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Series Foreword

We live in highly engineered worlds. Engineers play crucial roles in the 

normative direction of localized knowledge and social  orders. The Engineer-

ing Studies Series highlights the growing need to understand the situated 

commitments and practices of engineers and engineering. It asks: what is 

engineering for? What are engineers for?

Drawing from a diverse arena of research, teaching, and outreach, engi-

neering studies raises awareness of how engineers imagine themselves in 

 service to humanity, and how their  service ideals impact the defining and 

solving of prob lems with multiple ends and variable consequences. It does so 

by examining relationships among technical and nontechnical dimensions, 

and how  these relationships change over time and from place to place. Its 

researchers often are critical participants in the practices they study.

The Engineering Studies Series publishes research in historical, social, 

cultural,  political, philosophical, rhetorical, and  organizational studies of 

engineers and engineering, paying par tic u lar attention to normative direc-

tionality in engineering epistemologies, practices, identities, and outcomes. 

Areas of concern include engineering formation, engineering work, engineer-

ing design, equity in engineering (gender, racial, ethnic, class, geopo liti cal), 

and engineering  service to society.

The Engineering Studies Series thus pursues three related missions: 

(1)  advance understanding of engineers, engineering, and outcomes of 

engineering work; (2) help build and serve communities of researchers and 

learners in engineering studies; and (3) link scholarly work in engineering 

studies to broader discussions and debates about engineering education, 

research, practice, policy, and repre sen ta tion.

Gary Lee Downey and Matthew Wisnioski, Editors
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Preface

The history of this book has had a significant impact on its structure and 

content. More than fifteen years ago, I met Ann Johnson at an interdisci-

plinary conference. As a historian of engineering, she had a strong interest 

in computational methods and an intellectual appetite spanning history, 

philosophy, and science studies. Although she was well aware that  these 

fields are marked by well- attended disciplinary bound aries, she had the 

courage and the bounce to jump over them. We immediately realized that 

 there was a sort of common wavelength that made our ideas, perspectives, 

praises, and criticisms coincide to an extent that surprised us both. That 

this book attempts to sit comfortably on, and partly in between, the chairs 

of history of engineering, history of technology, philosophy of science, and 

social studies of science is dictated as much by its subject as by the way it 

fits both Ann’s and my own preferences (the latter being deeply influenced 

by the pro gress of our joint work).

We developed the overall perspective of this book more than a  decade 

ago. Starting from the observation that many accounts of the computer  were 

geared  toward fast and gigantic machines, we asked what—if anything— 

characterized the impact of easily available, relatively cheap networked 

computers. Discussing this question led us to the claim of “a new culture of 

prediction” (Johnson and Lenhard 2011) that soon amplified into a longue- 

durée perspective on mathematization detailed in the introduction to this 

book. However, neither of us felt any rush to finish this book swiftly. It was 

the joys of gathering material, cobreeding ideas, recombining plans, and 

looking for additional perspectives that dominated.

Ann’s unexpected passing in 2016 terminated the proj ect. Two years  later, 

the newly founded Ann Johnson Institute revived it. My generously funded 
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x Preface

stay at Columbia, South Carolina, where Ann had been a professor before 

moving to Cornell, reactivated intellectual and atmospheric memories in 

a way that turned the writing of this book into a doable and, more impor-

tantly, an enjoyable enterprise. In early 2018, the only jointly discussed and 

revised text we had in stock was a chapter on the “epistemology of iteration” 

(now chapter 4). It examines the history of computational chemistry, span-

ning dif fer ent cultures of prediction starting in precomputer times. Further-

more, Ann had worked on a chapter that investigates how software code 

moves (concentrating on fluid dynamics). As usual, she tested preliminary 

versions in workshops and conferences. This text forms chapter 6, and no 

doubt my well- intentioned additions represent only a taste of the fruitful 

ways in which Ann would have further researched and elaborated the text. 

Beyond  these two chapters, I had to reinvent and reexperience our joint 

discussions— fortunately with the help of a  treasure chest of sketches. To 

my delight, I found that Ann’s voice is not  silent and that her spirit is still 

active. Of course, Ann’s forceful voice would have had a much stronger and 

beneficial impact than the echo in my imagination. Who knows what this 

book would look like if Ann  were still alive?  Whatever the case, her input 

can be found on all levels, from methods to outlines and written material, 

making it truly a coauthored book.

