;; The WATCH primitive puts a "halo" around the watched turtle.

watch candidate
while [mouse-down?] [

;; If we don't force the view to update, the user won't
;; be able to see the turtle moving around.
display
;; The SUBJECT primitive reports the turtle being watched.
ask subject [setxy mouse-xcor mouse-ycor]

]
;; Undoes the effects of WATCH.
reset-perspective

]
]

end

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; SUPPORTING PROCEDURES ;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

to check-payoffs-are-non-negative
if min reduce sentence payoff-matrix < 0 [

user-message (word
"Since you are using decision-rule =\n"
"imitative-positive-proportional-m,\n"
"all elements in the payoff matrix\n"
payoffs
"\nshould be non-negative numbers.")

]
end

;;;;;;;;;;;;;;;;
;;; Matrices ;;;
;;;;;;;;;;;;;;;;

to-report max-of-matrix [matrix]
report max reduce sentence matrix

end

to-report min-of-matrix [matrix]
report min reduce sentence matrix

end

334 | Part IV. Games on networks

6. Sample runs

6.1. Cooperation on preferential-attachment networks

Now that we have our model ready, we can replicate some of the results put forward by Santos

and Pacheco (2005, 2006) and Santos et al. (2006a, 2006b).
2

These authors observed that scale-free

networks (especially preferential-attachment networks created following the Barabási–Albert model)

can promote cooperation in social dilemmas. Let us see this with our new model.

Figure 6 below shows a representative simulation run of a population of 10 000 agents who play

the Prisoner’s Dilemma with payoffs [[0 1.1875] [-0.1875 1]], using total payoffs and Santos-Pacheco

decision rule. Strategy 0 (orange) corresponds to defection and strategy 1 (green) corresponds to

cooperation. The network is preferential attachment with min-degree 2 (average degree ≈ 4). As you

can see, the whole population reaches very high levels of cooperation (green) after a few thousand

ticks. This is our baseline setting.

Figure 6. Representative simulation of a population of 10 000 agents who play the Prisoner’s Dilemma
with payoffs [[0 1.1875] [-0.1875 1]], using total payoffs and Santos-Pacheco decision rule. The network

is preferential attachment with min-degree 2 (average degree ≈ 4)

The whole simulation setting for figure 6 (i.e., baseline setting) is included below, in case you want to

run it for yourself. We chose 10 000 agents to match the original experiments, but feel free to use a

smaller population (e.g. 1000 agents) so the model runs faster. Results will be very similar.

["n-of-players-for-each-strategy" "[5000 5000]"]
["payoffs" "[[0 1.1875]\n [-0.1875 1]]"]
["network-model" "preferential-attachment"]
["min-degree" 2]
["decision-rule" "Santos-Pacheco"]
["play-with" "all-nbrs-TOTAL-payoff"]

2. The algorithm these authors use to generate scale-free networks is slightly different from the one implemented in
NetLogo. They start with an empty network, while we start with a complete network. This is a very small difference
that is immaterial for our purposes.

IV-4. Other ways of computing payoffs and other decision rules | 335

["prob-revision" 1]
["noise" 0]

The cooperation obtained for the preferential attachment network in our baseline setting vanishes

if the model is run on more homogeneous networks where all agents have a similar number of link-

neighbors. To see this, let us run a few simulations on Watts-Strogatz networks. In contrast with

preferential attachment networks, Watts-Strogatz networks have degree distributions that tend to be

clustered around the mean. As you can see in Table 1 below, defection prevails on these networks.

Rewiring probability Representative simulation Degree Distribution

0

0.25

0.50

0.75

1

Table 1. Representative simulations of a population of 10 000 agents who play the Prisoner’s Dilemma with
payoffs [[0 1.1875] [-0.1875 1]], using total payoffs and Santos-Pacheco decision rule. The networks are

Watts-Strogatz with average degree 4 and different rewiring probabilities

336 | Part IV. Games on networks

The parameter values used for the simulations shown in Table 1 are included below.

["n-of-players-for-each-strategy" "[5000 5000]"]
["payoffs" "[[0 1.1875]\n [-0.1875 1]]"]
["network-model" "Watts-Strogatz-small-world"]
["avg-degree-small-world" 4]
["prob-rewiring" [0 0.25 0.5 0.75 1]]
["decision-rule" "Santos-Pacheco"]
["play-with" "all-nbrs-TOTAL-payoff"]
["prob-revision" 1]
["noise" 0]

How does cooperation emerge in Barabási–Albert scale-free networks? The mechanism, which is

explained by Santos and Pacheco (2006), Szabó and Fáth (2007, section 6.8), and Gómez-Gardeñes

et al. (2007), relies on using total (accumulated) payoffs.

Finally, we would like to point out that the results for the evolution of cooperation are affected if,

instead of using the accumulated payoff for each agent, its fitness is associated with the accumulated

payoff divided by the number of interactions each agent engages during his life-cycle. Santos and

Pacheco (2006, p. 732)

If agents use average (rather than total) payoffs, cooperation is severely undermined (see e.g. Wu et

al. (2005), Wu et al. (2007), Tomassini et al. (2007), Szolnoki et al. (2008), Antonioni and Tomassini

(2012), and Maciejewski et al. (2014)).
3

In the next section, we run some simulations to illustrate this.

6.2. Robustness of cooperation on scale-free
preferential-attachment networks

In this final section, we run a few simulations to check the robustness of the emergence of

cooperation on preferential-attachment networks.

The crucial importance of using total (accumulated) payoffs

First, we corroborate that, indeed, if agents use average payoffs rather than total payoffs, cooperation

levels drop. In our model, this is best checked by using the imitative pairwise-difference decision

rule. When using average payoffs, the only difference between the imitative pairwise-difference

decision rule and Santos-Pacheco rule is that the latter divides the normalized payoff difference by

, and this seems unnecessary since the normalized payoff difference is already in the

range [0,1]. In any case, the results using Santos-Pacheco rule are qualitatively the same, so feel free

to use that rule to run the experiments below, if you like.

3. Tomassini et al. (2007), Szolnoki et al. (2008) and Antonioni and Tomassini (2012) develop models to study the
transition from the extreme setting of total payoffs to the opposite extreme setting of average payoffs in a continuous
way.

IV-4. Other ways of computing payoffs and other decision rules | 337

Figure 7 below shows a representative simulation run with the same baseline setting as in figure 6,

but using average rather than total payoffs. As you can see, the level of cooperation quickly drops to

very low values.

Figure 7. Representative simulation of a population of 10 000 agents who play the Prisoner’s Dilemma
with payoffs [[0 1.1875] [-0.1875 1]], using average payoffs and the imitative pairwise-difference
decision rule. The network is preferential attachment with min-degree 2 (average degree ≈ 4)

The whole simulation setting for figure 7 is included below, in case you want to run it for yourself.

["n-of-players-for-each-strategy" "[5000 5000]"]
["payoffs" "[[0 1.1875]\n [-0.1875 1]]"]
["network-model" "preferential-attachment"]
["min-degree" 2]
["decision-rule" "imitative-pairwise-difference"]
["play-with" "all-nbrs-AVG-payoff"]
["prob-revision" 1]
["noise" 0]

The results for the case where agents play with one random neighbor are even clearer (see figure 8).

The whole population defects after only a few ticks.

Figure 8. Representative simulation of a population of 10 000 agents who play the Prisoner’s Dilemma
with payoffs [[0 1.1875] [-0.1875 1]], obtain their payoff by playing with one random neighbor each tick,

and follow the imitative pairwise-difference decision rule. The network is preferential attachment
with min-degree 2 (average degree ≈ 4)

338 | Part IV. Games on networks

The whole simulation setting for figure 8 is included below, in case you want to run it for yourself.

["n-of-players-for-each-strategy" "[5000 5000]"]
["payoffs" "[[0 1.1875]\n [-0.1875 1]]"]
["network-model" "preferential-attachment"]
["min-degree" 2]
["decision-rule" "imitative-pairwise-difference"]
["play-with" "one-random-nbr"]
["prob-revision" 1]
["noise" 0]

Random noise

It turns out that the emergence of cooperation in preferential-attachment networks is also quite

sensitive to random noise. Figure 9 below shows a representative simulation with the same baseline

setting as in figure 6, but adding a little bit of noise (noise = 0.01). Adding this little noise decreases

the level of cooperation from nearly 100% to about 50%.

Figure 9. Representative simulation of a population of 10 000 agents who play the Prisoner’s Dilemma
with payoffs [[0 1.1875] [-0.1875 1]], using total payoffs and Santos-Pacheco decision rule. The network

is preferential attachment with min-degree 2 (average degree ≈ 4). Noise is 0.01

The whole simulation setting for figure 9 is included below, in case you want to run it for yourself.

["n-of-players-for-each-strategy" "[5000 5000]"]
["payoffs" "[[0 1.1875]\n [-0.1875 1]]"]
["network-model" "preferential-attachment"]
["min-degree" 2]
["decision-rule" "Santos-Pacheco"]
["play-with" "all-nbrs-TOTAL-payoff"]
["prob-revision" 1]
["noise" 0.01]

Payoff values

As we saw in Part III, local interactions in structured populations (as opposed to global interactions in

well-mixed populations) can often promote cooperation, but only to some extent, i.e. within a limited

IV-4. Other ways of computing payoffs and other decision rules | 339

range of payoff values. In general, one can make cooperation vanish by modifying the payoffs in a

way that favors defectors.

As an example, figure 10 below shows a representative simulation run with the same baseline setting

as in figure 6, but replacing Temptation = 1.1875 with Temptation = 1.375 and Suckers = -0.1875

with Suckers = -0.375. This small change in payoff values consistently leads to full defection in a few

hundred ticks.

Figure 10. Representative simulation of a population of 10 000 agents who play the Prisoner’s
Dilemma with payoffs [[0 1.375] [-0.375 1]], using total payoffs and Santos-Pacheco decision rule. The

network is preferential attachment with min-degree 2 (average degree ≈ 4)

The whole simulation setting for figure 10 is included below.

["n-of-players-for-each-strategy" "[5000 5000]"]
["payoffs" "[[0 1.375]\n [-0.375 1]]"]
["network-model" "preferential-attachment"]
["min-degree" 2]
["decision-rule" "Santos-Pacheco"]
["play-with" "all-nbrs-TOTAL-payoff"]
["prob-revision" 1]
["noise" 0]

Payoff translations or interaction costs

When all agents play the game the same number of times or when they use average payoffs, many

decision rules are invariant to positive affine transformations of payoffs. In other words, one can

multiply all payoffs by a positive constant and/or add any constant to all payoffs, and the dynamics

will not be affected.

However, in networks where agents use total payoffs and they have different numbers of neighbors,

this is often no longer the case. Decision rule Santos-Pacheco in preferential-attachment networks is

a case in point (Tomassini et al., 2007).

As an example, figure 11 below shows a representative simulation run with the same baseline setting

as in figure 6, but where we have subtracted 0.25 from all payoffs. This 0.25 can be interpreted as

340 | Part IV. Games on networks

a cost for every interaction where agents are involved (Masuda, 2007). As you can see, this small

subtraction to all payoff values significantly decreases the level of cooperation.

Figure 11. Representative simulation of a population of 10 000 agents who play the Prisoner’s
Dilemma with payoffs [[-0.25 0.9375] [-0.4375 0.75]], using total payoffs and Santos-Pacheco decision

rule. The network is preferential attachment with min-degree 2 (average degree ≈ 4)

The whole simulation setting for figure 11 is included below.

["n-of-players-for-each-strategy" "[5000 5000]"]
["payoffs" "[[-0.25 0.9375]\n [-0.4375 0.75]]"]
["network-model" "preferential-attachment"]
["min-degree" 2]
["decision-rule" "Santos-Pacheco"]
["play-with" "all-nbrs-TOTAL-payoff"]
["prob-revision" 1]
["noise" 0]

Initial conditions

Note that the state where everyone defects is absorbing. Also, we can think of nearby states such

that if we start a simulation there, the system will evolve to the state of full defection. States with

one single cooperator are clear examples. This suggests that, in general, the state of full defection

will have some basin of attraction. In other words, if we choose initial conditions close enough to the

state of full defection, it is likely that the simulation will end up with the whole population defecting.

In our baseline setting, it turns out that the basin of attraction of the state of full defection is quite

sizable. As an example, Figure 12 below shows a representative simulation with the same baseline

setting as in figure 6, but with initial conditions [9000 1000]. Most simulation runs with these initial

conditions end up with no cooperation at all.

IV-4. Other ways of computing payoffs and other decision rules | 341

Figure 12. Representative simulation of a population of 10 000 agents who play the Prisoner’s
Dilemma with payoffs [[0 1.1875] [-0.1875 1]], using total payoffs and Santos-Pacheco decision rule.

The network is preferential attachment with min-degree 2 (average degree ≈ 4). Initial conditions as
[9000 1000]

The whole simulation setting for figure 12 is included below, in case you want to run it for yourself.

["n-of-players-for-each-strategy" "[9000 1000]"]
["payoffs" "[[0 1.1875]\n [-0.1875 1]]"]
["network-model" "preferential-attachment"]
["min-degree" 2]
["decision-rule" "Santos-Pacheco"]
["play-with" "all-nbrs-TOTAL-payoff"]
["prob-revision" 1]
["noise" 0]

We also get very low cooperation levels if we start from initial conditions a bit further away from the

state of full defection. As an example, Figure 13 below shows a representative simulation with the

same baseline setting as in figure 6, but with initial conditions [8000 2000].

Figure 13. Representative simulation of a population of 10 000 agents who play the Prisoner’s
Dilemma with payoffs [[0 1.1875] [-0.1875 1]], using total payoffs and Santos-Pacheco decision rule.

The network is preferential attachment with min-degree 2 (average degree ≈ 4). Initial conditions as
[8000 2000]

The whole simulation setting for figure 13 is included below, in case you want to run it for yourself.

342 | Part IV. Games on networks

["n-of-players-for-each-strategy" "[8000 2000]"]
["payoffs" "[[0 1.1875]\n [-0.1875 1]]"]
["network-model" "preferential-attachment"]
["min-degree" 2]
["decision-rule" "Santos-Pacheco"]
["play-with" "all-nbrs-TOTAL-payoff"]
["prob-revision" 1]
["noise" 0]

Final thoughts

We are approaching the end of our journey together, and by now we hope that the following words

we wrote in the preface of this book start to make some sense to you:

To use a scientific model rigorously, it is important to be fully aware of all the assumptions embedded

in it, and also of the various alternative assumptions that could have been chosen. If we don’t

understand all the details of a model, we run the risk of over-extrapolating its scope and of drawing

unsound conclusions.

In this chapter we have seen –once again– that the dynamics of evolutionary models can often be

significantly affected by a multitude of factors that may not seem very relevant at first sight. This

implies that in most cases it is extremely hard, if not impossible, to derive general simple rules about

evolutionary dynamics on networks. For good or for bad, this is the way our universe seems to work,

and there is nothing we can do to change that.

On a more positive note, this reflection highlights –once again– the importance of the skills you have

learned. You are now able to design, implement and analyze models that can help you derive sound

conclusions. The scope of these conclusions will often be more limited than what we would have

wished for, but there is not much we can do about that. What is definitely under our control is to

make sure that our conclusions are sound and rigorous, and by following this book you have taken a

huge step in that direction.

7. Exercises

You can use the following link to download the complete NetLogo model: nxn-games-on-

networks.nlogo.

IV-4. Other ways of computing payoffs and other decision rules | 343

A beautiful network

Exercise 1. How can we parameterize our model to

replicate the results shown in figure 2 of Santos and

Pacheco (2005)?

Exercise 2. How can we parameterize our model to

replicate the results shown in figure 6 of Santos and

Pacheco (2006)?

Exercise 3. How can we parameterize our model to

replicate the results shown in figure 5 of Tomassini

et al. (2007)?

Exercise 4. In our model, all revising agents

update their strategy synchronously. What changes

would you have to make in the code so revising

agents within the tick update their strategies

sequentially (in random order), rather than

simultaneously?

Hint to implement asynchronous strategy updating

It is possible to do this by making a couple of minor changes in procedure to go, without

touching the rest of the code.

Exercise 5. How can we parameterize the model developed in exercise 4 above to replicate the results

shown in figure 2 of Tomassini et al. (2007)?

Exercise 6. For our “sample runs”, we have used unconventional payoff values, such as 1.1875,

-0.1875, 1.375 or -0.375. Can you guess why did we not use better looking numbers such as 1.2,

-0.2, 1.4 and -0.4 instead?

Hint

Write all these decimal numbers in binary. If you use a finite number of bits, once you have

converted all these decimal numbers to finite bit strings, convert the binary representations

back into decimal base.

344 | Part IV. Games on networks

IV-5. Analysis of these models

1. Introduction

In Part II, we learned to implement and analyze models in well-mixed populations. These are models

where every agent has the same probability of interacting with every other agent. In such models,

the state of the system can be defined by the distribution of strategies in the population; in other

words, the strategy distribution contains all the information we need to (probabilistically) predict the

evolution of the system as accurately as it is possible. Because of this, we saw that there are various

mathematical techniques that we can use to analyze and characterize the dynamics of these models

impressively well (see chapter II-5). For well mixed populations, the usefulness of mathematical

analysis cannot be overstated.

In Part III, we learned to implement and analyze models on spatial grids. In these models, the strategy

distribution is not enough to predict the evolution of the system anymore because each agent has

its own set of neighbors (see chapter III-5). Nonetheless, in grid models there is still some symmetry

in the sense that all agents have the same number of neighbors (except, maybe, at the boundaries).

Because of this, for some of these models, we could still derive some analytical approximations such

as the pair approximation for regular networks. These approximations can be useful because they are

sometimes able to predict overall trends, but in general there is no guarantee that they will work well.

For this reason, the relative usefulness of the computer simulation approach as a tool for exploration

and analysis (vs the mathematical approach) is significantly greater in spatial models than in well-

mixed populations.

Finally, here in Part IV, we have learned to implement models where agents are embedded on

arbitrary networks. In these models, each agent has its own set of neighbors and, in general, there is

no symmetry whatsoever, so the state of the system must be defined at the individual level. Because

of this, the mathematical approach loses much of its usefulness and we are bound to resort to

computer simulation as the main tool for exploration and analysis.

The challenge is high, because heterogeneity in both agent types and connectivity structure breaks

down the symmetry of agents, and thus requires a dramatic change of perspective in the description

of the system from the aggregate level to the agent level. The resulting huge increase in the relevant

system variables makes most standard analytical techniques, operating with differential equations,

fixed points, etc., largely inapplicable. What remains is agent based modeling, meaning extensive

numerical simulations and analytical techniques going beyond the traditional mean-field level. Szabó

and Fáth (2007, p. 102)

In this chapter, we are going to illustrate the importance of four best practices that we should try to

follow when using the computer simulation approach:

IV-5. Analysis of these models | 345

• Avoid errors

• Use informative metrics

• Report meaningful statistics

• Derive sound conclusions

Let us see each of these in turn!

2. Avoid errors

2.1. Introduction

Following Galán et al. (2009, par. 3.3), we consider that an error has occurred whenever there is a

mismatch between what the model does and what we, developers, think the model does. Naturally,

we should always try to avoid errors.

The most common errors are those that we inadvertently introduce in our code, i.e., situations where

we are telling the computer to do something different from what we want it to do. We have seen

several examples of this type of coding error in this book. For example, in our very first model

(chapter II-1), we initially discussed a natural but faulty implementation of procedure to go, where

some strategies could be imitated based on payoffs that had not been obtained with those strategies

(see section “A naive implementation“). To fix this error we defined a new agents’ variable named

strategy-after-revision.

In section 5.7 of that same chapter, we saw another error. At first, we did not properly initialize the

agents’ variable strategy-after-revision, and that led to dynamics that were not the ones we intended

to implement. You can find other examples of errors (and their fix) in chapter IV-1, where our code

could ask players with no neighbors to select one of them, and in chapter IV-2, where our code could

try to select 15 agents out of a set of only 5.

Galán et al. (2009) discuss several activities aimed at detecting and avoiding errors in agent-based

models, including reimplementing the model in different programming languages and testing the

model in extreme cases that are perfectly understood (Gilbert and Terna, 2000). Examples of extreme

cases that are often easy to understand include setting the probability of revision equal to 0, setting

all payoffs to 0, or setting the noise to 1.

Here we would like to discuss a subtle type of error that is often neglected, but which can have

undesirable consequences that may be difficult to detect and understand, i.e., floating-point errors.

346 | Part IV. Games on networks

2.2. Floating-point errors

Like most programming languages, NetLogo represents numbers internally in base 2 (using 64-bit

strings) and adheres to the IEEE standard for floating-point arithmetic (IEEE 754).
1

This means, in

particular, that any number that is not exactly representable in base 2 with a finite bitstring cannot be

exactly stored in NetLogo. Some examples of decimal numbers that cannot be represented exactly

with a finite bitstring are 0.1, 0.2, 0.3, 0.4, 0.6, 0.7, 0.8, and 0.9. As a matter of fact, only 63 of the

999 999 numbers of the form 0.000001·i (i = 1, 2… 999 999) are exactly representable in IEEE 754

single or double precision. Thus, whenever we input one of these numbers in our model, we are

inevitably introducing some rounding error. This error will generally be very small, but when dealing

with discontinuous functions, small errors can have big consequences.

Example 1. As an example, consider the imitate if better decision rule, which dictates that an agent A

will copy the strategy of an observed agent B if and only if the observed agent B has a greater payoff.

Now imagine that agents obtain a payoff by playing three times, and agent A’s payoff is (0.3 + 0 + 0)

while agent B’s payoff is (0.1 + 0.1 + 0.1). It turns out that the IEEE 754 floating-point result of the

sum (0.1 + 0.1 + 0.1) is slightly greater than the floating-point result of the sum (0.3 + 0 + 0). You can

check this by typing the following lines in the command center of NetLogo:
2

show (0.1 + 0.1 + 0.1)

show (0.1 + 0.1 + 0.1) > (0.3 + 0 + 0)

Therefore, in this particular example, agent A would copy agent B’s strategy, but it should not copy

it according to real arithmetic. Let us emphasize that this is not a problem specific to NetLogo. You

would get the same result in any IEEE 754-compliant platform.

Example 2. To see floating-point errors in action in one of our models, you can run our last model

with payoffs [[0 1.2] [-0.2 1]] and, after a few ticks, check the agents’ payoffs by typing the following

line in the command center:

show sort remove-duplicates [payoff] of players

When we do this, we get numbers such as -0.20000000000000018, 0.19999999999999996,

0.3999999999999999, 1.5999999999999999, or 1.7999999999999998 (and also numbers very

close to these, such as 1.6 and 1.8). By contrast, if you run the same model with the payoffs we used

in the sample runs ([[0 1.1875] [-0.1875 1]]), you will not find any floating-point errors. This is the

reason we chose these payoff values.

Example 3. Let us finish with a full-fledged example. Consider the Prisoner’s dilemma [[0 1.2] [-0.4

1]] played on the network shown in figure 1 below, using total (accumulated) payoffs. Green nodes

are cooperators and red nodes are defectors.

1. See Math section in NetLogo programming guide.
2. You may want to try this out in other programming languages such as Python, R, Javascript, Java, C, C++ ...

IV-5. Analysis of these models | 347

Figure 1. A beautiful network, with cooperators in
green and defectors in red

The payoffs for the different agents are:

Type of agent Payoff computation
Payoff value

(exact arithmetic)
Payoff value

(floating-point arithmetic)

Cooperating hubs 4 * 1 + 1 * (-0.4) 3.6 3.6 3

Defecting hub 4 * 0 + 3 * 1.2 3.6 3.5999999999999996

Cooperating leaves 1 * 1 1 1

Defecting leaves 1 * 0 0 0

Looking at the payoffs for the different agents above, we know that under decision rules imitate the

best neighbor and imitate if better, the defecting hub will imitate one of the cooperating hubs (since

3.6 > 3.5999999999999996), and then the defecting leaves will follow suit. Thus, under these two

decision rules, using IEEE 754 floating-point arithmetic, the population will always evolve to a state

of full cooperation.

However, under real arithmetic, the end state of these simulations is very different. If agents use the

imitate if better rule, the population will stay in the initial state forever; and if agents use the imitate

the best neighbor rule, the simulation will end up in one of a set of four possible end states (allowing

for symmetries). Table 1 below shows the probability of ending up in each of the possible different

end states, assuming prob-revision = 1.

3. Number 3.6 is not exactly representable in binary, but since the result of 4 * 1 + 1 * (-0.4) is the closest floating-point number to 3.6,
NetLogo outputs 3.6.

348 | Part IV. Games on networks

End state

Number of
cooperators 20 11 6 0

Probability 9.68 % 38.71 % 38.71 % 12.90 %

Table 1. Possible end states and their probabilities for a population of agents playing the Prisoner’s dilemma
with payoffs [[0 1.2] [-0.4 1]], using total (accumulated) payoffs and the imitate the best neighbor rule. Initial

conditions are shown in figure 1 and prob-revision = 1. States that differ on a rotation of the network are
lumped together

It is clear that the results obtained with floating-point arithmetic are completely different from those

obtained with real arithmetic. A simple way to avoid floating-point errors in this particular example

would be to multiply all payoffs by 10. This is a good practice in general: if we have the freedom to

do so, we should try to parameterize models using numbers that are exactly representable in base 2.

For instance, if we want to explore different values of a parameter that ranges from 0 to 1, we should

do it in steps of 0.125, rather than in steps of 0.1.

Nonetheless, it is also important to note that not all models are equally susceptible to floating-point

errors, by any means. Decision rules such as the imitative pairwise-difference rule, the Fermi-m rule

or the Santos-Pacheco rule are continuous in the sense that small changes in payoffs will lead to

small changes in agents’ behavior. Since floating-point errors in these models are often very small in

magnitude, their impact on agents’ behavior will also be small. Therefore, continuous models are not

usually severely affected by floating-point errors.

To learn more about the potential impact of floating-point errors on agent-based models, see Polhill

et al. (2006) and Izquierdo and Polhill (2006).

3. Use informative metrics

3.1. Metrics

We obtain information from simulation models by using metrics. Metrics here are just measurements

of some aspect of the dynamics, such as the proportion of players using a certain strategy:

count players with [strategy = 1] / count players

These metrics could refer to one particular tick or to several ticks. For instance, it is common to

measure the average proportion of players using a certain strategy over a certain period of time, since

averages tend to have lower variability than single observations at a particular tick. This can be easily

done in NetLogo as follows:

IV-5. Analysis of these models | 349

globals [
...
first-tick-of-report
last-tick-of-report
cumulative-x1

]

to setup
...
setup-reporters

end

to go
...
tick
update-reporters
...

end

;;;;;;;;;;;;;;;;;;;;;;;;
;;; Reporters ;;;
;;;;;;;;;;;;;;;;;;;;;;;;

to setup-reporters
set first-tick-of-report 10001
set last-tick-of-report 11000
set cumulative-x1 0

end

to update-reporters
if (ticks >= first-tick-of-report and ticks <= last-tick-of-report) [

let x1 count players with [strategy = 1] / count players
set cumulative-x1 (cumulative-x1 + x1)

]
end

to-report avg-x1
report cumulative-x1 / (last-tick-of-report - first-tick-of-report + 1)

end

The code additions above ensure that, after tick last-tick-of-report, variable cumulative-x1 will

contain the sum of all the values of x1 from first-tick-of-report up until last-tick-of-report, both

inclusive. So, if called after tick last-tick-of-report, reporter avg-x1 will return the average proportion

of players using strategy 1 in the interval [first-tick-of-report , last-tick-of-report]. We can then use

reporter avg-x1 as a metric in BehaviorSpace.

350 | Part IV. Games on networks

3.2. Stability of metrics

Naturally, our metrics should measure something that is informative for our purposes. Here we

comment on one aspect of metrics that is specially relevant in dynamic models: their stability. Most

often, we wish to report a metric when its value has stabilized. There is nothing wrong in reporting

the value of a metric when it is not yet stable, but the metric is usually more informative if we know

that the reported value will not change much in future time-steps. How do we know if a metric has

stabilized? One way is to compute the metric at a later tick in the same simulation and compare the

two values. If the second value is systematically greater or smaller than the first value, then this is a

strong indication that the metric has not yet stabilized. Let us see this with an example.

Consider the last model we have implemented (nxn-games-on-networks.nlogo), parameterized as

follows:

["n-of-players-for-each-strategy" "[5000 5000]"]
["payoffs" "[[0 1.1]\n [0 1]]"]
["network-model" "preferential-attachment"]
["min-degree" 2]
["decision-rule" "imitative-pairwise-difference"]
["play-with" "all-nbrs-AVG-payoff"]
["prob-revision" 1]
["noise" 0]

This is a setting that corresponds to value b = 1.1 in figure 6 of Santos and Pacheco (2006) for the

Barabási-Albert network. The value reported in that figure is the average proportion of cooperators

over the period that goes from tick 10 001 to tick 11 000, and it is slightly greater than 20%.
4

To see

whether this 1000-tick average is reasonably stable after 10 000 ticks, we can compute the same

average starting at a later tick and compare the two averages for each simulation run. We can do this

using the following code, which is not particularly elegant or efficient, but it will do the job:

globals [
...

;; for first metric
first-tick-of-report
last-tick-of-report
cumulative-x1

;; for second metric
first-tick-of-report-2
last-tick-of-report-2
cumulative-x1-2

4. See also figure 5 (top left) in Tomassini et al. (2007). Tomassini et al. (2007) note that 10 000 ticks may not be enough
for the metric to stabilize and run their simulations for much longer (21 000 ticks). They report a value above 30%,
which is significantly higher than the one reported in Santos and Pacheco (2006).

IV-5. Analysis of these models | 351

]

to setup
...
setup-reporters

end

to go
...
tick
update-reporters
...

end

;;;;;;;;;;;;;;;;;;;;;;;;
;;; Reporters ;;;
;;;;;;;;;;;;;;;;;;;;;;;;

to setup-reporters
;; for first metric
set first-tick-of-report 10001
set last-tick-of-report 11000
set cumulative-x1 0

;; for second metric
set first-tick-of-report-2 11001
set last-tick-of-report-2 12000
set cumulative-x1-2 0

end

to update-reporters
let x1 count players with [strategy = 1] / count players

;; for first metric
if (ticks >= first-tick-of-report and ticks <= last-tick-of-report) [

set cumulative-x1 (cumulative-x1 + x1)
]

;; for second metric
if (ticks >= first-tick-of-report-2 and ticks <= last-tick-of-report-2) [

set cumulative-x1-2 (cumulative-x1-2 + x1)
]

end

;; for first metric
to-report avg-x1

report cumulative-x1 / (last-tick-of-report - first-tick-of-report + 1)
end

;; for second metric
to-report avg-x1-2
report cumulative-x1-2 / (last-tick-of-report-2 - first-tick-of-report-2 + 1)
end

352 | Part IV. Games on networks

We have run 100 simulations and obtained that the second average (avg-x2) was greater than the

first one (avg-x1) in 91 runs, which suggests that the value is still increasing by tick 10 000. If the

metric was stable by tick 10 000, we would expect the second average to be greater in approximately

50 runs (or fewer, if ties are likely). If the metric was stable, we would observe the result we have

obtained (91/100 runs), or an even more extreme result, with probability less than 10-17.
5

Thus, this

computational experiment provides very strong evidence against the hypothesis that the metric is

stable by tick 10 000.

Figure 2 below shows a representative run of this setting, with a vertical black line at tick 10 000.

It is clear that the proportion of cooperators (in green) has not stabilized by tick 10 000. In this run,

the average proportion of cooperators is 23.6% over the period [10 001 , 11 000], but significantly

higher afterwards (e.g., 33.9% over the period [110 001 , 111 000]).

Figure 2. Representative simulation of a population of 10 000 agents who play the (weak) Prisoner’s
Dilemma with payoffs [[0 1.1] [0 1]], using average payoffs and the imitative pairwise-difference

decision rule. The network is preferential attachment with min-degree 2 (average degree ≈ 4)

As a conclusion, we recommend to check the stability of reported metrics, as we have done here. It

is a reasonably simple test that will make the metrics we report more informative.

4. Report meaningful statistics

When we run a stochastic model, we are usually interested in finding out not only how the model can

behave, but also how it usually behaves. For this, we run many simulation runs and compute different

statistics on the metrics obtained from each run. A statistic is any quantity computed from values

5. For simplicity, we have computed the p-value ignoring ties (or, equivalently, assuming they are counted as success or
failure with equal probability), using a simple two-tailed binomial test. In Mathematica:

2 * CDF[BinomialDistribution[100, 0.5], 100 - 91]

IV-5. Analysis of these models | 353

in a sample. Here the sample consists of the values of a certain metric obtained from each of the

simulation runs in the experiment. An example of a statistic is the average.

One point we would like to comment here is that we should try to report meaningful statistics. Some

statistics can be deceiving in certain cases, and we should try to avoid them. For instance, reporting

only the average of a bimodal distribution is not ideal, since the average masks the fact that the

distribution is bimodal and may be easily misinterpreted.

We saw an example of a bimodal distribution in chapter IV-2. The 1000 simulations we ran there on a

star network yielded an average percentage of B-strategists by tick 5000 equal to 50.33%. Looking at

that average, one could (mistakenly) infer that, at tick 5000, roughly half the population uses strategy

A and the other half uses strategy B. But actually, the truth is that the distribution is bimodal: in nearly

half of the runs almost all agents were choosing strategy A, and in nearly half of the runs almost all

agents were choosing strategy B (see figure 3 below).

Figure 3. Histogram showing the number of runs with different percentages of B-strategists in the
experiment run on a star network in the sample runs of chapter IV-2

Multimodal distributions are very common in evolutionary models: these models tend to spend most

of the time in one out of a small set of possible regimes. We saw another example of this feature

in the sample runs of the previous chapter. The simulations we ran there spent most of the time at

one of two possible regimes: one where the proportion of B-strategists was very high (≥ 95%) and

another one where the proportion of B-strategists was very low (≤ 5%). Reporting only the average

of B-strategists across runs would have been misleading in that case. It is more meaningful to report

the percentage of runs that were at each of the two regimes, as we did in figure 7 and in figure 9.

354 | Part IV. Games on networks

5. Derive sound conclusions

Our goal when we analyze any model is to fully understand why we are observing what we are

observing. In other words, we would like to identify the features or assumptions in our model

that are responsible for the emergence of the phenomena we observe. To check whether a certain

assumption is responsible for a particular phenomenon, we must be able to replace the assumption

with an alternative one. Thus the importance of implementing and exploring various alternative

assumptions (e.g. different decision rules, different ways of computing payoffs, different network-

generating algorithms, etc.) to make sure that our conclusions are sound. If we don’t do this, we run

the risk of over-extrapolating the scope of our model and even drawing unsound conclusions.

One feature that is often easy to implement and can provide important insights is noise. We have

seen that the dynamics of many models can change significantly when we introduce small amounts

of stochasticity in the agents’ behavior or in the way they revise their strategies (e.g., sequentially or

simultaneously). We believe it is important to assess the robustness of any observed phenomenon to

low levels of stochasticity since, after all, our models are imperfect abstractions of real-world systems

that are usually significantly less deterministic and well-behaved.

6. Final thoughts

We realize that, after reading this chapter, you may feel overwhelmed by the amount of things that

can go wrong when trying to draw sound conclusions using an agent-based model. You’re right:

many things can go wrong. We hope that this book has opened your eyes in this respect but, more

importantly, we hope that you have learned a wide range of useful techniques to avoid falling into

the many traps that lie out there for the rigorous agent-based modeler. If you have managed to read

this book until here, we are confident that you are now well prepared to implement and analyze your

own agent-based models and to rigorously use these models to advance Science. It is also our hope

that you will enjoy this process as much as we have enjoyed writing this book.

7. Exercises

Exercise 1. Implement a procedure named to setup-players-special to create the network

shown in figure 1.

Hint to implement procedure to setup-players-special

You may find useful to use primitives hatch and myself, as in the following line:

hatch 4 [create-link-with myself]

IV-5. Analysis of these models | 355

Photo by Markus Spiske on Unsplash

Exercise 2. Can you analytically derive the

probabilities of reaching each of the end states

shown in Table 1?

Exercise 3. Once you have implemented

procedure to setup-players-special in exercise 1

above, design a computational experiment to

estimate the exact probabilities shown in Table

1.

Exercise 4. Imagine that you suspect that

your model spends a significant amount of time

in a regime where the proportion of players

using strategy 1 is in the interval [0.3, 0.4]. Implement a reporter that returns 1 if the simulation is in

this regime and 0 otherwise.

Exercise 5. Generalize the reporter you have implemented in Exercise 4 above so the endpoints

of the interval (0.3 and 0.4 in exercise 4) are inputs that can be chosen by the user, and there are also

two additional inputs to control whether each of the interval endpoints is included or excluded.

Exercise 6. Once you have implemented the general reporter in Exercise 5, write the metrics

you would have to include in BehaviorSpace to check whether the simulation is in each of the

following regimes:

• Proportion of players using strategy 1 is in the interval [0.3 , 0.4]

• Proportion of players using strategy 1 is in the interval (0.2 , 0.3]

• Proportion of players using strategy 1 is in the interval [0.6 , 0.8)

• Proportion of players using strategy 1 is in the interval [0.9 , 1]

356 | Part IV. Games on networks

PART V. AGENT-BASED
MODELS vs ODE MODELS

Agent-Based Evolutionary Game Dynamics | 357

V-1. Introduction

Many models in Evolutionary Game Theory are described as systems of Ordinary Differential

Equations (ODEs). The most famous example is the Replicator Dynamics (Taylor and Jonker, 1978),

which reads:

where:

• is the fraction of -strategists in the population.

• describes how the fraction of -strategists changes in time.

• is the expected payoff of strategy . That is, if is the payoff that an -strategist obtains

against a -strategist, then . This is also the average payoff that an -strategist

would obtain if he played with the whole population.

• is the average payoff in the population.

ODE models are very different from the agent-based models we have considered in this book. Our

goal in this Part V is to clarify the relationship between these two kinds of models. We will see that

most ODE models in Evolutionary Game Theory can be seen as the mean dynamic of an agent-

based model where agents follow a certain decision rule in a well-mixed population.
1
This implies that

those ODE models provide a good deterministic approximation to the dynamics of the corresponding

agent-based model over finite time spans when the number of agents is sufficiently large (Benaïm &

Weibull, 2003; Sandholm, 2010a, chapter 10; Roth & Sandholm, 2013). For this reason, ODE models

in Evolutionary Game Theory are often called infinite-population models (because they describe

dynamics of populations whose size tends to infinity), while agent-based models are sometimes

called finite-population models.
2

It is also clear that the ODE models represent a higher level of abstraction than the agent-based

models, in the sense that the variables in the ODE models are population-level aggregates, while the

agent-based models are defined at the individual level (fig. 1).

1. The term well-mixed population refers to a population where all individuals are equally likely to interact with each
other.

2. Another reason is that the fraction of -strategists in ODE models changes continuously in the interval [0,1], while
in a finite population of individuals, this fraction would have to be a multiple of . See footnote 31 in
Alexander (2023).

358 | Part V. Agent-based models vs ODE models

Figure. 1. Agent-based models are described at the individual level, while ODE models are described at the
population level

In fact, in many cases, there is a wide range of different agent-based models which share the

same mean dynamic. For instance, consider the replicator dynamics, which is often derived as the

infinite-population limit of a certain model of biological evolution (see derivations in e.g. Weibull

(1995, section 3.1.1), Vega-Redondo (2003, section 10.3.1) or Alexander (2023, section 3.2.1)). In the

following chapters we will see that the replicator dynamics is also the mean dynamic of the following

disparate agent-based models:
3

• A model where agents in a well-mixed population follow the imitative pairwise-difference

rule using expected payoffs (Helbing,1992; Schlag, 1998; Sandholm, 2010a, example 5.4.2;

Sandholm, 2010b, example 1).

• A model where agents in a well-mixed population play the game just once with a random agent

and follow the imitative pairwise-difference rule (Izquierdo et al., 2019, example A.2).

• A model where agents in a well-mixed population follow the so-called imitative linear-

attraction rule using expected payoffs (Hofbauer, 1995a; Sandholm, 2010a, example 5.4.4;

Sandholm, 2010b, example 1).

• A model where agents in a well-mixed population play the game just once with a random agent

and follow the so-called imitative linear-attraction rule (Izquierdo et al., 2019, remark A.3).