Acknowl edgments

Ann and I owe a  great debt of gratitude to a lot of  people. Only through wise 

and determined nudging in the right direction has the proj ect been able 

to maintain, and sometimes regain, momentum. And I would like to add 

that without the encouragement, stimulation, and criticism in response to 

provisional chapters, I would hardly have been able to realize our jointly 

planned and launched proj ect. This happened in reading groups, colloquia, 

and conferences that I do not want to list  here— and that I prob ably could 

not list. Translating my gratitude into a concrete list is almost a historical 

proj ect, given that Ann’s and my work on this book started well over a 

 decade ago.

Location and personal contacts are of  great importance, especially for 

an interdisciplinary proj ect such as Ann and I  were aiming for in the case 

of prediction. Longer- term visits and joint work  were supported by the 
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Humboldt Foundation, DAAD, DFG (grant LE 1401/7–1), and, of course, 

the Ann Johnson Institute.

Dif fer ent stages of the book have profited from the helpful advice pro-

vided by scholars in history, philosophy, and engineering departments 

located mainly, but not exclusively, in the University of South Carolina, 

Columbia, and Bielefeld University’s Center for Interdisciplinary Research 

(ZiF) in Germany.  These include Davis Baird, Martin Carrier, Hans Hasse, 

Ron Kline, Allison Marsh, Leah McClimans, Anne Marcovich, Cornelis 

Menke, Robert Mullen, Joe November, Michael Otte, Carsten Reinhardt, 

Terry Shinn, Michael Stöltzner, and Heidi Voskuhl. It was a  pleasure to 

receive the constructive help of Matt Wisnioski and Gary Downey, the 

editors of the Engineering Studies series at the MIT Press, and also of the 

reviewers of the manuscript whose comments  were very helpful when mak-

ing revisions. A host of special thanks go to Matthias Brandl for his thought-

fulness, his feeling for language, and his willingness to share energy. The 

gap between my attempts to write in plain  English and the  actual text was 

narrowed in a beneficial way by Jonathan Harrow.
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1 Introduction

This book is about predictions. Throughout history, the imagination of 

 human socie ties has been captured by the thought of tearing a hole in the 

fog of uncertainty and looking into the  future. Croesus consulted the Del-

phi oracle, the leading producer of predictions for policy advice at the time, 

and then went to war against the Persians. Unfortunately, this cost him his 

kingdom: he had misinterpreted the oracle’s prediction that a  great empire 

would perish. To give a more recent example, climate change is perceived 

as a grave global prob lem. National policies and international treaties are 

calibrated according to the ensuing change in temperature, with its predic-

tion relying on computational models and observational data of breath-

taking dimensions. In short, from the sacred to the mundane, from the 

long- term to the immediate, predictions guide actions, sometimes to bring 

about and sometimes to avoid what has been predicted— sometimes with 

success, sometimes with failure.1

With this in mind, we examine a certain subset of predictions:  those 

made by scientists and engineers with the help of mathematical tools. 

Making predictions constitutes one of the dominant features of science. In 

fact, the ability to make reliable predictions based on robust and replicable 

methods is possibly the most distinctive and impor tant advantage claimed 

for scientific knowledge compared to other types of knowledge. Engineers’ 

claims of expert knowledge and its utility for the modern world stem from 

their special ability to predict  whether a bridge or building  will stand up or 

where a cannonball  will strike. Although their abilities to predict are spe-

cific and not identical to  those of science, they are closely connected. Since 

at least the seventeenth  century, engineers have drawn on science, and 

especially mathe matics, to make predictions about the human- built world 

that they design. Despite the obvious importance of prediction to modern 
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2 Chapter 1

engineering and scientific enterprise, it is a strangely understudied ele ment. 

When prediction is studied, it is treated as a monolithic block— static in 

time and a fortunate outcome of the mathematization and mechanization 

of the world picture.