• A model where agents in a well-mixed population follow the so-called imitative linear-

dissatisfaction rule using expected payoffs (Weibull, 1995, section 4.4.1; Björnerstedt and

Weibull, 1996; Sandholm, 2010a, example 5.4.3; Sandholm, 2010b, example 1).

• A model where agents in a well-mixed population play the game just once with a random agent

and follow the so-called imitative linear-dissatisfaction rule (Izquierdo et al., 2019, remark A.3).

In the next chapter, we extend the (well-mixed population) model we developed in Part II by including

3. Some of these models lead to the replicator dynamics up to a speed factor, i.e., a constant may appear multiplying the
whole right-hand side of the equation of the replicator dynamics. This constant can be interpreted as a change of
time scale.

V-1. Introduction | 359

different decision rules that have been studied in the literature and different ways of computing

payoffs. Then, in chapter V-3, we derive the mean dynamic of each of the possible parameterizations

of this extended agent-based model. We will see that some parameterizations that generate different

stochastic dynamics share the same mean dynamic. In this way, we hope that the (many-to-one)

relationship between agent-based models and ODEs will be perfectly clear.

360 | Part V. Agent-based models vs ODE models

V-2. A rather general model for games played
in well-mixed populations

1. Goal

The goal of this chapter is to extend the well-mixed population model we developed in chapter II-3

(nxn-imitate-if-better-noise) by adding two features that will make our program significantly more

general:

• The possibility to use expected payoffs. In all the models we developed in Part II, agents obtain

their payoffs by playing with one agent, chosen at random. In this chapter we will allow agents

to use expected payoffs. The expected payoff of strategy is also the average payoff that an

-strategist would obtain if she played with the whole population.

• The possibility to model other decision rules besides the imitate if better rule.

2. Motivation

Once we have implemented different decision rules and the option to use expected payoffs, we will

be able to model many different agent-based evolutionary dynamics. In the next chapter, we will

develop the mean dynamic of each of these agent-based evolutionary dynamics, and we will see that

they correspond to ODE models that have been studied in the literature.

3. Description of the model

We depart from the program we implemented in chapter II-3 (nxn-imitate-if-better-noise).
1

You can

find the full description of this model in chapter II-3. Our extension will include the following three

additional parameters:

• payoff-to-use. This parameter specifies the type of payoff that agents use in each tick. It will be

implemented with a chooser, with two possible values:

◦ “play-with-one-rd-agent“: agents play with another agent chosen at random.

◦ “use-strategy-expected-payoff“: agents use their strategy’s expected payoff.

• decision-rule. This parameter determines the decision rule that agents follow to update their

strategies, just like in the models we developed in chapter III-4 and chapter IV-4. Note that

1. In chapter II-4 we were able to implement a more efficient version of this model, but the speed boost came at the
expense of making our code less readable. Here we want to focus on code readability, so we start with the most
natural implementation of the model, i.e. nxn-imitate-if-better-noise. Nonetheless, we can add the primitive no-
display in procedure to setup, right after clear-all, to improve the efficiency of the model at hardly any cost.

V-2. A rather general model for games played in well-mixed populations | 361

all decision rules use the agents’ payoffs, and these are computed following the method

prescribed by parameter payoff-to-use. Parameter decision-rule will be implemented with a

chooser, with seven possible values:

◦ “imitate-if-better”. This is the imitate if better rule already implemented in the current

model.

◦ “imitative-pairwise-difference”. This is the imitative pairwise-difference rule we saw in

chapter I-2. Under this rule, the revising agent looks at another individual at random and

considers imitating her strategy only if her payoff is greater than the reviser’s payoff; in

that case, he switches with probability proportional to the payoff difference. In order to

turn the payoff difference into a meaningful probability, we divide the payoff difference

by the maximum possible payoff minus the minimum possible payoff.

◦ “imitative-linear-attraction”. Under this rule, the revising agent selects another individual

at random and imitates her strategy with probability equal to the difference between the

observed individual’s payoff and the minimum possible payoff, divided by the maximum

possible payoff minus the minimum possible payoff. (The revising agent’s payoff is

ignored.)

◦ “imitative-linear-dissatisfaction”. Under this rule, the revising agent selects another agent

at random and imitates her strategy with probability equal to the difference between the

maximum possible payoff and his own payoff, divided by the maximum possible payoff

minus the minimum possible payoff. (The observed agent’s payoff is ignored.)

The four decision rules above are imitative, i.e. they all start by selecting one agent and

consider imitating her strategy. In contrast, the following decision rules are direct (Sandholm,

2010a).
2

Under direct decision rules, revising agents choose candidate strategies directly

without looking at any agent, so a strategy’s popularity does not directly influence the

probability with which it is considered. In the following direct decision rules, if payoff-to-use

= “play-with-one-rd-agent“, each strategy is tested against one random individual, potentially

different in each test.

◦ “direct-best”. The revising agent selects the strategy with the greatest payoff. Ties are

resolved uniformly at random.

◦ “direct-pairwise-difference”. The revising agent randomly selects another strategy, and

considers adopting it only if its payoff is greater; in that case, he switches with probability

proportional to the payoff difference. In order to turn the difference in payoffs into a

meaningful probability, we divide the payoff difference by the maximum possible payoff

minus the minimum possible payoff.

◦ “direct-positive-proportional-m”. The revising agent selects one strategy at random, with

probabilities proportional to payoffs raised to parameter m, and adopts it. Parameter

m controls the intensity of selection (see below). We do not allow for negative payoffs

when using this rule.

2. There are decision rules that are neither imitative nor direct. See, e.g., Lahkar and Sandholm (2008).

362 | Part V. Agent-based models vs ODE models

• m. This is the parameter that controls the intensity of selection in decision rule direct-positive-

proportional-m.

Everything else stays as described in chapter II-3.

4. Extension I. Implementation of different ways of
computing payoffs

In this first extension, we just want to implement the option to use expected payoffs.

4.1. Skeleton of the code

The main procedure we have to modify is to update-payoff, which is where payoffs are updated.

Figure 1 below shows the skeleton of the new implementation of procedure to update-payoff.

Figure 1. Skeleton of procedure to update-payoff

4.2. Interface design

We depart from the model we created in chapter II-3 (nxn-imitate-if-better-noise), so if you want to

preserve it, now is a good time to duplicate it. The current interface looks as shown in figure II-3-1.

The only change we have to make to the interface is to add parameter payoff-to-use. We should add

it as a chooser with possible values “play-with-one-rd-agent” and “use-strategy-expected-payoff“. The

new interface should look as figure 2 below.

V-2. A rather general model for games played in well-mixed populations | 363

Figure 2. Interface design for the first extension

4.3. Code

4.3.1. Implementation of to update-payoff

The way payoffs are computed is determined by parameter payoff-to-use:

• If payoff-to-use = “play-with-one-rd-agent“, agents play with another agent chosen at random.

• If payoff-to-use = “use-strategy-expected-payoff“, agents use their strategy’s expected payoff.

A nice and modular way of implementing procedure to update-payoff is to create two new

procedures, i.e., to play-with-one-rd-agent and to use-strategy-expected-payoff and call one or the

other depending on the value of payoff-to-use (see skeleton in figure 1). Thus, the new code of to

update-payoff could look as follows:

to update-payoff
ifelse payoff-to-use = "play-with-one-rd-agent"

[play-with-one-rd-agent]
[use-strategy-expected-payoff]

end

Given that we have chosen the names of the two new procedures to match the possible values of

parameter payoff-to-use, we can also use run (a primitive that can take a string containing the name

of a command as an input, and it runs the command) as follows:

364 | Part V. Agent-based models vs ODE models

to update-payoff
run payoff-to-use

end

Our following step is to implement the two new procedures.

4.3.2. Implementation of to play-with-one-rd-agent

Note that in our baseline model nxn-imitate-if-better-noise, agents obtained a payoff by playing with

another agent chosen at random. Thus, for the implementation of to play-with-one-rd-agent, we can

just use the code that we previously had in procedure to update-payoff:

to play-with-one-rd-agent
let mate one-of other players
set payoff item ([strategy] of mate) (item strategy payoff-matrix)

end

4.3.3. Implementation of to use-strategy-expected-payoff

This new procedure should assign the appropriate expected payoff to the agent who runs it. Note

that we do not want every agent to compute the expected payoff of their strategy. This would be

inefficient because there are usually many more agents than strategies. Instead, we should compute

the expected payoff of each strategy just once in each tick, and have these payoffs ready for agents

to read.

We will implement a procedure to compute expected payoffs in the next section, but for now, let

us assume that these expected payoffs are available to agents in a global variable called strategy-

expected-payoffs. This variable will contain a list with the expected payoff of each strategy, in order.

Assuming that, the code for procedure to use-strategy-expected-payoff is particularly simple:

to use-strategy-expected-payoff
set payoff item strategy strategy-expected-payoffs

end

4.3.4. Implementation of to update-strategy-expected-payoffs

Our goal now is to code the procedure in charge of computing the expected payoff for each strategy

and of storing them in a global variable named strategy-expected-payoffs. Let us call this new

procedure to update-strategy-expected-payoffs, and work through the logic together.

It is often easier to start with a concrete example and then try to generalize. Let us start by thinking

how to compute the expected payoff of strategy 0. To do this, we need the payoffs that strategy 0

can obtain (e.g., [0 -1 1] in figure 2) and we need the frequencies of each strategy in the population

(e.g. [0.2 0.3 0.5]). Then, we would only have to multiply the two lists element by element ([0*0.2

-1*0.3 1*0.5]) and sum all the elements of the resulting list (0*0.2 + -1*0.3 + 1*0.5).

V-2. A rather general model for games played in well-mixed populations | 365

Our current code already computes the frequencies of each strategy in procedure to update-graph,

so we already have the code for that:

let strategy-frequencies map [n ->
count players with [strategy = n] / n-of-players

] strategy-numbers

Assuming we have the strategy frequencies stored in strategy-frequencies, to compute the expected

payoff of strategy 0 in our example we would only have to do:

sum (map * [0 -1 1] strategy-frequencies)

Now is the time to generalize. To compute the expected payoff of each of the strategies, we just have

to apply the code snippet above to the list of payoffs of each strategy. Note that the payoff matrix

contains precisely the lists of payoffs for each strategy, so we can use map as follows:

set strategy-expected-payoffs map [list-of-payoffs ->
sum (map * list-of-payoffs strategy-frequencies)
] payoff-matrix

As mentioned before, since we want agents to be able to read the strategy expected payoffs, we

should define variable strategy-expected-payoffs as global. Also, there is no point in computing the

strategies frequencies more than once in each tick, so we should also define strategy-frequencies

as a global variable, and update it only in one place. And finally, now we will be using the strategy

numbers at two places (procedures to update-strategy-expected-payoffs and to update-graph), so we

could also define strategy-numbers as a global variable:

globals [
payoff-matrix
n-of-strategies
n-of-players

strategy-numbers ;; <= new global variable
strategy-frequencies ;; <= new global variable
strategy-expected-payoffs ;; <= new global variable

]

With all this, the code for procedure to update-strategy-expected-payoffs would be:

to update-strategy-expected-payoffs
set strategy-frequencies map [n ->

count players with [strategy = n] / n-of-players
] strategy-numbers

set strategy-expected-payoffs map [list-of-payoffs ->
sum (map * list-of-payoffs strategy-frequencies)] payoff-matrix

end

Since we are updating strategy-frequencies in this procedure, and the variable is now global, we can

remove that computation from procedure to update-graph. Similarly, since variable strategy-numbers

366 | Part V. Agent-based models vs ODE models

is now global and its value does not change over the course of a simulation run, we should move its

computation from to update-graph to a setup procedure, such as to setup-payoffs:

to update-graph
; let strategy-numbers (range n-of-strategies)
; let strategy-frequencies map [n ->
; count players with [strategy = n] / n-of-players
;] strategy-numbers

set-current-plot "Strategy Distribution"
let bar 1
foreach strategy-numbers [n ->

set-current-plot-pen (word n)
plotxy ticks bar
set bar (bar - (item n strategy-frequencies))

]
set-plot-y-range 0 1

end

to setup-payoffs
set payoff-matrix read-from-string payoffs
set n-of-strategies length payoff-matrix
set strategy-numbers range n-of-strategies ;; <= new line

end

Now, we should make sure that we call procedure to update-strategy-expected-payoffs

(where strategy-frequencies is updated) before running procedure to update-graph, where these

frequencies are used. We do that at procedures to setup and to go. We also take this opportunity to

improve the efficiency of the model by including the primitive no-display in procedure to setup,

right after clear-all.

to setup
clear-all
no-display ;; <= new line to improve efficiency
setup-payoffs
setup-players
setup-graph
reset-ticks
update-strategy-expected-payoffs ;; <= new line
update-graph

end

to go
ask players [update-payoff]

ask players [
if (random-float 1 < prob-revision) [

V-2. A rather general model for games played in well-mixed populations | 367

update-strategy-after-revision
]

]
ask players [update-strategy]
tick

update-strategy-expected-payoffs ;; <= new line
update-graph

end

Finally, note that, since procedure to update-strategy-expected-payoffs is called from to go, we know

that variable strategy-expected-payoffs is updated in every tick, as required.

There is a subtle final issue here. We have to make sure that, given a certain population state (i.e. once

agents have updated their strategies), variable strategy-expected-payoffs is updated before agents

update their payoffs in procedure to update-payoff. Note that this is so in our current code, even

at the first tick (since procedure to update-strategy-expected-payoffs is called from to setup too). In

other words, whenever agents update their payoffs, variable strategy-expected-payoffs contains the

updated expected payoffs, i.e., the ones corresponding to the current population state.

Table 1 below shows a sketch of the order in which the main procedures are executed in a simulation

run. The lines highlighted in yellow indicate when the population state changes. Note that, in

between highlighted lines, procedure to update-strategy-expected-payoffs is executed before agents

update their payoffs in procedure to update-payoff.

368 | Part V. Agent-based models vs ODE models

↓

setup

↓ …….. ;; <= various setup procedures

↓ ↓ update-strategy-expected-payoffs

↓ ↓ update-graph

↓

go

↓ askplayers [update-payoff]

↓ ↓ …….. ;; <= agents update strategy-after-revision

↓ ↓ ask players [update-strategy] ;; <= change of population state

↓ ↓ tick

↓ ↓ update-strategy-expected-payoffs

↓ ↓ …….. ;; <= update-graph

↓

go

↓ askplayers [update-payoff]

↓ ↓ …….. ;; <= agents update strategy-after-revision

↓ ↓ ask players [update-strategy] ;; <= change of population state

↓ ↓ tick

↓ ↓ update-strategy-expected-payoffs

↓ ↓ …….. ;; <= update-graph

↓

go

↓ askplayers [update-payoff]

↓ ↓ …….. ;; <= agents update strategy-after-revision

↓ ↓ ask players [update-strategy] ;; <= change of population state

↓ ↓ tick

↓ ↓ update-strategy-expected-payoffs

↓ ↓ …….. ;; <= update-graph

Table 1. Sketch of the order in which the main procedures are executed in a simulation run

4.3.5. Final checks

We can conduct a few simple checks to gain confidence in our code. For instance, to see the different

payoffs that 0-strategists obtain, we can include the following line in procedure to go, right after

agents update their payoffs:

show remove-duplicates [payoff] of players with [strategy = 0]

to go
ask players [update-payoff]
show remove-duplicates [payoff] of players with [strategy = 0]

ask players [
if (random-float 1 < prob-revision) [

update-strategy-after-revision
]

]
ask players [update-strategy]

V-2. A rather general model for games played in well-mixed populations | 369

tick
update-strategy-expected-payoffs
update-graph

end

With this code in place, please, try to answer the four questions below:

1. Can you find out what we should see in the command center if we click on setup and

then on go once with the setting shown in figure 2?

Since payoff-to-use = “play-with-one-rd-agent“, agents play with another agent chosen at

random. Thus, most likely, some 0-strategists will meet another 0-strategist (and obtain a

payoff of 0), some will meet a 1-strategist (and obtain a payoff of -1), and some will meet a

2-strategist (and obtain a payoff of 1). Therefore, almost for certain we will see a list containing

these three payoffs [0 -1 1], in any order.

2. And if we change payoff-to-use to = “use-strategy-expected-payoff“?

The payoff for all 0-strategists is now the expected payoff of strategy 0, so we should only see

one number in the list. At the initial state, this number should be:

(0*(167/500) + -1*(167/500) + 1*(166/500)) = -1/500 = -0.002

We actually see [-0.0020000000000000018] due to floating-point errors.

3. What should we observe if we remove with [strategy = 0] from the line we added in

procedure to go, still using payoff-to-use to = “use-strategy-expected-payoff“?

We should see a list containing the three expected payoffs, in any order. At the initial state,

these payoffs are:

(0*(167/500) + -1*(167/500) + 1*(166/500)) = -1/500 = -0.002

(1*(167/500) + 0*(167/500) + -1*(166/500)) = 1/500 = 0.002

(-1*(167/500) + 1*(167/500) + 0*(166/500)) = 0

We actually see [0 0.0020000000000000018 -0.0020000000000000018] due to floating-

point errors.

370 | Part V. Agent-based models vs ODE models

4. And if we now change payoff-to-use to = “play-with-one-rd-agent“?

Almost certainly, we will see a list containing the three payoffs [0 -1 1], in any order.

4.4. Complete code of Extension I in the Code tab

Well done! We have now finished the first extension! You can use the following link to download the

complete NetLogo model: nxn-imitate-if-better-noise-payoff-to-use.nlogo.

globals [
payoff-matrix
n-of-strategies
n-of-players
strategy-numbers ;; <= new global variable
strategy-frequencies ;; <= new global variable
strategy-expected-payoffs ;; <= new global variable

]

breed [players player]

players-own [
strategy
strategy-after-revision
payoff

]

;;;;;;;;;;;;;
;;; SETUP ;;;
;;;;;;;;;;;;;

to setup
clear-all
no-display ;; <= new line to improve efficiency
setup-payoffs
setup-players
setup-graph
reset-ticks
update-strategy-expected-payoffs ;; <= new line
update-graph

end

to setup-payoffs
set payoff-matrix read-from-string payoffs
set n-of-strategies length payoff-matrix
set strategy-numbers range n-of-strategies ;; <= new line

end

to setup-players

V-2. A rather general model for games played in well-mixed populations | 371

let initial-distribution read-from-string n-of-players-for-each-strategy
if length initial-distribution != length payoff-matrix [

user-message (word "The number of items in\n"
"n-of-players-for-each-strategy (i.e. "
length initial-distribution "):\n"
n-of-players-for-each-strategy
"\nshould be equal to the number of rows\n"
"in the payoff matrix (i.e. "
length payoff-matrix "):\n"
payoffs

)
]

let i 0
foreach initial-distribution [j ->

create-players j [
set payoff 0
set strategy i
set strategy-after-revision strategy

]
set i (i + 1)

]

set n-of-players count players
end

to setup-graph
set-current-plot "Strategy Distribution"
foreach (range n-of-strategies) [i ->

create-temporary-plot-pen (word i)
set-plot-pen-mode 1
set-plot-pen-color 25 + 40 * i

]
end

;;;;;;;;;;
;;; GO ;;;
;;;;;;;;;;

to go
ask players [update-payoff]
ask players [

if (random-float 1 < prob-revision) [
update-strategy-after-revision

]
]
ask players [update-strategy]
tick
update-strategy-expected-payoffs ;; <= new line
update-graph

end

;;;;;;;;;;;;;;;;;;;;;;

372 | Part V. Agent-based models vs ODE models

;;; UPDATE PAYOFFS ;;;
;;;;;;;;;;;;;;;;;;;;;;

to update-strategy-expected-payoffs
set strategy-frequencies map [n ->

count players with [strategy = n] / n-of-players
] strategy-numbers

set strategy-expected-payoffs map [list-of-payoffs ->
sum (map * list-of-payoffs strategy-frequencies)] payoff-matrix

end

to update-payoff
run payoff-to-use

end

to play-with-one-rd-agent
let mate one-of other players
set payoff item ([strategy] of mate) (item strategy payoff-matrix)

end

to use-strategy-expected-payoff
set payoff item strategy strategy-expected-payoffs

end

;;;;;;;;;;;;;;;;;;;;;;;;;
;;; UPDATE STRATEGIES ;;;
;;;;;;;;;;;;;;;;;;;;;;;;;

to update-strategy-after-revision
ifelse random-float 1 < noise

[set strategy-after-revision (random n-of-strategies)]
[

let observed-player one-of other players
if ([payoff] of observed-player) > payoff [

set strategy-after-revision ([strategy] of observed-player)
]

]
end

to update-strategy
set strategy strategy-after-revision

end

;;;;;;;;;;;;;;;;;;;;
;;; UPDATE GRAPH ;;;
;;;;;;;;;;;;;;;;;;;;

to update-graph
; let strategy-numbers (range n-of-strategies)
; let strategy-frequencies map [n ->
; count players with [strategy = n] / n-of-players
;] strategy-numbers

V-2. A rather general model for games played in well-mixed populations | 373

set-current-plot "Strategy Distribution"
let bar 1
foreach strategy-numbers [n ->

set-current-plot-pen (word n)
plotxy ticks bar
set bar (bar - (item n strategy-frequencies))

]
set-plot-y-range 0 1

end

5. Extension II. Implementation of different
decision rules

In our second extension, we will implement the following procedures, one for each decision rule:

• to imitate-if-better-rule

• to imitative-pairwise-difference-rule

• to imitative-linear-attraction-rule

• to imitative-linear-dissatisfaction-rule

• to direct-best-rule

• to direct-pairwise-difference-rule

• to direct-positive-proportional-m-rule

Note that we have chosen the name of the procedures to match the possible values of parameter

decision-rule (plus the suffix “-rule”).

5.1. Skeleton of the code

The main procedure we have to modify is to update-strategy-after-revision, which is where the

different decision rules are called from. Figure 3 below shows the skeleton of the new

implementation of procedure to update-strategy-after-revision.

374 | Part V. Agent-based models vs ODE models

Figure 3. Skeleton of procedure to update-strategy-after-revision

5.2. Interface design

The current interface looks as shown in figure 2. The only change we have to make to the interface

is to add the following parameters:

• decision-rule. We can add it as a chooser with possible values “imitate-if-better“, “imitative-

pairwise-difference“, “imitative-linear-attraction“, “imitative-linear-dissatisfaction“, “direct-

best”, “direct-pairwise-difference”, and “direct-positive-proportional-m”.

• m. We can add it as a slider (with minimum = 0 and increment = 0.1).

The new interface should look as figure 4 below.

V-2. A rather general model for games played in well-mixed populations | 375

Figure 4. Interface design for the first extension

5.3. Code

5.3.1. Global variables

For some decision rules, agents will need access to the minimum and the maximum possible payoffs,

and to the maximum possible payoff difference. For this reason, it makes sense to define these as

global variables.

globals [
payoff-matrix
n-of-strategies
n-of-players
strategy-numbers
strategy-frequencies
strategy-expected-payoffs

min-of-payoff-matrix ;; <= new global variable
max-of-payoff-matrix ;; <= new global variable
max-payoff-difference ;; <= new global variable

]

Since the value of these global variables will not change over the course of a simulation run, we

should set them at a setup procedure. The most appropriate place is at procedure to setup-payoffs.

to setup-payoffs
set payoff-matrix read-from-string payoffs

376 | Part V. Agent-based models vs ODE models

set n-of-strategies length payoff-matrix
set strategy-numbers range n-of-strategies

;; new lines below
set min-of-payoff-matrix min reduce sentence payoff-matrix
set max-of-payoff-matrix max reduce sentence payoff-matrix
set max-payoff-difference (max-of-payoff-matrix - min-of-payoff-matrix)

end

5.3.2. Implementation of to update-strategy-after-revision

Let us start with the implementation of procedure to update-strategy-after-revision. Given the names

we have chosen for the procedures for the different decision rules (see skeleton in Figure 3), can

you venture a simple implementation for our new procedure to update-strategy-after-revision using

primitive run?

Implementation of procedure to update-strategy-after-revision

to update-strategy-after-revision
ifelse random-float 1 < noise

[set strategy-after-revision (random n-of-strategies)]
[run (word decision-rule "-rule")]

end

Now we just have to implement the procedures for each of the seven decision rules. If you have

managed to follow this book up until here, you are most likely ready to implement them by yourself!

5.3.3. Imitative decision rules

Implementation of to imitate-if-better-rule

This is the decision rule we had implemented in our baseline model nxn-imitate-if-better-noise, so

we can just copy the code.

Implementation of procedure to imitate-if-better-rule

to imitate-if-better-rule
let observed-player one-of other players

V-2. A rather general model for games played in well-mixed populations | 377

if ([payoff] of observed-player) > payoff [
set strategy-after-revision ([strategy] of observed-player)

]
end

Implementation of to imitative-pairwise-difference-rule

To implement this rule, the code we wrote in chapter III-4 will be very useful.

Implementation of procedure to imitative-pairwise-difference-rule

to imitative-pairwise-difference-rule
let observed-player one-of other players

;; compute difference in payoffs
let payoff-diff ([payoff] of observed-player - payoff)

set strategy-after-revision ifelse-value
(random-float 1 < (payoff-diff / max-payoff-difference))

[[strategy] of observed-player]
[strategy]

;; If your strategy is the better, payoff-diff is negative,
;; so you are going to stick with it.
;; If it's not, you switch with probability
;; (payoff-diff / max-payoff-difference)

end

Implementation of to imitative-linear-attraction-rule

Can you try to implement this rule by yourself?

Implementation of procedure to imitative-linear-attraction-rule

to imitative-linear-attraction-rule
let observed-player one-of players

378 | Part V. Agent-based models vs ODE models

set strategy-after-revision ifelse-value
(random-float 1 <

([payoff] of observed-player - min-of-payoff-matrix) /
(max-of-payoff-matrix - min-of-payoff-matrix))

[[strategy] of observed-player]
[strategy]

end

Implementation of to imitative-linear-dissatisfaction-rule

The code for this rule is similar to the previous one. Can you implement it?

Implementation of procedure to imitative-linear-dissatisfaction-rule

to imitative-linear-dissatisfaction-rule
let observed-player one-of players

set strategy-after-revision ifelse-value
(random-float 1 <

(max-of-payoff-matrix - payoff) /
(max-of-payoff-matrix - min-of-payoff-matrix))

[[strategy] of observed-player]
[strategy]

end

5.3.4. Direct decision rules

In this section, we implement three direct decisions rules: “direct-best”, “direct-pairwise-difference”,

and “direct-positive-proportional-m”. In direct decision rules, agents consider different candidate

strategies, and choose one of them based on their assigned payoffs. Thus, the first thing we should

do is to implement a procedure that assigns payoffs to strategies.

Assigning payoffs to strategies

The payoff assigned to each strategy is determined by parameter payoff-to-use:

• If payoff-to-use = “play-with-one-rd-agent“, the payoff assigned to strategy will be the payoff

resulting from trying out strategy against one agent chosen at random from the population.

Importantly, according to the description of the model, every time a strategy is tested by a

reviser, it should be tested against a newly (randomly) drawn agent.

V-2. A rather general model for games played in well-mixed populations | 379

• If payoff-to-use = “use-strategy-expected-payoff“, the payoff assigned to strategy will be

strategy s expected payoff.

Our goal now is to implement a reporter named to-report payoff-for-strategy [], which takes a

strategy number as an input, and returns the appropriate payoff for strategy , taking into account

the current value of parameter payoff-to-use. Bearing in mind that strategies’ expected payoffs

are stored in global variable strategy-expected-payoffs, can you implement to-report payoff-for-

strategy?

Implementation of reporter to-report payoff-for-strategy

to-report payoff-for-strategy [s]
report ifelse-value payoff-to-use = "play-with-one-rd-agent"

[item ([strategy] of one-of other players) (item s payoff-matrix)]
[item s strategy-expected-payoffs]

end

Implementation of to direct-best-rule

To implement this rule, it is useful to create a list of two-item lists (i.e., a list of pairs) that we can call

pairs-strategy-payoff. In this list, there will be one pair for each strategy. The first item in each pair

will be the strategy number and the second item will be the payoff assigned to that strategy:

let pairs-strategy-payoff (map [
[s] -> list s (payoff-for-strategy s)

] strategy-numbers)

With this list in place, you can use primitive sort-by to select one of the pairs with the highest

payoff. Remember that ties should be resolved at random. Admittedly, implementing this procedure

is not easy, so if you manage to do it, you can certainly give yourself a pat on the back!

Implementation of procedure to direct-best-rule

to direct-best-rule
let pairs-strategy-payoff (map [

[s] -> list s (payoff-for-strategy s)
] strategy-numbers)

380 | Part V. Agent-based models vs ODE models

;; the following line ensures that ties
;; are resolved (uniformly) at random
set pairs-strategy-payoff shuffle pairs-strategy-payoff

let sorted-list sort-by [[l1 l2] -> last l1 > last l2]
pairs-strategy-payoff

set strategy-after-revision (first (first sorted-list))
end

Implementation of to direct-pairwise-difference-rule

To implement this rule, the code of procedure to imitative-pairwise-difference-rule and primitive

remove-item can be useful.

Implementation of procedure to direct-pairwise-difference-rule

to direct-pairwise-difference-rule
let candidate-strategy one-of (remove-item strategy strategy-numbers)

;; compute difference in payoffs
let payoff-diff ((payoff-for-strategy candidate-strategy) - payoff)

set strategy-after-revision ifelse-value
(random-float 1 < (payoff-diff / max-payoff-difference))

[candidate-strategy]
[strategy]

;; If your strategy is the better, payoff-diff is negative,
;; so you are going to stick with it.
;; If it's not, you switch with probability
;; (payoff-diff / max-payoff-difference)

end

Implementation of to direct-positive-proportional-m-rule

To implement this rule, it is useful to have a look at the code of procedure to direct-best-rule, load

the rnd extension, and use primitive rnd:weighted-one-of-list.

V-2. A rather general model for games played in well-mixed populations | 381

Implementation of procedure to direct-positive-proportional-m-rule

to direct-positive-proportional-m-rule
let pairs-strategy-payoff (map [

[s] -> list s ((payoff-for-strategy s) ^ m)
] strategy-numbers)

set strategy-after-revision first
rnd:weighted-one-of-list pairs-strategy-payoff [[p] -> last p]

end

To avoid errors when payoffs are negative, we will include procedure to check-payoffs-are-

non-negative, just like we did in chapter III-4 and chapter chapter IV-4.

to check-payoffs-are-non-negative
if min-of-payoff-matrix < 0 [

user-message (word
"Since you are using decision-rule =\n"
"imitative-positive-proportional-m,\n"
"all elements in the payoff matrix\n"
payoffs
"\nshould be non-negative numbers.")

]
end

An appropriate place to call this procedure would be at the end of procedure to setup-payoffs,

which would then be as follows:

to setup-payoffs
set payoff-matrix read-from-string payoffs
set n-of-strategies length payoff-matrix
set strategy-numbers range n-of-strategies

;; new lines below
set min-of-payoff-matrix min reduce sentence payoff-matrix
set max-of-payoff-matrix max reduce sentence payoff-matrix
set max-payoff-difference (max-of-payoff-matrix - min-of-payoff-matrix)

if decision-rule = "direct-positive-proportional-m"
[check-payoffs-are-non-negative]

end

382 | Part V. Agent-based models vs ODE models

5.4. Complete code of Extension II in the Code tab

Well done! We have now finished the second extension!

extensions [rnd]

globals [
payoff-matrix
n-of-strategies
n-of-players

strategy-numbers
strategy-frequencies
strategy-expected-payoffs

min-of-payoff-matrix ;; <= new global variable
max-of-payoff-matrix ;; <= new global variable
max-payoff-difference ;; <= new global variable

]

breed [players player]

players-own [
strategy
strategy-after-revision
payoff

]

;;;;;;;;;;;;;
;;; SETUP ;;;
;;;;;;;;;;;;;

to setup
clear-all
no-display
setup-payoffs
setup-players
setup-graph
reset-ticks
update-strategy-expected-payoffs
update-graph

end

to setup-payoffs
set payoff-matrix read-from-string payoffs
set n-of-strategies length payoff-matrix
set strategy-numbers range n-of-strategies

;; new lines below
set min-of-payoff-matrix min reduce sentence payoff-matrix
set max-of-payoff-matrix max reduce sentence payoff-matrix
set max-payoff-difference (max-of-payoff-matrix - min-of-payoff-matrix)

V-2. A rather general model for games played in well-mixed populations | 383

if decision-rule = "direct-positive-proportional-m"
[check-payoffs-are-non-negative]

end

to setup-players
let initial-distribution read-from-string n-of-players-for-each-strategy

if length initial-distribution != length payoff-matrix [
user-message (word "The number of items in\n"

"n-of-players-for-each-strategy (i.e. "
length initial-distribution "):\n"
n-of-players-for-each-strategy
"\nshould be equal to the number of rows\n"
"in the payoff matrix (i.e. "
length payoff-matrix "):\n"
payoffs

)
]

let i 0
foreach initial-distribution [j ->

create-players j [
set payoff 0
set strategy i
set strategy-after-revision strategy

]
set i (i + 1)

]

set n-of-players count players
end

to setup-graph
set-current-plot "Strategy Distribution"
foreach (range n-of-strategies) [i ->

create-temporary-plot-pen (word i)
set-plot-pen-mode 1
set-plot-pen-color 25 + 40 * i

]
end

;;;;;;;;;;
;;; GO ;;;
;;;;;;;;;;

to go
ask players [update-payoff]

ask players [
if (random-float 1 < prob-revision) [

update-strategy-after-revision
]

]

384 | Part V. Agent-based models vs ODE models

ask players [update-strategy]

tick
update-strategy-expected-payoffs
update-graph

end

;;;;;;;;;;;;;;;;;;;;;;
;;; UPDATE PAYOFFS ;;;
;;;;;;;;;;;;;;;;;;;;;;

to update-strategy-expected-payoffs
set strategy-frequencies map [n ->

count players with [strategy = n] / n-of-players
] strategy-numbers

set strategy-expected-payoffs map [list-of-payoffs ->
sum (map * list-of-payoffs strategy-frequencies)] payoff-matrix

end

to update-payoff
run payoff-to-use

end

to play-with-one-rd-agent
let mate one-of other players
set payoff item ([strategy] of mate) (item strategy payoff-matrix)

end

to use-strategy-expected-payoff
set payoff item strategy strategy-expected-payoffs

end

;;;;;;;;;;;;;;;;;;;;;;;;;
;;; UPDATE STRATEGIES ;;;
;;;;;;;;;;;;;;;;;;;;;;;;;

to update-strategy-after-revision
ifelse random-float 1 < noise

[set strategy-after-revision (random n-of-strategies)]
[run (word decision-rule "-rule")]

end

to update-strategy
set strategy strategy-after-revision

end

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; imitative decision rules ;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

to imitate-if-better-rule
let observed-player one-of other players

V-2. A rather general model for games played in well-mixed populations | 385

if ([payoff] of observed-player) > payoff [
set strategy-after-revision ([strategy] of observed-player)

]
end

to imitative-pairwise-difference-rule
let observed-player one-of other players

;; compute difference in payoffs
let payoff-diff ([payoff] of observed-player - payoff)

set strategy-after-revision ifelse-value
(random-float 1 < (payoff-diff / max-payoff-difference))

[[strategy] of observed-player]
[strategy]

;; If your strategy is the better, payoff-diff is negative,
;; so you are going to stick with it.
;; If it's not, you switch with probability
;; (payoff-diff / max-payoff-difference)

end

to imitative-linear-attraction-rule
let observed-player one-of players

set strategy-after-revision ifelse-value
(random-float 1 <

([payoff] of observed-player - min-of-payoff-matrix) /
(max-of-payoff-matrix - min-of-payoff-matrix))

[[strategy] of observed-player]
[strategy]

end

to imitative-linear-dissatisfaction-rule
let observed-player one-of players

set strategy-after-revision ifelse-value
(random-float 1 <

(max-of-payoff-matrix - payoff) /
(max-of-payoff-matrix - min-of-payoff-matrix))

[[strategy] of observed-player]
[strategy]

end

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; direct decision rules ;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

to-report payoff-for-strategy [s]
report ifelse-value payoff-to-use = "play-with-one-rd-agent"

[item ([strategy] of one-of other players) (item s payoff-matrix)]
[item s strategy-expected-payoffs]

end

386 | Part V. Agent-based models vs ODE models

to direct-best-rule
let pairs-strategy-payoff (map [

[s] -> list s (payoff-for-strategy s)
] strategy-numbers)

;; the following line ensures that ties
;; are resolved (uniformly) at random
set pairs-strategy-payoff shuffle pairs-strategy-payoff

let sorted-list sort-by [[l1 l2] -> last l1 > last l2]
pairs-strategy-payoff

set strategy-after-revision (first (first sorted-list))
end

to direct-pairwise-difference-rule
let candidate-strategy one-of (remove-item strategy strategy-numbers)

;; compute difference in payoffs
let payoff-diff ((payoff-for-strategy candidate-strategy) - payoff)

set strategy-after-revision ifelse-value
(random-float 1 < (payoff-diff / max-payoff-difference))

[candidate-strategy]
[strategy]

;; If your strategy is the better, payoff-diff is negative,
;; so you are going to stick with it.
;; If it's not, you switch with probability
;; (payoff-diff / max-payoff-difference)

end

to direct-positive-proportional-m-rule
let pairs-strategy-payoff (map [

[s] -> list s ((payoff-for-strategy s) ^ m)
] strategy-numbers)

set strategy-after-revision first
rnd:weighted-one-of-list pairs-strategy-payoff [[p] -> last p]

end

;;;;;;;;;;;;;;;;;;;;
;;; UPDATE GRAPH ;;;
;;;;;;;;;;;;;;;;;;;;

to update-graph
set-current-plot "Strategy Distribution"
let bar 1
foreach strategy-numbers [n ->

set-current-plot-pen (word n)
plotxy ticks bar
set bar (bar - (item n strategy-frequencies))

]
set-plot-y-range 0 1

V-2. A rather general model for games played in well-mixed populations | 387

end

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; SUPPORTING PROCEDURES ;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

to check-payoffs-are-non-negative
if min-of-payoff-matrix < 0 [

user-message (word
"Since you are using decision-rule =\n"
"imitative-positive-proportional-m,\n"
"all elements in the payoff matrix\n"
payoffs
"\nshould be non-negative numbers.")

]
end

6. Exercises

You can use the following link to download the complete NetLogo model: nxn-games-in-well-mixed-

populations.nlogo.

Exercise 1. Implement a decision rule that

you can call “imitate-the-best”. This is the imitate

the best neighbor rule adapted to well-mixed

populations. Under this rule, the revising agent

copies the strategy of the individual with the

greatest payoff. Resolve ties uniformly at

random.

Exercise 2. Implement a decision rule that you can call “imitative-positive-proportional-m“. This

is the imitative-positive-proportional-m rule implemented in chapter III-4, adapted to well-mixed

populations. Under this decision rule, the revising agent selects one individual at random, with

probabilities proportional to payoffs raised to parameter m, and copies her strategy. Please do not

allow for negative payoffs when using this rule.

Exercise 3. Implement a decision rule that you can call “imitative-logit-m“. Under this decision

rule, the revising agent selects one individual at random, with probabilities proportional to

(where denotes agent ‘s payoff), and copies her strategy.

Exercise 4. Implement a decision rule that you can call “Fermi-m“. This is the Fermi-m rule

388 | Part V. Agent-based models vs ODE models

implemented in chapter III-4, adapted to well-mixed populations. Under this rule, the revising agent

looks at another individual at random and copies her strategy with probability , where

denotes agent ‘s payoff and .

Exercise 5. Implement a decision rule that you can call “direct-logit-m”. Under this rule, the

revising agent selects one strategy at random, with probabilities proportional to (where

denotes strategy ‘s payoff), and adopts it.

Exercise 6. In this model, we run procedure to update-strategy-expected-payoffs at the end

of to go, as shown below:

to go
ask players [update-payoff]

ask players [
if (random-float 1 < prob-revision) [

update-strategy-after-revision
]

]
ask players [update-strategy]
tick

update-strategy-expected-payoffs ;; <= current position
update-graph

end

Since procedure to update-strategy-expected-payoffs updates the expected payoffs, and these are

used by agents in procedure to update-payoffs, it may seem more natural to run procedure to

update-strategy-expected-payoffs just before asking players to update their payoff, as shown below:

to go
update-strategy-expected-payoffs ;; <= new position
ask players [update-payoff]

ask players [
if (random-float 1 < prob-revision) [

update-strategy-after-revision
]

]
ask players [update-strategy]
tick

update-graph
end

What would change if we did this?