In this book, we reveal a very dif fer ent picture by looking at the practices 

of making predictions in science and engineering. Studying  these practices 

over four centuries exposes a dynamic picture of prediction- making and 

shows that mathematization is a flexible concept. Moreover, dif fer ent modes 

of prediction, complementary concepts of mathematization, and technol-

ogy coevolved, thereby building patterns that we call cultures of prediction.

This new orientation  toward prediction challenges some of the basic 

tenets of the philosophy of science in which scientific theories and mod-

els are seen as predominantly explanatory rather than predictive.2 Predic-

tive strategies in general, and exploratory and iterative ones in par tic u lar, 

introduce a design mode of knowledge production that focuses on mak-

ing  things and testing their  performance. In computer- based approaches 

such as simulation or machine learning, the value of predictive models 

increases. This makes cultures of prediction commonplace across a wide 

array of research areas in both engineering and science (though surely not 

universal).  These cultures of prediction, in turn, inform the sort of research 

proj ects that scientists and engineers undertake and the kinds of endeavors 

that funding agencies support, thus reinforcing the turn  toward prediction.

1.1 The Landscape

Largely due to the role of the computer, the phenomenon of making pre-

dictions in science and engineering is a hot topic  today with a growing 

number of  popular books that introduce their readers to new ways of pre-

dicting.3 Academic titles on computers, data production, and predictions 

are also gaining momentum.4 Although this book is an academic one, it also 

invites readers with a more general interest  because the history of math-

ematization provides an illuminating background to the recent upswing 

in data-  and computer- driven predictions. To improve readability, we have 

kept technical aspects to a minimum.

Two clusters of existing lit er a ture are particularly central for this book. 

The first examines systems in which computer technology forms a defin-

ing component.5 Accounts such as Paul Edwards’s The Closed World (1996) 
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Introduction 3

highlight how computer technology, methodologies for creating predic-

tions, and institutional  organization coevolve.6 Venturing into complexity, 

building computer systems and a  political (often also military) demand for 

prediction reinforce each other. Prediction in this context is close to control 

 because the ability to control a system typically requires predicting how it 

 will behave  under certain conditions.7

The second cluster revolves around mathematization and contains 

a number of studies in the history as well as philosophy of science that 

attempt to explain how nature has been addressed mathematically to pro-

duce new knowledge. Most of  these studies focus on  either the period of 

the scientific revolution or the turn of the twentieth  century, when devel-

opments in physics  were central to the proj ect of mathematization.8 This 

study looks at  these periods as well but does so over the longue- durée, from 

the sixteenth  century to the pre sent, and includes the move to mechanical 

and electronic calculation and computation.9

Our use of culture and practices owes much to recent accounts in the 

history, sociology, and philosophy of science and technology. The ensu-

ing and sometimes cross- disciplinary debates are among the truly illumi-

nating episodes in studies of science. For more than two  decades now, a 

practice- oriented approach has gained traction.10 We would like to men-

tion three points around which this lit er a ture has informed our endeavor: 

First,  there are highly valuable studies on how computing technology, 

institutions, infrastructure, and concepts such as certainty depend on one 

another.11 Second, we learned about the conceptual difficulties of capturing 

interdependence and coevolution.12 Coevolution is pivotal to our dynamic 

history of predictive methods and values in science and engineering. Third, 

it is impor tant to examine engineering as a site of knowledge production 

 because prediction stands among the highest epistemic goals of engineer-

ing work. It may well be that the cultures and values of prediction have 

been overlooked by scholars  because the epistemology of engineering has 

itself been overshadowed by physics. We shift that frame  here and focus 

primarily on prediction in engineering and chemistry and on fields such 

as statistics and machine learning for our examples. We believe that chang-

ing the frame in this way could also shift prediction in physics and biology 

 toward a more central position.