V-2. A rather general model for games played in well-mixed populations | 389

Hint

You may compare the two alternatives in a setting where agents play Rock-Paper-Scissors

(as in figure 2), payoff-to-use = “use-strategy-expected-payoff“, prob-revision = 1, noise = 0, and

decision-rule = “direct-best“.

390 | Part V. Agent-based models vs ODE models

V-3. Mean Dynamics

1. Introduction

Every dynamic that can be run with the NetLogo model we have implemented in the previous

chapter (nxn-games-in-well-mixed-populations.nlogo) can be usefully seen as a time-homogeneous

Markov chain on the space of possible strategy distributions. This means that the fraction of agents

that are using each strategy, i.e., the population state, contains all the information we need to

–probabilistically– predict the evolution of the agent-based dynamic as accurately as it is possible.

Let denote the fraction of agents using strategy . In games with strategies, population states

are elements of the simplex . More specifically,

if there are agents, population states are elements of the finite grid

.

A fully parameterized model defines a discrete-time Markov chain on state space , where

is the index for the ticks. Our goal in this chapter is to approximate the transient dynamics of this

(stochastic) process with its corresponding (deterministic) mean dynamic.

In the next section, we explain how to derive the mean dynamic in general, and in section 3 we

present the mean dynamic for every possible parameterization of NetLogo model nxn-games-in-

well-mixed-populations.nlogo. Then, in section 4 we show how we can numerically solve the mean

dynamic using the Euler method within NetLogo. In section 5, we present some representative

simulations together with their corresponding mean dynamics solved at runtime within NetLogo. In

this way, we will be able to appreciate how useful the mean dynamic can be. We conclude the chapter

(and the book) emphasizing how sensitive agent-based evolutionary dynamics can be to seemingly

unimportant details.

2. The mean dynamic

The mean dynamic (Benaïm & Weibull, 2003; Sandholm, 2010a, chapter 10; Roth & Sandholm,

2013) is a system of ODEs that provides a good deterministic approximation to the dynamics of the

stochastic evolutionary process

• over finite time spans,

• when the number of agents is sufficiently large, and

• when the revision probability is sufficiently low.

To derive the mean dynamic, we consider the behavior of the process over the next

time units, departing from population state . For convenience, we define one unit of clock time as

1/prob-revision ticks, i.e., the number of ticks over which every agent is expected to receive exactly

V-3. Mean Dynamics | 391

one revision opportunity.
1
Thus, over the time interval , the number of agents who are expected to

receive a revision opportunity is

Of the agents who revise their strategies over the time interval , are expected to be

-strategists. Let be the conditional probability that a reviser using strategy adopts strategy

(so denotes the probability that a reviser using strategy keeps using strategy after revision).

Using this notation, the expected number of -revisers who adopt strategy over the time interval

is Hence, the expected change in the number of agents that are using strategy

over the time interval equals:

• the number of revisers who adopt strategy , i.e. the inflow, which is ,

• minus the number of -revisers, i.e. the outflow, which is .

Therefore, the expected change in the fraction of agents using strategy , i.e. the expected change in

variable at population state , is:

Note that conditional probabilities may depend on . This does not represent a problem as

long as this dependency vanishes as gets large. In that case, to deal with that dependency, we take

the limit of as goes to infinity since, after all, the mean dynamic approximation is only valid

for large . Thus, defining

we arrive at the mean dynamic equation for strategy :

(1)

An equivalent formulation that is sometimes more convenient to use is the following:

(2)

The two formulations above only differ in how they treat -revisers who keep strategy . In the first

formulation (1), these agents are included both in the inflow and in the outflow, while in the second

formulation (2) they are excluded from both flows. In any case, it is clear that all we need to derive

the mean dynamic of a model is the conditional probabilities .

Finally, introducing noise in the mean dynamic is not difficult. If noise , i.e., if revisers choose

a random strategy with probability , and with probability they adopt strategies with

conditional probabilities , the first formulation of the general mean dynamic (1) would be:

1. This choice of time scale is convenient, but any other definition for one unit of clock time would also be fine.

392 | Part V. Agent-based models vs ODE models

And the second formulation would be adapted as follows:

3. Derivation of the mean dynamic for different
stochastic processes

In this section we derive the mean dynamic for every possible parameterization of the NetLogo

model we developed in the previous chapter (nxn-games-in-well-mixed-populations.nlogo). In

particular, we analyze every possible combination of values for parameters decision-rule and payoff-

to-use. For each combination of these two parameter values, we provide a formula for the mean

dynamic that is valid for any game (payoffs) and any initial condition (n-of-players-for-each-strategy).

The impact of noise can be easily taken into account as explained above. The mean dynamic will be a

good approximation for the transient dynamics of the corresponding agent-based model when prob-

revision is low and the population size is large.

3.1. Imitate if better
Description: The revising agent looks at another individual at random and imitates her strategy

if and only if the observed agent’s payoff is greater than the reviser’s payoff.

Let us consider the two possible values of parameter payoff-to-use.

payoff-to-use = “play-with-one-rd-agent“

The probability that a reviser is a -player with payoff is . The probability that the observed

agent is an -player with payoff is .

The probability that a -player with payoff observes an -player with payoff is .

Considering that the revising -player adopts the strategy of the -player if , the total

of -players who switch to strategy (adding for every) is

and the total of -strategists who switch to some other strategy is

The mean dynamic is then

V-3. Mean Dynamics | 393

This rule has been studied by Izquierdo and Izquierdo (2013) and Loginov (2021). Loginov (2021) calls

this rule “imitate-the-better-realization”.

payoff-to-use = “use-strategy-expected-payoff“

The probability that a reviser is a -player (whose payoff is) who observes an -player (whose

payoff is) is .

Considering that the revising -player adopts the strategy of the -player iff , the total

of -players who switch to strategy (adding for every) is

and the of -strategists who switch to some other strategy is

The mean dynamic is then

3.2. Imitative pairwise-difference
Description: The revising agent looks at another individual at random and considers imitating

her strategy only if her payoff is greater than the reviser’s payoff; in that case he switches with

probability proportional to the payoff difference. In order to turn the difference in payoffs into

a meaningful probability, we divide the payoff difference by the maximum possible payoff ()

minus the minimum possible payoff ().

payoff-to-use = “play-with-one-rd-agent“

The probability that a reviser is a -player with payoff is . The probability that the observed

agent is an -player with payoff is . The probability that a -player with payoff observes

an -player with payoff is .

394 | Part V. Agent-based models vs ODE models

Considering that the revising -player adopts the strategy of the -player with probability

the total of -players who switch to strategy (adding for every) is
2

and the of -strategists who switch to some other strategy is

The mean dynamic is then

This ODE is the replicator dynamics with a constant speed factor The orbits of the mean

dynamic do not change with the speed factor. However, if we are interested in the relationship

between the solution of the mean dynamic at a given time and the stochastic process after a

number of ticks, then the speed factor must be considered.

payoff-to-use = “use-strategy-expected-payoff“

The probability that a revising -player (with payoff) observes an -player (with payoff) is .

Considering that the revising -player adopts the strategy of the -player with probability ,

the total of -players who switch to strategy (adding for every) is

and the of -strategists who switch to some other strategy is

The mean dynamic is then

2. .

V-3. Mean Dynamics | 395

This ODE is the replicator dynamics with constant speed factor .

3.3. Imitative linear attraction
Description: The revising agent selects another individual at random and imitates her strategy

with probability equal to the difference between the observed individual’s payoff and the

minimum possible payoff (), divided by the maximum possible payoff () minus the minimum

possible payoff. (The revising agent’s payoff is ignored.)

payoff-to-use = “play-with-one-rd-agent“

The probability that a revising -player observes an -player with payoff is .

Considering that the revising -player adopts the strategy of the -player with probability , the

total of -players who switch to strategy (adding for every) is

and the of -strategists who switch to some other strategy is

The mean dynamic is then

This ODE is the replicator dynamics with constant speed factor .

payoff-to-use = “use-strategy-expected-payoff“

The probability that a revising -player observes an -player (whose payoff is) is .

396 | Part V. Agent-based models vs ODE models

Considering that the revising -player adopts the strategy of the -player with probability , the

total of -players who switch to strategy (adding for every) is

and the of -strategists who switch to some other strategy is

The mean dynamic is then

This ODE is the replicator dynamics with constant speed factor .

3.4. Imitative linear dissatisfaction
Description: The revising agent selects another agent at random and imitates her strategy with

probability equal to the difference between the maximum possible payoff () and his own

payoff, divided by the maximum possible payoff minus the minimum possible payoff (). (The

observed agent’s payoff is ignored.)

payoff-to-use = “play-with-one-rd-agent“

The probability that a revising -player with payoff observes an -player is .

Considering that the revising -player adopts the strategy of the -player with probability ,

the total of -players who switch to strategy (adding for every) is

and the of -strategists who switch to some other strategy is

The mean dynamic is then

V-3. Mean Dynamics | 397

Again, this ODE is the replicator dynamics with constant speed factor .

payoff-to-use = “use-strategy-expected-payoff“

The probability that a revising -player (whose payoff is) observes an -player is .

Considering that the revising -player adopts the strategy of the -player with probability , the

total of -players who switch to strategy (adding for every) is

and the of -strategists who switch to some other strategy is

The mean dynamic is then

Again, this ODE is the replicator dynamics with constant speed factor .

3.5. Direct best
Description: The revising agent selects the strategy with the greatest payoff. Ties are resolved

uniformly at random.

payoff-to-use = “play-with-one-rd-agent“

Under this process, a revising agents tests each of the possible strategies once (with each play

of each strategy being against a newly drawn opponent) and selects one of the strategies that

obtained the greatest experienced payoff in the test. Ties are resolved uniformly at random, with

equal probability for each of the maximum-payoff strategies.

Note that which strategy is selected depends on what strategy is sampled (i.e., which strategy is used

by the sampled co-player) when testing each of the strategies, and we will need some notation to

refer to the strategy of the agent that is sampled when testing strategy . Consider the following

notation:

• Sample list . Considering a sample of agents (one for each tested strategy), let a sample list

be a list whose -th component indicates the strategy of the agent that

was sampled when testing strategy . Let be the set of all such lists of strategies of length

398 | Part V. Agent-based models vs ODE models

. For instance, , with e.g. sample list (2,1) indicating

that when testing strategy 1 (first position) the sampled agent (co-player) played strategy 2

(element in first position), and when testing strategy 2 (second position) the sampled agent

played strategy 1 (element in position 2).

• : probability of obtaining sample list at state . This probability is

.

• Experienced payoff vector . This is the vector of experienced payoffs obtained by testing

each of the strategies, when the strategies of the sampled co-players are those in . The

-th component of this payoff vector, , is the payoff to an agent testing strategy whose

co-player uses strategy .

• Best experienced payoff indicator for strategy , . Given an experienced payoff vector

, this function returns the value 1 if strategy obtains the maximum payoff in , i.e., if

, and the value 0 otherwise.

With the previous notation, adding the probabilities of all the events that lead a revising agent to

choose strategy , we have

is given by the fraction of revisers that are -players, i.e., .

The mean dynamic is then

This is a best-experienced-payoff dynamic analyzed by Osborne and Rubinstein (1998), Sethi (2000,

2021) and Sandholm et al. (2019, 2020).

payoff-to-use = “use-strategy-expected-payoff“

Under this process, a revising agent adopts one of the strategies with the greatest expected payoff

in the population. This is a best-response dynamic. The greatest expected payoff obtained by (one or

several) strategies at state is . Let be the set of stategies that obtain

the greatest expected payoff at state and let be the cardinality of that set, i.e.,

the number of strategies that obtain the maximum expected payoff at state .

The probability that a reviser adopts strategy is then

V-3. Mean Dynamics | 399

is given by the fraction of revisers that are -players, i.e., . Thus,

the mean dynamic is

Gilboa and Matsui (1991), Hofbauer (1995b) and Kandori and Rob (1995) are pioneering references

on best-response dynamics.

3.6. Direct pairwise-difference
Description: The revising agent randomly selects another strategy, and considers adopting it

only if the payoff associated with the selected strategy is greater than the agent’s current

strategy’s payoff; in that case, he switches with probability proportional to the payoff

difference. In order to turn the difference in payoffs into a meaningful probability, we divide the

payoff difference by the maximum possible payoff minus the minimum possible payoff .

payoff-to-use = “play-with-one-rd-agent“

The probability that the revising agent is a -player with payoff and he selects candidate strategy

, with a payoff obtained for strategy , is .

Considering that the revising -player adopts the strategy of the -player with probability

the total of -players who switch to strategy (adding for every) is

and the of -strategists who switch to some other strategy is

The mean dynamic is then

payoff-to-use = “use-strategy-expected-payoff“

The probability that the revising agent is a -player (with payoff) and he selects candidate strategy

(with payoff) is .

400 | Part V. Agent-based models vs ODE models

Considering that the revising -player adopts the strategy of the -player with probability

the total of -players who switch to strategy (adding for every) is

and the of -strategists who switch to some other strategy is

The mean dynamic is then

This is the Smith dynamic (Smith, 1984; Sandholm, 2010b) with constant speed factor .

3.7. Direct positive proportional
Description: The revising agent selects one strategy at random, with probabilities proportional

to payoffs raised to parameter m, and adopts this strategy. Payoffs are assumed to be non-

negative.

payoff-to-use = “play-with-one-rd-agent“

Under this process, using the notation introduced for decision rule “direct-best“, the probability that

a reviser selects strategy is

is given by the fraction of revisers that are -players, i.e., .

The mean dynamic is then

payoff-to-use = “use-strategy-expected-payoff“

Under this process, the probability that a reviser selects strategy is

V-3. Mean Dynamics | 401

is given by the fraction of revisers that are -players, i.e., .

The mean dynamic is then

4. Running an agent-based model and solving its mean
dynamic at runtime

In this section, we explain the Euler method to solve ODEs and we show how to implement it

in NetLogo. For illustration purposes we use the 1-2 coordination game, which is the 2-player

2-strategy single-optimum coordination game that we introduced in chapter I-2 and analyzed in Part

IV. Its payoff matrix is shown in Figure 1 below:

Player 2

Player 2 chooses A Player 2 chooses B

Player 1
Player 1 chooses A 1 , 1 0 , 0

Player 1 chooses B 0 , 0 2 , 2

Figure 1. Payoffs for the 1-2 coordination game

4.1. The Euler method to numerically solve ODEs

Since there are only two strategies in the 1-2 coordination game, the mean dynamic can be expressed

using one single variable. Let denote the fraction of B-strategists.

To solve the mean dynamic, we use the Euler method, which is one of the simplest numerical

procedures for solving ODEs with an initial condition. Consider the ODE with initial

condition Our goal is to compute a series of values which will approximate

the solution trajectory that departs from initial value . Note that in this section

denotes a value in the series (not the fraction of -strategists).

We start by setting , i.e. the first point in our series is the initial condition. To compute

the following values we proceed recursively as follows:

where is a step size chosen by us.

Geometrically, note that can be interpreted as the slope of the tangent line to the solution

curve at . So basically, departing from , we are approximating the value of the solution

402 | Part V. Agent-based models vs ODE models

trajectory after time units using the tangent line at , which is the best linear approximation to

the curve at that point (see Figure 2 below).

Figure 2. Sketch of the Euler method

In this way, by using the Euler method, we are approximating the solution curve with initial value

by the series of line segments that connect the consecutive points . The

value is the approximation to the solution curve with initial value after time

units.

How should we choose the value of step size ? In general, the lower the value of , the better

the approximation. Here, since we are going to run a discrete-time simulation and solve its mean

dynamic at the same time, a natural candidate is to choose the time that corresponds to one tick

in the NetLogo model. And how long is that? Recall that, in section 2 above, we derived the mean

dynamic defining one unit of clock time as 1/prob-revision ticks. Therefore, one tick corresponds to

prob-revision time units, so we choose prob-revision.

4.2. Solving an ODE numerically within NetLogo

As an example, consider the agent-based dynamic with decision-rule = “direct-positive-proportional-

m“, m = 1, and payoff-to-use = “play-with-one-rd-agent“. The mean dynamic for this setting in the 1-2

coordination game (Fig. 1) is:

where is the number of B-strategists.

Therefore, using the Euler method we compute the value from as follows:

In NetLogo, we can define a global variable x and we can update its value every tick as follows:

V-3. Mean Dynamics | 403

(a) N = 10 (b) N = 100

(c) N = 1000 (d) N = 10000

set x x + prob-revision * x * (1 - x) / 6

For simplicity, here we have discussed a model where the mean dynamic has one single independent

variable, but the Euler method can be used (and implemented within NetLogo) with any number of

variables.
3

4.3. The influence of population size

Figure 3 below shows some representative simulations of the parameterization considered in the

previous section for different population sizes. The numerical solution of the mean dynamic

is shown as a black line in every plot. All these graphs have been created with

NetLogo model nxn-games-in-well-mixed-populations-md.nlogo, which numerically solves the mean

dynamic for any setting in the 1-2 coordination game, at runtime.

Figure 3. Representative simulation runs executed with NetLogo model
nxn-games-in-well-mixed-populations-md.nlogo, for different population sizes . The black line shows the

numerical solution of the mean dynamic, obtained using the Euler method. Settings are: decision-rule =
“direct-positive-proportional-m“, m = 1, payoff-to-use = “play-with-one-rd-agent“, noise = 0 and

prob-revision = 0.05. The game is the 1-2 coordination game. Initially, 70% of the agents are A-strategists
(orange) and 30% are B-strategists (green)

As you can see in Figure 3, the greater the population size , the better the mean dynamic

3. Izquierdo et al. (2014) use the Euler method to numerically solve a mean dynamic with 35 independent variables
within NetLogo.

404 | Part V. Agent-based models vs ODE models

approximates the stochastic dynamics of our agent-based model. As grows, the stochastic

fluctuations of the agent-based model (in strategy proportions) diminish, and simulations tend to get

closer and closer to the –deterministic– solution of the mean dynamic.

5. Representative simulations together with their
mean dynamics

In this section we explore the influence of parameters decision-rule and payoff-to-use in our model.

Table 1 below shows representative simulations for different values of these parameters in the 1-2

coordination game, including the numerical solution of the corresponding mean dynamic as a black

line. All these graphs can be replicated using NetLogo model nxn-games-in-well-mixed-populations-

md.nlogo. The equation displayed under each plot is the corresponding mean dynamic (where

denotes the fraction of B-strategists, which is shown in green in the plots).

decision-rule
payoff-to-use

play-with-one-rd-agent use-strategy-expected-payoff

Imitate if better

Imitative
pairwise-difference

Direct best

V-3. Mean Dynamics | 405

decision-rule
payoff-to-use

play-with-one-rd-agent use-strategy-expected-payoff

Direct
pairwise-difference

Direct positive
proportional
m = 1

Direct positive
proportional
m = 10

Table 1. Representative simulation runs executed with NetLogo model
nxn-games-in-well-mixed-populations-md.nlogo, for different decision rules and different ways of

computing payoffs. Initial conditions are [700 300], i.e. 700 A-strategists (in orange) and 300 B-strategist (in
green), prob-revision = 0.05 and there is no noise. The equation of the mean dynamic (where denotes the

fraction of B-strategists) is included under each plot. The black line shows the numerical solution of the
mean dynamic, obtained using the Euler method

The results shown in Table 1 allow us to draw a number of observations. The most obvious one is

that the mean dynamic provides a very good approximation for the dynamics of all parameterizations

shown in the table. The population size in all simulations shown in Table 1 is . The

approximation would become even better for greater population sizes (and would degrade for lower

population sizes).

Looking at Table 1, it is also clear that we can make the population go to one monomorphic state

or the other simply by changing the value of parameter decision-rule and, in some cases, the value

of payoff-to-use. These two parameters affect the dynamics in ways that do not seem easy to

understand without the help of the mean dynamic.

Finally, in terms of mean dynamics, note that only one of the rows in Table 1 corresponds to the

406 | Part V. Agent-based models vs ODE models

replicator dynamics (i.e., the row for decision-rule = “imitative-pairwise-difference“).
4

The other decision

rules in Table 1 have mean dynamics that are different from the replicator dynamics; and, in many

cases, these other dynamics lead to the opposite end of the state space. For this reason, it seems

clear that we should not make general statements about evolutionary dynamics if such statements

are based only on the behavior of the replicator dynamics (or any other particular model, for that

matter). There are many other evolutionary dynamics that lead to results completely different from

those obtained with the replicator dynamics.

To be clear, in our view, all the decision rules in Table 1 could be defended as sensible models of

evolution in the sense that, under all of them, agents preferentially switch to strategies that provide

greater payoffs. Nonetheless, they lead to completely different dynamics. It is true that the replicator

dynamics appears as the mean dynamic of many different agent-based models (see chapter V-1), but

it is also true that there are a myriad of other sensible models of evolution with properties completely

different from those of the replicator dynamics.

6. Details matter

In previous chapters of this book, we learned that evolutionary dynamics on grids (and, more

generally, on networks) can be significantly affected by small, seemingly unimportant details. In this

final chapter, we have seen that this sensitivity to apparently innocuous details can also be present in

the simpler setting of well-mixed populations. In general, evolutionary game dynamics in well-mixed

populations can also depend on factors that may seem insignificant at first sight. Because of this, if

we had to summarize this book in one sentence, this sentence could well be: “Details matter”

This sensitivity to small details suggests that a simple general theory on evolutionary game dynamics

cannot be derived. It also highlights the usefulness of the skills you have acquired with this book.

We hope that you have learned new ways to explore and tame the complexity and the beauty of

evolutionary game dynamics, using both computer simulation and mathematical analysis.

4. The replicator dynamics is also obtained if decision-rule = "imitative-linear-attraction" and if decision-rule =
"imitative-linear-dissatisfaction".

V-3. Mean Dynamics | 407

7. Exercises

Exercise 1. Derive the mean dynamic for a

decision rule that you can call “imitate-the-best”

using expected payoffs (Hofbauer, 1995a; Vega-

Redondo, 1997). Under this rule, the revising

agent copies the strategy of the individual with

the greatest expected payoff. Resolve ties

uniformly at random.

Exercise 2. Derive the mean dynamic for a

decision rule that you can call “imitative-positive-proportional” assuming agents obtain their payoff by

playing with one random agent, i.e., payoff-to-use = “play-with-one-rd-agent“. Under this decision rule,

the revising agent selects one individual at random, with probabilities proportional to payoffs, and

copies her strategy. Negative payoffs are not allowed when using this rule.

Exercise 3. Derive the mean dynamic for a decision rule that you can call “imitative-logit-m” using

expected payoffs (Weibull, 1995, example 4.5). Under this decision rule, the revising agent selects

one individual at random, with probabilities proportional to (where denotes agent ‘s

expected payoff), and copies her strategy.

Exercise 4. Derive the mean dynamic for a decision rule that you can call “Fermi-m“, assuming agents

obtain their payoff by playing with one random agent, i.e., payoff-to-use = “play-with-one-rd-agent”

(Woelfing and Traulsen, 2009). Under this rule, the revising agent looks at another individual at

random and copies her strategy with probability , where denotes agent ‘s payoff and

.

Exercise 5. Derive the mean dynamic for a decision rule that you can call “direct-logit-m” using

expected payoffs (Blume, 1997; Fudenberg and Levine, 1998; Hofbauer and Sandholm, 2007). Under

this rule, the revising agent selects one strategy at random, with probabilities proportional to

(where denotes strategy ‘s expected payoff), and adopts it.

Exercise 6. Derive the mean dynamic for a decision rule where the revising agent looks at a random

agent in the population and adopts her strategy.

408 | Part V. Agent-based models vs ODE models

APPENDICES

Agent-Based Evolutionary Game Dynamics | 409

A-1. Different implementations with the same
output

1. Introduction

In this appendix we will learn that there are different ways of implementing any particular model,

and we will discuss how to choose the most appropriate implementation for a given purpose. To

this end, we consider three different algorithms agents may use as a decision rule which lead to

the same (probabilistic) output, i.e., they lead to the same conditional probabilities that a reviser

using strategy switches to strategy . Therefore, these three algorithms lead to exactly the same

dynamics. Nonetheless, the three algorithms differ in efficiency, code readability, and on how realistic

the story behind them may sound.

2. Three possible stories behind the same behavior

In this section we present three different algorithms agents may use as a decision rule which lead to

the same conditional probabilities , where is the fraction of -strategists and is

the average payoff of -strategists.

2.1. Vose’s alias method

The following decision rule uses NetLogo primitive rnd:weighted-one-of, which returns one

agent selected stochastically. The probability of each agent being picked is proportional to her payoff.

Once the agent is selected, the reviser copies her strategy.

to Vose-alias-imitate-positive-proportional-rule
;; assumes that all payoffs are non-negative
let chosen-player rnd:weighted-one-of players [payoff]
set next-strategy [strategy] of chosen-player

end

Primitive rnd:weighted-one-of in NetLogo 6.4.0 uses Keith Schwarz’s (2011) implementation

of Vose’s (1991) alias method. This algorithm is very efficient (especially when several draws are

required), but we would find it hard to sell as an actual procedure that human agents may use to

select a strategy.

2.2. Roulette wheel

The following decision rule implements the so-called “roulette wheel selection algorithm” to select

one agent with probability proportional to payoffs. Let be the number of agents and let be

player ‘s payoff. The algorithm starts by assigning one line segment of length to each agent .

410 | Appendices

These segments are then placed consecutively to build a larger segment of length equal to the sum

of all players’ payoffs (Figure 1).

Figure 1. Sketch of the roulette wheel selection algorithm for a population of four agents

We then obtain a random number between 0 and (i.e. a random location in the big

segment), and we select the agent who owns that part of the big segment. Once the agent is selected,

the reviser copies her strategy.
1

The following decision rule is an inefficient but quite readable

implementation of this algorithm in NetLogo.

to roulette-wheel-imitate-positive-proportional-rule
;; assumes that all payoffs are non-negative

;; returns the strategy of one agent selected
;; with probability proportional to payoffs,
;; using an inneficient implementation of
;; the roulette wheel algorithm

let list-of-agents sort players
let list-of-payoffs map [a -> [payoff] of a] list-of-agents

if (sum list-of-payoffs = 0) [
;; applies when all players have payoff = 0
set list-of-payoffs n-values n-of-players [1]

]

let cumulative-payoffs [0]
foreach list-of-payoffs [p ->

set cumulative-payoffs lput (p + last cumulative-payoffs)
cumulative-payoffs

]
;; cumulative-payoffs is (n-of-players + 1) items long,
;; its first value is 0 and its last value is the sum of all payoffs.
;; You can also use reduce instead of foreach for a
;; more efficient but less readable implementation

let rd-number random-float (last cumulative-payoffs)
;; take a random number between 0 and
;; the sum of all payoffs

let index length filter [p -> rd-number >= p]
(butfirst cumulative-payoffs)

1. It is also possible to implement this algorithm using one segment for each strategy, rather than one segment for each
agent.

A-1. Different implementations with the same output | 411

;; see in which player's segment the random number is located.
;; The efficiency of this process can be greatly improved
;; by using e.g. binary search

let chosen-player (item index list-of-agents)
set next-strategy [strategy] of chosen-player

end

2.3. Repeated sampling

In this section we provide an implementation of an algorithm that Sandholm (2010a, example 5.4.5)

calls “repeated sampling”.
2

The algorithm works as follows:

1. The reviser sets a random aspiration level in the interval , where is

the maximum payoff in the population of agents.
3

2. The reviser selects one agent at random. Let denote this selected agent and let be her

payoff.

3. If , i.e., if the observed agent’s payoff is greater than or equal to the reviser’s aspiration,

then the reviser copies the observed agent’s strategy. Otherwise the reviser goes back to step

1.

Below you can find an implementation of this algorithm in Netlogo.

to repeated-sampling-imitate-positive-proportional-rule
;; assumes that all payoffs are non-negative
loop [

let my-random-aspiration random-float max-payoff
let one-at-random one-of players
if [payoff] of one-at-random >= my-random-aspiration [

set next-strategy [strategy] of one-at-random
stop

]
]

end

Note that, in contrast with the two previous algorithms, in this case the reviser will not generally use

the payoffs of every player. The algorithm does require that the reviser has access to all the payoffs

and, in the worst-case scenario, the algorithm will use them; but, in general, the reviser will most

likely use just a few of those payoffs.

2. See also Lipowski and Lipowska (2012).
3. can be any number greater than or equal to , but the algorithm runs fastest if . Thus,

there is no problem in using the maximum possible payoff that an agent can obtain, even if no agent has actually
obtained that payoff.

412 | Appendices

3. Which algorithm should we use?

The three decision rules above provide exactly the same conditional probabilities .

This means that if we only observed the actions of the agents, it would be impossible to tell which of

the three algorithms the agents are using. The three decision rules lead to exactly the same dynamics.

For this reason, we could say that they are:

• three different micro-foundations for the same model,

• three different decision rules that give the same output, or

• in the context of population games, three different implementations of the same revision

protocol (Sandholm, 2010a).

Personally, if we had to motivate the decision rule, we would probably use the story behind repeated

sampling. This decision rule seems the most natural of the three as a decision-making algorithm and,

in general, it requires less information than the other two.

If we wanted to prioritize code readability, we would choose NetLogo primitive rnd:weighted-
one-of, as we did in the implementation of procedure to imitative-positive-proportional-m-rule in

chapters III-4 and IV-4.

And finally, to run several simulations, knowing that the three decision rules lead to exactly the

same dynamics, we would choose the most efficient one. This would imply ruling out our naive

implementation of the “roulette wheel selection algorithm”. The relative efficiency of the other two

decision rules depends on various factors such as the number of agents, the distribution of payoffs,

and the number of times we want to execute the algorithm for a fixed distribution of payoffs.
4

In our

models, it turns out that repeated sampling is often the most efficient decision rule too. For details on

the efficiency and the intuition behind these three algorithms (and some others), see Keith Schwarz’s

(2011) excellent web page “Darts, Dice, and Coins: Sampling from a Discrete Distribution“.

4. For many draws, we should use NetLogo primitive rnd:weighted-n-of.

A-1. Different implementations with the same output | 413

A-2. Legend for code skeletons

This book includes many code skeletons that provide a schematic bird’s-eye view of the code. You

can find the first code skeleton in chapter II-1. The legend for all the code skeletons is shown in Figure

1 below.

Figure 1. Legend for code skeletons

In some skeletons, we use dashed rectangles to highlight certain parts of the code. In those cases:

• A green dashed rectangle indicates that the code has been added. See Figure 2 in chapter II-4.

• A red dashed rectangle indicates that the code has been removed. See Figure 3 in chapter II-4.

• A blue dashed rectangle indicates that the code has been modified. See Figure 4 in chapter II-4.

414 | Appendices

A-3. Models implemented in this book

In Part I. Introduction

I-3. Introduction to agent-based modeling
• schelling-sakoda.nlogo

I-5. The fundamentals of NetLogo
• schelling-sakoda-simple.nlogo

In Part II. Our first agent-based evolutionary model

II-1. Our very first model
• 2×2-imitate-if-better.nlogo

II-2. Extension to any number of strategies
• nxn-imitate-if-better.nlogo

II-3. Noise and initial conditions
• nxn-imitate-if-better-noise.nlogo

II-4. Interactivity and efficiency
• nxn-imitate-if-better-noise-interactive-profiler.nlogo

• nxn-imitate-if-better-noise-efficient-but-more-than-once-profiler.nlogo

• nxn-imitate-if-better-noise-efficient-played-profiler.nlogo

• nxn-imitate-if-better-noise-efficient-tick-I-played-last-profiler.nlogo

• nxn-imitate-if-better-noise-efficient-tick-I-played-last-and-other-players-profiler.nlogo

• nxn-imitate-if-better-noise-efficient.nlogo (after exercise 5)

In Part III. Spatial interactions on a grid

III-1. Spatial chaos in the Prisoner’s Dilemma
• 2×2-imitate-best-nbr.nlogo

III-2. Robustness and fragility
• 2×2-imitate-best-nbr-extended.nlogo

A-3. Models implemented in this book | 415

III-3. Extension to any number of strategies
• nxn-imitate-best-nbr.nlogo

III-4. Other types of neighborhoods and other decision rules
• nxn-imitate-best-nbr-extended.nlogo

In Part IV. Games on networks

IV-1. The nxn game on a random network
• nxn-imitate-if-better-rd-nw.nlogo

IV-2. Different types of network
• nxn-imitate-if-better-networks.nlogo

IV-3. Implementing network metrics
• nxn-imitate-if-better-networks-metrics.nlogo

IV-4. Other ways of computing payoffs and other decision rules
• nxn-games-on-networks.nlogo

In Part V. Agent-based models vs ODE models

V-2. A rather general model for games played in well-mixed
populations

• nxn-imitate-if-better-noise-payoff-to-use.nlogo

• nxn-games-in-well-mixed-populations.nlogo

V-3. Mean Dynamics
• nxn-games-in-well-mixed-populations-md.nlogo

416 | Appendices

References

Abar, S., Theodoropoulos, G. K., Lemarinier, P., and O’Hare, G. M. (2017). Agent based modelling and simulation

tools: A review of the state-of-art software. Computer Science Review, 24 (Supplement C):13–33.

https://doi.org/10.1016/j.cosrev.2017.03.001

Adami, C., Schossau, J., and Hintze, A. (2016). Evolutionary game theory using agent-based methods. Physics of

Life Reviews, 19:1–26. https://doi.org/10.1016/j.plrev.2016.08.015

Alexander, J. M. (2023). Evolutionary Game Theory. Elements in Decision Theory and Philosophy. Cambridge

University Press. https://doi.org/10.1017/9781108582063

Antonioni, A. and Tomassini, M. (2012). Cooperation on social networks and its robustness. Advances in Complex

Systems, 15(supp01):1250046. https://doi.org/10.1142/S0219525912500464

Aydinonat, N. E. (2007). Models, conjectures and exploration: an analysis of Schelling’s checkerboard model

of residential segregation. Journal of Economic Methodology, 14(4):429–454. https://doi.org/10.1080/

13501780701718680

Bakshy, E. and Wilensky, U. (2007). NetLogo-Mathematica link. Software. Center for Connected Learning and

Computer-Based Modeling, Northwestern University, Evanston, IL. http://ccl.northwestern.edu/netlogo/

mathematica.html

Barabási, A.-L. and Albert, R. (1999). Emergence of scaling in random networks. Science,

286(5439):509–512. https://doi.org/10.1126/science.286.5439.509

Benaïm, M. and Weibull, J.W. (2003). Deterministic approximation of stochastic evolution in games.

Econometrica, 71:873–903. https://doi.org/10.1111/1468-0262.00429

Berto, F. and Tagliabue, J. (2023). Cellular Automata. In Zalta, E. N. and Nodelman, U., editors, The Stanford

Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University, Winter 2023 edition.

https://plato.stanford.edu/archives/win2023/entries/cellular-automata/

Bhattacharjee, K., Naskar, N., Roy, S., and Das, S. (2020). A survey of cellular automata: types, dynamics,

non-uniformity and applications. Natural Computing, 19(2):433–461. https://doi.org/10.1007/

s11047-018-9696-8

Biggs, M. B. and Papin, J. A. (2013). Novel multiscale modeling tool applied to pseudomonas aeruginosa biofilm

formation. PLOS ONE, 8(10). https://doi.org/10.1371/journal.pone.0078011

Binmore, K. (2007). Playing for Real: A Text on Game Theory. Oxford University Press.

Binmore, K. (2011). Rational Decisions. Princeton University Press.

Binmore, K. (2013). Sexual drift. Biological Theory, 8(2):201–208. https://doi.org/10.1007/s13752-013-0103-5

Agent-Based Evolutionary Game Dynamics | 417

Binmore, K. and Samuelson, L. (1994). An economist’s perspective on the evolution of norms. Journal of

Institutional and Theoretical Economics, 150(1):45–63. http://www.jstor.org/stable/40753015

Binmore, K., Samuelson, L., and Vaughan, R. (1995). Musical chairs: Modeling noisy evolution. Games and

Economic Behavior, 11:1–35. Erratum, 21 (1997), 325. https://doi.org/10.1006/game.1995.1039

Binmore, K. and Shaked, A. (2010). Experimental economics: Where next?. Journal of Economic Behavior and

Organization, 73(1):87–100. https://doi.org/10.1016/j.jebo.2008.10.019

Björnerstedt, J. and Weibull, J.W. (1996). Nash equilibrium and evolution by imitation. In Arrow, K. J. et al.,

editors, The Rational Foundations of Economic Behavior, pages 155–181. St. Martin’s Press, New York.

Blume, L. E. (1997). Population games. In Arthur, W. B., Durlauf, S. N., and Lane, D. A., editors, The Economy

as an Evolving Complex System II, pages 425–460. Addison-Wesley, Reading, MA. https://doi.org/10.1201/

9780429496639

Boyd, R. and Richerson, P. J. (1985). Culture and the Evolutionary Process. University of Chicago Press.

Chung, K. L. (1960). Markov Chains with Stationary Transition Probabilities. Springer

Berlin Heidelberg. http://dx.doi.org/10.1007/978-3-642-49686-8

Colman, A. M. (1995). Game Theory and its Applications in the Social and Biological Sciences. Routledge, 2nd

edition.

Cook, M. (2004). Universality in elementary cellular automata. Complex Systems, 15(1):1–40.

https://www.complex-systems.com/abstracts/v15_i01_a01/

Cornforth, D., Green, D. G., and Newth, D. (2005). Ordered asynchronous processes in multi-agent systems.

Physica D: Nonlinear Phenomena, 204(1):70–82. https://doi.org/10.1016/j.physd.2005.04.005

Darwin, C. R. (1859). On the origin of species by means of natural selection, or the preservation of favoured races in

the struggle for life. John Murray, London.

Dawes, R. M. (1980). Social dilemmas. Annual Review of Psychology, 31(1):169–193. https://doi.org/10.1146/

annurev.ps.31.020180.001125

Dixit, A. K. and Nalebuff, B. J. (2008). The Art of Strategy: A Game Theorist’s Guide to Success in Business and Life.

W. W. Norton & Company.

Edmonds, B. (2001). The use of models – making MABS more informative. In Moss, S. and Davidsson, P.,

editors, Multi-Agent-Based Simulation: Second International Workshop, MABS 2000 Boston, MA, USA, 15–32.

Springer Berlin Heidelberg. https://doi.org/10.1007/3-540-44561-7_2

Edmonds, B. and Hales, D. (2005). Computational simulation as theoretical experiment. The Journal of

Mathematical Sociology, 29(3):209–232. https://doi.org/10.1080/00222500590921283

Ellison, G. (2000). Basins of attraction, long run equilibria, and the speed of step-by-step evolution. Review of

Economic Studies, 67:17–45. https://doi.org/10.1111/1467-937X.00119

418 | Luis R. Izquierdo, Segismundo S. Izquierdo & William H. Sandholm

Epstein, J. M. and Axtell, R. (1996). Growing Artificial Societies. Brookings Institution Press/MIT Press,

Washington/Cambridge.

Erdös, P. and Rényi, A. (1959). On random graphs I. Publicationes Mathematicae, 6(3–4):290–297. https://doi.org/

10.5486%2FPMD.1959.6.3-4.12

Foster, D. P. and Young, H. P. (1990). Stochastic evolutionary game dynamics. Theoretical Population Biology,

38:219–232. Corrigendum, 51 (1997), 77-78. https://doi.org/10.1016/0040-5809(90)90011-J

Fu, F., Nowak, M. A., and Hauert, C. (2010). Invasion and expansion of cooperators in lattice populations:

Prisoner’s dilemma vs. snowdrift games. Journal of Theoretical Biology, 266(3):358–366. https://doi.org/

10.1016/j.jtbi.2010.06.042

Fudenberg, D. and Imhof, L. A. (2008). Monotone imitation dynamics in large populations. Journal of Economic

Theory, 140:229–245. https://doi.org/10.1016/j.jet.2007.08.002

Fudenberg, D. and Levine, D. K. (1998). The Theory of Learning in Games. MIT Press, Cambridge.

Fudenberg, D. and Tirole, J. (1991). Game Theory. MIT Press, Cambridge.

Galán, J. M., Izquierdo, L. R., Izquierdo, S. S., Santos, J. I., del Olmo, R., López-Paredes,A., and Edmonds, B. (2009).

Errors and artefacts in agent-based modelling. Journal of Artificial Societies and Social Simulation, 12(1):1.

https://www.jasss.org/12/1/1.html

García, J. and van Veelen, M. (2016). In and out of equilibrium I: Evolution of strategies in repeated games with

discounting. Journal of Economic Theory, 161:161–189. http://dx.doi.org/10.1016/j.jet.2015.11.007

García, J. and van Veelen, M. (2018). No strategy can win in the repeated prisoner’s dilemma: Linking game

theory and computer simulations. Frontiers in Robotics and AI, 5:102. https://doi.org/10.3389/

frobt.2018.00102

Gilbert, N. (2007). Agent-Based Models, volume 153 of Quantitative Applications in the Social Sciences. Sage

Publications, London.

Gilbert, N. and Terna, P. (2000). How to build and use agent-based models in social science. Mind & Society,

1(1):57–72. https://doi.org/10.1007/BF02512229

Gilboa, I. and Matsui, A. (1991). Social stability and equilibrium. Econometrica, 59:859–867. https://doi.org/

10.2307/2938230

Gintis, H. (2009). Game Theory Evolving Game Theory Evolving: A Problem-Centered Introduction to Modeling

Strategic Interaction. Princeton University Press, 2nd edition.

Gintis, H. (2013). Markov models of social dynamics: Theory and applications. ACM Trans. Intell. Syst. Technol.,

4(3), Article 53. http://dx.doi.org/10.1145/2483669.2483686

Gintis, H. (2014). The Bounds of Reason: Game Theory and the Unification of the Behavioral Sciences. Princeton

University Press, revised edition.

Agent-Based Evolutionary Game Dynamics | 419

Gómez-Gardeñes, J., Campillo, M., Floría, L. M., and Moreno, Y. (2007). Dynamical organization of cooperation

in complex topologies. Phys. Rev. Lett., 98:108103. http://dx.doi.org/10.1103/PhysRevLett.98.108103

Gotts, N., Polhill, J., and Law, A. (2003). Agent-based simulation in the study of social dilemmas. Artificial

Intelligence Review, 19(1):3–92. https://doi.org/10.1023/A:1022120928602

Hamill, L. and Gilbert, N. (2016). Agent-based Modelling in Economics. John Wiley & Sons, Ltd. http://dx.doi.org/

10.1002/9781118945520

Hamilton, W. D. (1967). Extraordinary sex ratios. Science, 156:477–488. http://dx.doi.org/10.1126/

science.156.3774.477

Harsanyi, J. C. (1967). Games with Incomplete Information Played by “Bayesian” Players. Part I. The Basic Model.

Management Science, 14(3):159–182. https://doi.org/10.1287/mnsc.14.3.159

Harsanyi, J. C. (1968a). Games with Incomplete Information Played by “Bayesian” Players. Part II. Bayesian

Equilibrium Points. Management Science, 14(5):320-334. https://doi.org/10.1287/mnsc.14.5.320

Harsanyi, J. C. (1968b). Games with Incomplete Information Played by “Bayesian” Players. Part III. The Basic

Probability Distribution of the Game. Management Science, 14(7):486-502. https://doi.org/10.1287/

mnsc.14.7.486

Hauert, C. (2002). Effects of space in 2×2 games. International Journal of Bifurcation and Chaos,

12(07):1531–1548. https://doi.org/10.1142/S0218127402005273

Hauert, C. (2006). Spatial effects in social dilemmas. Journal of Theoretical Biology, 240(4):627–636.

https://doi.org/10.1016/j.jtbi.2005.10.024

Hauert, C. (2018). EvoLudo: Interactive tutorials in evolutionary games. https://wiki.evoludo.org/

Hauert, C. and Doebeli, M. (2004). Spatial structure often inhibits the evolution of cooperation in the snowdrift

game. Nature, 428:643–646. http://dx.doi.org/10.1038/nature02360

Hauert, C. and Miȩkisz, J. (2018). Effects of sampling interaction partners and competitors in evolutionary

games. Phys. Rev. E, 98:052301. https://doi.org/10.1103/PhysRevE.98.052301

Hauert, C. and Szabó, G. (2005). Game theory and physics. American Journal of Physics, 73(5):405–414.

https://doi.org/10.1119/1.1848514

Head, B. (2018). NetLogo Python extension. Software. https://github.com/NetLogo/Python-Extension.

Hegselmann, R. (2017). Thomas C. Schelling and James M. Sakoda: The intellectual, technical, and social history

of a model. Journal of Artificial Societies and Social Simulation, 20(3):15. https://doi.org/10.18564/jasss.3511

Helbing, D. (1992). A mathematical model for behavioral changes by pair interactions. In Haag, G., Mueller, U.,

and Troitzsch, K. G., editors, Economic Evolution and Demographic Change: Formal Models in Social Sciences,

pages 330–348. Springer, Berlin. https://doi.org/10.1007/978-3-642-48808-5_18

Hilbe, C. and Traulsen, A. (2016). Only the combination of mathematics and agent-based simulations can

leverage the full potential of evolutionary modeling: Comment on “evolutionary game theory using agent-

420 | Luis R. Izquierdo, Segismundo S. Izquierdo & William H. Sandholm

based methods” by C. Adami, J. Schossau and A. Hintze. Physics of Life Reviews, 19:29–31. https://doi.org/

10.1016/j.plrev.2016.10.004

Hindersin, L., Wu, B., Traulsen, A., and García, J. (2019). Computation and simulation of evolutionary game

dynamics in finite populations. Scientific Reports, 9(1):6946. https://doi.org/10.1038/s41598-019-43102-z

Hofbauer, J. (1995a). Imitation dynamics for games. Unpublished manuscript, University of Vienna.

Hofbauer, J. (1995b). Stability for the best response dynamics. Unpublished manuscript, University of Vienna.

Hofbauer, J. and Sandholm, W. H. (2007). Evolution in games with randomly disturbed payoffs. Journal of

Economic Theory, 132:47–69. https://doi.org/10.1016/j.jet.2005.05.011

Hofbauer, J. and Sigmund, K. (1998). Evolutionary Games and Population Dynamics. Cambridge University Press,

Cambridge. https://doi.org/10.1017/CBO9781139173179

Hofbauer, J. and Sigmund, K. (2003). Evolutionary game dynamics. Bulletin of the American Mathematical Society,

40(4):479–519. http://dx.doi.org/10.1090/S0273-0979-03-00988-1

Holt, C. A. and Roth, A. E. (2004). The Nash equilibrium: A perspective. Proceedings of the National Academy of

Sciences, 101(12):3999–4002. http://dx.doi.org/10.1073/pnas.0308738101

Huberman, B. A. and Glance, N. S. (1993). Evolutionary games and computer simulations. Proceedings of the

National Academy of Sciences, 90:7716–7718. https://doi.org/10.1073/pnas.90.16.7716

Isaac, A. G. (2008). Simulating evolutionary games: a python-based introduction. Journal of Artificial Societies and

Social Simulation, 11(3):8. http://jasss.soc.surrey.ac.uk/11/3/8.html

Izquierdo, L. R., Izquierdo, S. S., Galán, J. M., and Santos, J. I. (2009). Techniques to understand computer

simulations: Markov chain analysis. Journal of Artificial Societies and Social Simulation,

12(1):6. http://jasss.soc.surrey.ac.uk/12/1/6.html

Izquierdo, L. R., Izquierdo, S. S., Galán, J. M., and Santos, J. I. (2013). Combining mathematical and simulation

approaches to understand the dynamics of computer models. In Edmonds, B. and Meyer, R., editors,

Simulating Social Complexity: A Handbook, chapter 11, pages 235–271. Springer Berlin

Heidelberg. http://doi.org/10.1007/978-3-540-93813-2_11. Second edition (2017) available at:

https://doi.org/10.1007/978-3-319-66948-9_13

Izquierdo, L. R., Izquierdo, S. S., Galán, J. M., Santos, J. I., and Sandholm, W. H. (2022). Schelling-Sakoda model

of spatial segregation. Software available at https://luis-r-izquierdo.github.io/schelling-sakoda-refuting-

machine/. https://doi.org/10.5281/zenodo.7065864

Izquierdo, L. R., Izquierdo, S. S., and Hauert, C. (2024). Pair approximation for 2×2 symmetric games on regular

networks. Software available at https://github.com/luis-r-izquierdo/pair-approximation. https://doi.org/

10.5281/zenodo.10975163

Izquierdo, L. R., Izquierdo, S. S., and Rodríguez, J. (2022). Fast and scalable global convergence in single-optimum

decentralized coordination problems. IEEE Transactions on Control of Network Systems, 9(4):1937–1948.

https://doi.org/10.1109/TCNS.2022.3181545

Agent-Based Evolutionary Game Dynamics | 421

Izquierdo, L. R., Izquierdo, S. S., and Sandholm, W. H. (2019). An introduction to ABED: Agent-based simulation

of evolutionary game dynamics. Games and Economic Behavior, 118:434–462. https://doi.org/10.1016/

j.geb.2019.09.014

Izquierdo, L. R., Izquierdo, S. S., and Vega-Redondo, F. (2012). Learning and evolutionary game theory. In

Seel, N. M., editor, Encyclopedia of the Sciences of Learning, pages 1782–1788. Springer US, Boston,

MA. https://doi.org/10.1007/978-1-4419-1428-6_576

Izquierdo, L. R., Izquierdo, S. S., and Vega-Redondo, F. (2014). Leave and let leave: A sufficient condition to

explain the evolutionary emergence of cooperation. Journal of Economic Dynamics and Control, 46:91–113.

https://doi.org/10.1016/j.jedc.2014.06.007

Izquierdo, L. R. and Polhill, J. G. (2006). Is your model susceptible to floating-point errors? Journal of Artificial

Societies and Social Simulation, 9(4):4. http://jasss.soc.surrey.ac.uk/9/4/4.html

Izquierdo, S. S. and Izquierdo, L. R. (2013). Stochastic approximation to understand simple simulation models.

Journal of Statistical Physics, 151(1):254–276. http://dx.doi.org/10.1007/s10955-012-0654-z

Janssen, M.A. (2020). Introduction to Agent-Based Modeling: With applications to social, ecological and social-

ecological systems. https://intro2abm.com

Janssen, J. and Manca, R. (2006). Applied semi-markov processes. Springer-Verlag, New York. http://dx.doi.org/

10.1007/0-387-29548-8

Jaxa-Rozen, M. and Kwakkel, J. H. (2018). PyNetlogo: Linking NetLogo with Python. Journal of Artificial Societies

and Social Simulation, 21(2):4. https://dx.doi.org/10.18564/jasss.3668

Kandori, M. and Rob, R. (1995). Evolution of equilibria in the long run: A general theory and applications. Journal

of Economic Theory, 65:383–414. https://doi.org/10.1006/jeth.1995.1014

Karr, A. F. (1990). Markov processes. In Heyman, D. P. and Sobel, M. J. (eds.), Stochastic Models, volume

2 of Handbooks in Operations Research and Management Science, chapter 2, pages 95–123.

Elsevier. https://doi.org/10.1016/S0927-0507(05)80166-5

Killingback, T. and Doebeli, M. (1996). Spatial evolutionary game theory: Hawks and doves revisited. Proceedings

of the Royal Society of London. Series B: Biological Sciences, 263(1374):1135–1144. https://doi.org/10.1098/

rspb.1996.0166

Kosfeld, M., Droste, E., and Voorneveld, M. (2002). A myopic adjustment process leading to best reply matching.

Journal of Economic Theory, 40:270–298. https://doi.org/10.1016/S0899-8256(02)00007-6

Kravari, K. and Bassiliades, N. (2015). A survey of agent platforms. Journal of Artificial Societies and Social

Simulation, 18(1):11. https://doi.org/10.18564/jasss.2661

Kulkarni, V. G. (1995). Modeling and Analysis of Stochastic Systems. Chapman & Hall, Ltd., London, UK.

Kulkarni, V. G. (1999). Modeling, Analysis, Design, and Control of Stochastic Systems. Springer New York,

NY. https://doi.org/10.1007/978-1-4757-3098-2

Lahkar, R. and Sandholm, W. H. (2008). The projection dynamic and the geometry of population games. Games

422 | Luis R. Izquierdo, Segismundo S. Izquierdo & William H. Sandholm

and Economic Behavior, 64(2):565–590. Special Issue in Honor of Michael B. Maschler. https://doi.org/

10.1016/j.geb.2008.02.002

Lipowski, A. and Lipowska, D. (2012). Roulette-wheel selection via stochastic acceptance. Physica A: Statistical

Mechanics and its Applications, 391(6):2193–2196. https://doi.org/10.1016/j.physa.2011.12.004

Loginov, G. (2022). Ordinal Imitative Dynamics. International Journal of Game Theory, 51:391–412.

https://doi.org/10.1007/s00182-021-00797-7

Lytinen, S. L. and Railsback, S. F. (2012). The evolution of agent-based simulation platforms: A review of NetLogo

5.0 and ReLogo. In Proceedings of the fourth international symposium on agent-based modeling and simulation

(21st European Meeting on Cybernetics and Systems Research).

Maciejewski,W., Fu, F., and Hauert, C. (2014). Evolutionary game dynamics in populations with heterogenous

structures. PLOS Computational Biology, 10(4):1–16. https://doi.org/10.1371/journal.pcbi.1003567

Marden, J. R. and Shamma, J. S. (2015). Game theory and distributed control. In Young, H.P. and Zamir, S., editors,

Handbook of Game Theory with Economic Applications, volume 4, chapter 16, pages 861–899. Elsevier,

Amsterdam. https://doi.org/10.1016/B978-0-444-53766-9.00016-1

Masuda, N. (2007). Participation costs dismiss the advantage of heterogeneous networks in evolution of

cooperation. Proceedings of the Royal Society B: Biological Sciences, 274(1620):1815–1821. https://doi.org/

10.1098/rspb.2007.0294

Maynard Smith, J. (1982). Evolution and the Theory of Games. Cambridge University Press, Cambridge.

Maynard Smith, J. and Price, G. R. (1973). The logic of animal conflict. Nature, 246:15–18. https://doi.org/

10.1038/246015a0

Mitchell, M. (1998). Computation in cellular automata: A selected review. In Gramß, T., Bornholdt, S., Groß,

M., Mitchell, M., and Pellizzari, T., editors, Non-Standard Computation: Molecular Computation – Cellular

Automata – Evolutionary Algorithms – Quantum Computers, chapter 4, pages 95–140. John Wiley & Sons, Ltd.

https://doi.org/10.1002/3527602968.ch4

Morita, S. (2008). Extended Pair Approximation of Evolutionary Game on Complex Networks. Progress of

Theoretical Physics, 119(1):29–38. https://doi.org/10.1143/PTP.119.29

Mukherji, A., Rajan, V., and Slagle, J. R. (1996). Robustness of cooperation. Nature, 379(6561):125–126.

https://dx.doi.org/10.1038/379125b0

Myerson, R. B. (1997). Game theory: Analysis of Conflict. Harvard University Press.

Nakamaru, M., Matsuda, H., and Iwasa, Y. (1997). The evolution of cooperation in a lattice-structured population.

Journal of Theoretical Biology, 184(1):65–81. https://doi.org/10.1006/jtbi.1996.0243

Nash, J. F. (1950). Equilibrium points in n-person games. Proceedings of the National Academy of Sciences,

36:48–49. https://doi.org/10.1073/pnas.36.1.48

Nelson, R. R. and Winter, S. G. (1982). An Evolutionary Theory of Economic Change. Harvard University Press.

Agent-Based Evolutionary Game Dynamics | 423

Newth, D. and Cornforth, D. (2009). Asynchronous spatial evolutionary games. Biosystems, 95(2):120–129.

https://doi.org/10.1016/j.biosystems.2008.09.003

Newton, J. (2018). Evolutionary game theory: A renaissance. Games, 9(2), 31. https://doi.org/10.3390/g9020031

Nikolai, C. and Madey, G. (2009). Tools of the trade: A survey of various agent based modeling platforms. Journal

of Artificial Societies and Social Simulation, 12(2):2. http://jasss.soc.surrey.ac.uk/12/2/2.html

Norris, J. R. (1997). Markov Chains. Cambridge University Press, Cambridge. https://doi.org/10.1017/

CBO9780511810633

Nowak, M. A., Bonhoeffer, S., and May, R. M. (1994a). More spatial games. International Journal of Bifurcation and

Chaos, 4:33–56. https://doi.org/10.1142/S0218127494000046

Nowak, M. A., Bonhoeffer, S., and May, R. M. (1994b). Spatial games and the maintenance of cooperation.

Proceedings of the National Academy of Sciences, 91:4877–4881. https://doi.org/10.1073/pnas.91.11.4877

Nowak, M. A., Bonhoeffer, S., and May, R. M. (1996). Robustness of cooperation. Nature, 379(6561):126–126.

https://doi.org/10.1038/379126a0

Nowak, M. A. and May, R. M. (1992). Evolutionary games and spatial chaos. Nature, 359:826–829.

http://dx.doi.org/10.1038/359826a0

Nowak, M. A. and May, R. M. (1993). The spatial dilemmas of evolution. International Journal of Bifurcation and

Chaos, 3:35–78. https://doi.org/10.1142/S0218127493000040

Ohtsuki, H., Nowak, M. A., and Pacheco, J. M. (2007a). Breaking the symmetry between interaction and

replacement in evolutionary dynamics on graphs. Phys. Rev. Lett., 98:108106. https://doi.org/10.1103/

PhysRevLett.98.108106

Ohtsuki, H., Pacheco, J. M., and Nowak, M. A. (2007b). Evolutionary graph theory: Breaking the symmetry

between interaction and replacement. Journal of Theoretical Biology, 246(4):681–694. https://doi.org/

10.1016/j.jtbi.2007.01.024

Osborne, M. (2004). An Introduction to Game Theory. Oxford University Press, Oxford.

Osborne, M. J. and Rubinstein, A. (1998). Games with procedurally rational players. American Economic Review,

88:834–847. https://www.jstor.org/stable/117008

Oyama, D., Sandholm, W. H., and Tercieux, O. (2015). Sampling best response dynamics and deterministic

equilibrium selection. Theoretical Economics, 10:243–281. https://doi.org/10.3982/TE1405

Perc, M. and Szolnoki, A. (2010). Coevolutionary games—a mini review. Biosystems, 99(2):109–125.

https://doi.org/10.1016/j.biosystems.2009.10.003

Polhill, J. G., Izquierdo, L. R., and Gotts, N. M. (2006). What every agent-based modeller should know about

floating point arithmetic. Environmental Modelling & Software, 21(3):283–309. https://doi.org/10.1016/

j.envsoft.2004.10.011

Poncela, J., Gómez-Gardeñes, J., Floría, L. M., and Moreno, Y. (2007). Robustness of cooperation in the

424 | Luis R. Izquierdo, Segismundo S. Izquierdo & William H. Sandholm

evolutionary prisoner’s dilemma on complex networks. New Journal of Physics, 9(6):184. https://doi.org/

10.1088/1367-2630/9/6/184

Probst, D. (1999). Book review of “Evolutionary Game Theory” by Jörgen W. Weibull. Journal of Artificial Societies

and Social Simulation, 2(1). http://jasss.soc.surrey.ac.uk/2/1/review3.html

Python Software Foundation (2019). Python. Software. http://www.python.org.

Quijano, N., Ocampo-Martinez, C., Barreiro-Gomez, J., Obando, G., Pantoja, A., and Mojica-Nava, E. (2017).

The role of population games and evolutionary dynamics in distributed control systems: The advantages

of evolutionary game theory. IEEE Control Systems Magazine, 37(1):70–97. https://doi.org/10.1109/

MCS.2016.2621479

R Core Team (2019). R: A Language and Environment for Statistical Computing. Software. R Foundation for

Statistical Computing, Vienna, Austria. https://www.R-project.org.

Railsback, S., Ayllón, D., Berger, U., Grimm, V., Lytinen, S., Sheppard, C., and Thiele, J. (2017). Improving execution

speed of models implemented in netlogo. Journal of Artificial Societies and Social Simulation,

20(1):3. https://doi.org/10.18564/jasss.3282

Railsback, S. F. and Grimm, V. (2019). Agent-Based and Individual-Based Modeling: A Practical Introduction, Second

edition. Princeton University Press, Princeton, NJ. http://www.railsback-grimm-abm-book.com. First edition

(2011) at http://www.jstor.org/stable/j.ctt7sns7

Railsback, S. F., Lytinen, S. L., and Jackson, S. K. (2006). Agent-based simulation platforms: Review and

development recommendations. Simulation, 82(9):609–623. https://doi.org/10.1177/0037549706073695

Rand, D. A. (1999). Correlation Equations and Pair Approximations for Spatial Ecologies. In Advanced Ecological

Theory, J. McGlade (Ed.), chapter 4, pages 100–142. John Wiley & Sons, Ltd. https://doi.org/10.1002/

9781444311501.ch4

Roca, C. P., Cuesta, J. A., and Sánchez, A. (2009a). Evolutionary game theory: Temporal and spatial effects beyond

replicator dynamics. Physics of Life Reviews, 6(4):208 – 249. https://doi.org/10.1016/j.plrev.2009.08.001

Roca, C. P., Cuesta, J. A., and Sánchez, A. (2009b). Effect of spatial structure on the evolution of cooperation.

Phys. Rev. E, 80:046106. https://doi.org/10.1103/PhysRevE.80.046106

Roth, G. and Sandholm, W. H. (2013). Stochastic approximations with constant step size and differential

inclusions. SIAM Journal on Control and Optimization, 51:525–555. https://doi.org/10.1137/110844192

Sakoda, J. M. (1949). Minidoka: An Analysis of Changing Patterns of Social Behavior. PhD thesis, University of

California.

Sakoda, J. M. (1971). The checkerboard model of social interaction. The Journal of Mathematical Sociology,

1(1):119–132. https://doi.org/10.1080/0022250X.1971.9989791

Samuelson, L. (1997). Evolutionary Games and Equilibrium Selection. MIT Press, Cambridge.

Sandholm, W. H. (2001). Almost global convergence to p-dominant equilibrium. International Journal of Game

Theory, 30:107–116. https://doi.org/10.1007/s001820100067

Agent-Based Evolutionary Game Dynamics | 425

Sandholm, W. H. (2003). Evolution and equilibrium under inexact information. Games and Economic Behavior,

44:343–378. https://doi.org/10.1016/S0899-8256(03)00026-5

Sandholm, W. H. (2007). Simple formulas for stationary distributions and stochastically

stable states. Games and Economic Behavior, 59:154–162. https://doi.org/10.1016/j.geb.2006.07.001

Sandholm, W. H. (2009). Evolutionary game theory. In Meyers, R. A., editor, Encyclopedia of Complexity and

Systems Science, pages 3176–3205. Springer, Berlin, Heidelberg. https://doi.org/10.1007/

978-3-642-27737-5_188-3

Sandholm, W. H. (2010a). Population Games and Evolutionary Dynamics. MIT Press, Cambridge.

Sandholm, W. H. (2010b). Pairwise comparison dynamics and evolutionary foundations for Nash equilibrium.

Games, 1:3–17. https://doi.org/10.3390/g1010003

Sandholm, W. H., Izquierdo, S. S., and Izquierdo, L. R. (2019). Best experienced payoff dynamics and cooperation

in the Centipede game. Theoretical Economics, 14: 1347–1385. https://doi.org/10.3982/TE3565

Sandholm, W. H., Izquierdo, S. S., and Izquierdo, L. R. (2020). Stability for best experienced payoff dynamics.

Journal of Economic Theory, 185:104957. https://doi.org/10.1016/j.jet.2019.104957

Sandholm, W. H. and Staudigl, M. (2018). Sample path large deviations for stochastic evolutionary game

dynamics. Mathematics of Operations Research, 43(4):1348–1377. https://doi.org/10.1287/moor.2017.0908

Santos, F. C., Rodrigues, J. F., and Pacheco, J. M. (2006a). Graph topology plays a determinant role in the

evolution of cooperation. Proceedings of the Royal Society B: Biological Sciences, 273(1582):51–55.

https://doi.org/10.1098/rspb.2005.3272

Santos, F. C. and Pacheco, J. M. (2005). Scale-free networks provide a unifying framework for the emergence of

cooperation. Phys. Rev. Lett., 95:098104. https://doi.org/10.1103/PhysRevLett.95.098104

Santos, F. C. and Pacheco, J. M. (2006). A new route to the evolution of cooperation. Journal of Evolutionary

Biology, 19(3):726–733. https://doi.org/10.1111/j.1420-9101.2005.01063.x

Santos, F. C., Pacheco, J. M., and Lenaerts, T. (2006b). Evolutionary dynamics of social dilemmas in structured

heterogeneous populations. Proceedings of the National Academy of Sciences, 103(9):3490–3494.

https://doi.org/10.1073/pnas.0508201103

Sayama, H. (2015). Introduction to the Modeling and Analysis of Complex Systems. Milne Open Textbooks.

https://milneopentextbooks.org/introduction-to-the-modeling-and-analysis-of-complex-systems/

Schelling, T. C. (1969). Models of segregation. The American Economic Review, 59(2):488–493.

http://www.jstor.org/stable/1823701

Schelling, T. C. (1971). Dynamic models of segregation. The Journal of Mathematical Sociology, 1(2):143–186.

https://doi.org/10.1080/0022250X.1971.9989794

Schelling, T. C. (1978). Micromotives and Macrobehavior. Norton, New York.

426 | Luis R. Izquierdo, Segismundo S. Izquierdo & William H. Sandholm

Schlag, K. H. (1998). Why imitate, and if so, how? A boundedly rational approach to multi-armed bandits. Journal

of Economic Theory, 78:130–156. https://doi.org/10.1006/jeth.1997.2347

Schwarz, K. (2011). Darts, dice, and coins: Sampling from a discrete distribution. https://www.keithschwarz.com/

darts-dice-coins/

Selten, R. (1965). Spieltheoretische Behandlung eines Oligopolmodells mit Nachfrageträgheit. Zeitschrift für

die gesamte Staatswissenschaft / Journal of Institutional and Theoretical Economics, 121(2):301–324.

http://www.jstor.org/stable/40748884

Selten, R. (1975). Reexamination of the perfectness concept for equilibrium points in extensive games.

International Journal of Game Theory, 4(1):25–55. https://doi.org/10.1007/BF01766400

Seri, R. (2016). Analytical approaches to agent-based models. In Secci, D. and Neumann, M., editors, Agent-

Based Simulation of Organizational Behavior, chapter 13, pages 265–286. Springer International Publishing.

https://doi.org/10.1007/978-3-319-18153-0_13

Sethi, R. (2000). Stability of equilibria in games with procedurally rational players. Games and Economic Behavior,

32:85–104. https://doi.org/10.1006/game.1999.0753

Sethi, R. (2021). Stable sampling in repeated games. Journal of Economic Theory, 197:105343. https://doi.org/

10.1016/j.jet.2021.105343

Sigmund, K. (1983). Games of Life: Explorations in Ecology, Evolution, and Behaviour. Oxford University Press.

Sklar, E. (2007). NetLogo, a multi-agent simulation environment. Artificial Life, 13(3):303–311. https://doi.org/

10.1162/artl.2007.13.3.303

Skyrms, B. (2001). The Stag Hunt. Proceedings and Addresses of the American Philosophical Association,

75(2):31–41. https://doi.org/10.2307/3218711

Smaldino, P. E. (2023). Modeling Social Behavior: Mathematical and Agent-Based Models of Social Dynamics and

Cultural Evolution. Princeton University Press.

Smith, M. J. (1984). The stability of a dynamic model of traffic assignment —an application of a method of

Lyapunov. Transportation Science, 18:245–252. https://doi.org/10.1287/trsc.18.3.245

Szabó, G. and Fáth, G. (2007). Evolutionary games on graphs. Physics Reports, 446:97–216. https://doi.org/

10.1016/j.physrep.2007.04.004

Szabó, G. and Tőke, C. (1998). Evolutionary prisoner’s dilemma game on a square lattice. Phys. Rev. E, 58:69–73.

https://doi.org/10.1103/PhysRevE.58.69

Szolnoki, A., Perc, M., and Danku, Z. (2008). Towards effective payoffs in the prisoner’s dilemma game on

scale-free networks. Physica A: Statistical Mechanics and its Applications, 387(8):2075–2082. https://doi.org/

10.1016/j.physa.2007.11.021

Taylor, P. D. and Jonker, L. (1978). Evolutionarily stable strategies and game dynamics. Mathematical Biosciences,

40:145–156. https://doi.org/10.1016/0025-5564(78)90077-9

Agent-Based Evolutionary Game Dynamics | 427

The MathWorks, Inc. (2019). Matlab. Software. Natick, Massachusetts. https://mathworks.com

Thiele, J. C. (2014). R marries NetLogo: Introduction to the RNetLogo package. Journal of Statistical Software,

58(2):1–41. http://dx.doi.org/10.18637/jss.v058.i02

Thiele, J. C. and Grimm, V. (2010). NetLogo meets R: Linking agent-based models with a toolbox for their

analysis. Environmental Modelling & Software, 25(8):972–974. https://doi.org/10.1016/

j.envsoft.2010.02.008

Thiele, J. C., Kurth, W., and Grimm, V. (2012a). Agent-based modelling: Tools for linking netlogo and R. Journal of

Artificial Societies and Social Simulation, 15(3):8. http://dx.doi.org/10.18564/jasss.2018

Thiele, J. C., Kurth,W., and Grimm, V. (2012b). RNetLogo: An R package for running and exploring individual-

based models implemented in NetLogo. Methods in Ecology and Evolution, 3(3):480–483. http://dx.doi.org/

10.1111/j.2041-210X.2011.00180.x

Thiele, J. C., Kurth, W., and Grimm, V. (2014). Facilitating parameter estimation and sensitivity analysis of

agent-based models: A cookbook using netlogo and R. Journal of Artificial Societies and Social Simulation,

17(3):11. http://dx.doi.org/10.18564/jasss.2503

Thomas, B. (1984). Evolutionary stability: States and strategies. Theoretical Population Biology, 26:49–67.

https://doi.org/10.1016/0040-5809(84)90023-6

Tomassini, M., Pestelacci, E., and Luthi, L. (2007). Social dilemmas and cooperation in complex networks.

International Journal of Modern Physics C, 18(07):1173–1185. https://doi.org/10.1142/

S0129183107011212

Traulsen, A. and Hauert, C. (2009). Stochastic evolutionary game dynamics. In Schuster, H. G., editor, Reviews

of Nonlinear Dynamics and Complexity, volume 2, pages 25–61. Wiley, New York. https://doi.org/10.1002/

9783527628001.ch2

van Baalen, M. (2000). Pair Approximations for Different Spatial Geometries. In Dieckmann, U., Law, R., and

Metz, J. A. J., editors, The Geometry of Ecological Interactions: Simplifying Spatial Complexity, pages 359–387.

Cambridge Studies in Adaptive Dynamics. Cambridge University Press. https://doi.org/10.1017/

CBO9780511525537.023

Vega-Redondo, F. (1997). The evolution of Walrasian behavior. Econometrica, 65:375–384. https://doi.org/

10.2307/2171898

Vega-Redondo, F. (2003). Economics and the Theory of Games. Cambridge University Press, Cambridge, UK.

von Neumann, J. and Morgenstern, O. (1944). Theory of Games and Economic Behavior. Prentice-Hall, Princeton.

Vose, M. (1991). A linear algorithm for generating random numbers with a given distribution. IEEE Transactions

on Software Engineering, 17(9):972–975. https://doi.org/10.1109/32.92917

Wallace, C. and Young, H. P. (2015). Stochastic evolutionary game dynamics. In Young, H.P. and Zamir, S.,

editors, Handbook of Game Theory with Economic Applications, volume 4, chapter 6, pages 327–380. Elsevier,

Amsterdam. https://doi.org/10.1016/B978-0-444-53766-9.00006-9

428 | Luis R. Izquierdo, Segismundo S. Izquierdo & William H. Sandholm

Watts, D. J. and Strogatz, S. H. (1998). Collective dynamics of ‘small-world’ networks. Nature,

393(6684):440–442. https://doi.org/10.1038/30918

Weibull, J. W. (1995). Evolutionary Game Theory. MIT Press, Cambridge.

Wilensky, U. (1999). NetLogo. Software. Center for Connected Learning and Computer-Based Modeling,

Northwestern University, Evanston, IL. http://ccl.northwestern.edu/netlogo/

Wilensky, U. (2023). The NetLogo User Manual. Version 6.4.0. https://ccl.northwestern.edu/netlogo/6.4.0/docs/

Wilensky, U. (2005a). NetLogo Preferential Attachment model. http://ccl.northwestern.edu/netlogo/models/

PreferentialAttachment. Center for Connected Learning and Computer-Based Modeling, Northwestern

University, Evanston, IL.

Wilensky, U. (2005b). Mouse Drag One Example. http://ccl.northwestern.edu/netlogo/models/

MouseDragOneExample. Center for Connected Learning and Computer-Based Modeling, Northwestern

University, Evanston, IL.

Wilensky, U. and Rand, W. (2015). An Introduction to Agent-Based Modeling: Modeling Natural, Social, and

Engineered Complex Systems with NetLogo. The MIT Press. https://www.jstor.org/stable/j.ctt17kk851

Wilensky, U. and Shargel, B. (2002). Behaviorspace. Software. Center for Connected Learning and Computer-

Based Modeling, Northwestern University, Evanston, IL. http://ccl.northwestern.edu/netlogo/

behaviorspace.html

Wilensky, U. and Stroup, W. (1999). Hubnet. Software. Center for Connected Learning and Computer-Based

Modeling, Northwestern University, Evanston, IL. http://ccl.northwestern.edu/netlogo/hubnet.html

Woelfing, B. and Traulsen, A. (2009). Stochastic sampling of interaction partners versus deterministic payoff

assignment. Journal of Theoretical Biology, 257(4):689–695. https://doi.org/10.1016/j.jtbi.2008.12.025

Wolfram, S. (1983). Statistical mechanics of cellular automata. Reviews of modern physics, 55(3):601.

https://doi.org/10.1103/RevModPhys.55.601

Wolfram, S. (2002). A new kind of science. Wolfram-Media. https://www.wolframscience.com/nks/

Wolfram Research, Inc. (2019). Mathematica. Software. Champaign, Illinois. https://www.wolfram.com

Wu, Z.-X., Guan, J.-Y., Xu, X.-J., and Wang, Y.-H. (2007). Evolutionary prisoner’s dilemma game on

Barabási–Albert scale-free networks. Physica A: Statistical Mechanics and its Applications, 379(2):672–680.

https://doi.org/10.1016/j.physa.2007.02.085

Wu, Z.-X., Xu, X.-J., and Wang, Y.-H. (2005). Does the scale-free topology favor the emergence of cooperation?.

arXiv:physics/0508220 https://doi.org/10.48550/arXiv.physics/0508220

Young, H. P. (1998). Individual Strategy and Social Structure. Princeton University Press, Princeton.

Young, H. P. (2004). Strategic Learning and Its Limits. Oxford University Press, Oxford.

Agent-Based Evolutionary Game Dynamics | 429

	Contents
	Dedication
	Preface
	1. Purpose
	2. Structure of the book and potential courses
	3. Why NetLogo?
	4. One book, many formats
	5. What about the programming and the math?
	6. History of the book and acknowledgments

	Part I. Introduction
	I-1. Overview
	1. What is this book about?
	2. How is this book organized?

	I-2. Introduction to evolutionary game theory
	1. What is game theory?
	2. Traditional game theory
	3. Evolutionary game theory
	4. How can I learn game theory?

	I-3. Introduction to agent-based modeling
	1. What is agent-based modeling?
	2. What is an agent?
	3. A paradigmatic example
	4. Agent-based modeling and evolutionary game theory
	5. How can I learn about agent-based modeling?

	I-4. Introduction to NetLogo
	1. What is NetLogo?
	2. How to learn NetLogo

	I-5. The fundamentals of NetLogo
	1. The three tabs
	2. Types of agents
	3. Instructions
	4. Variables
	5. Ask
	6. Lists
	7. Agentsets
	8. Synchronization
	9. Consistency within procedures
	10. Breeds
	11. Ticks and Plotting
	12. Skeleton of many NetLogo models
	13. The code for Schelling-Sakoda model

	Part II. Our first agent-based evolutionary model
	II-1. Our very first model
	1. Goal
	2. Motivation. Cooperation in social dilemmas
	3. Description of the model
	4. Interface design
	5. Code
	6. Sample runs
	7. Exercises

	II-2. Extension to any number of strategies
	1. Goal
	2. Motivation. Rock, paper, scissors
	3. Description of the model
	4. Interface design
	5. Code
	6. Sample run
	7. Exercises

	II-3. Noise and initial conditions
	1. Goal
	2. Motivation. Noise in rock, paper, scissors
	3. Description of the model
	4. Interface design
	5. Code
	6. Sample run
	7. Exercises

	II-4. Interactivity and efficiency
	1. Goal
	2. Motivation. The impact of population size
	3. Description of the model
	4. Interactivity
	5. Efficiency
	6. Complete code in the Code tab
	7. Sample run
	8. Exercises

	II-5. Analysis of these models
	1. Two complementary approaches
	2. Computer simulation approach
	3. Mathematical analysis approach. Markov chains
	4. Exercises

	Part III. Spatial interactions on a grid
	III-1. Spatial chaos in the Prisoner's Dilemma
	1. Goal
	2. Motivation. Cooperation in spatial settings
	3. Description of the model
	4. Interface design
	5. Code
	6. Sample runs
	7. Exercises

	III-2. Robustness and fragility
	1. Goal
	2. Motivation. Robustness of cooperation in spatial settings
	3. Description of the model
	4. Interface design
	5. Code
	6. Sample runs
	7. Exercises

	III-3. Extension to any number of strategies
	1. Goal
	2. Motivation. Spatial Hawk-Dove-Retaliator
	3. Description of the model
	4. Interface design
	5. Code
	6. Sample runs
	7. Exercises

	III-4. Other types of neighborhoods and other decision rules
	1. Goal
	2. Motivation. The impact of decision rules
	3. Description of the model
	4. Interface design
	5. Code
	6. Sample runs
	7. Exercises

	III-5. Analysis of these models
	1. A much greater state space
	2. Cellular automata
	3. Models more amenable to mathematical analysis. The pair approximation
	4. Exercises

	Part IV. Games on networks
	IV-1. The nxn game on a random network
	1. Goal
	2. Motivation. A single-optimum coordination game
	3. Description of the model
	4. Interface design
	5. Code
	6. Sample runs
	7. Exercises

	IV-2. Different types of networks
	1. Goal
	2. Motivation. Assessing the significance of network structure
	3. Description of the model
	4. Interface design
	5. Code
	6. Sample runs
	7. Exercises

	IV-3. Implementing network metrics
	1. Goal
	2. Motivation. Reassessing the significance of network structure
	3. Description of the model
	4. Interface design
	5. Code
	6. Sample runs
	7. Exercises

	IV-4. Other ways of computing payoffs and other decision rules
	1. Goal
	2. Motivation. Cooperation on scale-free networks
	3. Description of the model
	4. Interface design
	5. Code
	6. Sample runs
	7. Exercises

	IV-5. Analysis of these models
	1. Introduction
	2. Avoid errors
	3. Use informative metrics
	4. Report meaningful statistics
	5. Derive sound conclusions
	6. Final thoughts
	7. Exercises

	Part V. Agent-based models vs ODE models
	V-1. Introduction
	V-2. A rather general model for games played in well-mixed populations
	1. Goal
	2. Motivation
	3. Description of the model
	4. Extension I. Implementation of different ways of computing payoffs
	5. Extension II. Implementation of different decision rules
	6. Exercises

	V-3. Mean Dynamics
	1. Introduction
	2. The mean dynamic
	3. Derivation of the mean dynamic for different stochastic processes
	4. Running an agent-based model and solving its mean dynamic at runtime
	5. Representative simulations together with their mean dynamics
	6. Details matter
	7. Exercises

	Appendices
	A-1. Different implementations with the same output
	1. Introduction
	2. Three possible stories behind the same behavior
	3. Which algorithm should we use?

	A-2. Legend for code skeletons
	A-3. Models implemented in this book
	In Part I. Introduction
	In Part II. Our first agent-based evolutionary model
	In Part III. Spatial interactions on a grid
	In Part IV. Games on networks
	In Part V. Agent-based models vs ODE models

	References