Although our book unfolds amid strong bodies of historical, philo-

sophical, and  sociological lit er a ture, it investigates a space that has not yet 
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4 Chapter 1

been covered  because we bring into contact and weave together several 

ele ments in an innovative way: first, the history and philosophy of predic-

tion; second, the impor tant changes that desktop and networked comput-

ing have brought to scientific endeavors; third, the history of engineering 

and applied science as paradigmatic cases with which to understand fun-

damental ele ments in the structure of scientific knowledge and epistemo-

logical practices in science more generally; and fourth, a historical study 

of mathematization outside of the history of physics. In our account  here, 

mathematization undergirds the history of prediction.13

1.2 Four Cultures of Prediction

Cultures of prediction draw attention to four points: First, the notion of 

cultures stresses that mathematization, epistemology, technology, and social 

 organization coevolve. Second, modes of mathematization and prediction 

refer to the status of mathe matics and the ways in which it is used to create 

predictions.  These modes develop rather slowly and take at least a genera-

tion to gain a foothold. Older modes and cultures persist while new ones 

develop alongside them.14 Third, we do not claim that the modes and cul-

tures apply to all of science and engineering. We emphasize the plurality 

of mathematical instrumentation and the related differences in predictive 

cultures. Fourth, this book takes a par tic u lar focus on  today’s culture of pre-

diction and its use of computational tools. With  these tools, computer tech-

nology contributes to (and coevolves with) practices of prediction in new 

ways. We take a long- term perspective and examine the dynamic history of pre-

dictive methods and values in science and engineering. This enables us to gain a 

new perspective on  today’s uses of, and sometimes obsessions with, predictions.15

We identify four dif fer ent cultures of prediction in the history of science 

and engineering: rational, empirical, iterative– numerical, and exploratory– 

iterative. Factoring in  these cultures of prediction leads to a revaluation of 

epistemology.

The rational and empirical cultures originated in the sixteenth and sev-

enteenth centuries as part of the initial shaping of modern science. They 

developed in close and sometimes conflictual interrelation. In the ratio-

nal culture, mathe matics captures the structure of physical phenomena. 

 Because the book of nature is written in mathematical symbols, as Galileo 

expressed so famously, and  because general laws are impor tant parts of the 
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mathematical structure, one can derive predictions mathematically. The 

empirical culture does not so much dwell on the generality and rigidity of 

derivation but on the flexibility with which mathematical models can be 

adjusted to observations and experience.  Whether a mathematical model 

 will produce predictions does not depend on what grounds it has been 

construed on. Both cultures pre sent something like ideal types that provide 

an orientation for prac ti tion ers, shape their expectations, and direct their 

energies. What we see in history is not a perfect realization of the rational 

or empirical culture but rather mixed, often tense and controversial, situa-

tions in which rational and empirical components compete for dominance 

and, typically for engineering, build hybrids.

The third, iterative– numerical culture, emerged with technologies of cal-

culation in the nineteenth  century. The iterative– numerical mode of predic-

tion predated the computer but became fully established with mainframe 

machines. Predictions via iteration of  simple computational algorithms 

became an option. From this new perspective on prediction, the iterative 

capacity of mathematical instruments  rose to become an impor tant  factor. 

Of course, the iterative– numerical culture reached full bloom only  after 

the advent of the digital electronic computer. The computer redirected the 

path of mathematization. At the same time, the big and expensive main-

frame machines  were institutionally  organized in a peculiar way: in central-

ized systems.

We claim that the networked desktop computer gives rise to a fourth, 

exploratory– iterative, culture that is distinct from the iterative– numerical 

culture.16 “Working on” models means exploring the relationships between 

input data and output data to produce predictions that are then often used 

to modify the models before the next stage of exploration. Such a prac-

tice calls for easy and fast feedback between models and modelers who 

modify parts and adapt  parameters. In the previous era when computing 

meant waiting for time on a mainframe pro cessor or even sending in punch 

cards for batch pro cessing, “tweaking” models— that is,  running versions 

of models with minor changes— was impractical. The exploratory nature 

of computational modeling therefore depends on cheap and  convenient 

local access to computational power. This accessibility came only with the 

mature, networked desktop computer around the 1990s.
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6 Chapter 1

1.3 Overview of the Chapters

Chapter 2 discusses the entangled history of the rational and empirical cul-

tures of prediction by looking at the history of ballistics. Ballistics is an 

exemplary case for prediction that highlights the polarity between rational 

and empirical in a long- term perspective spanning several centuries that 

throws light on numerous promises and frustrations. The chapter unfolds 

the case for prediction by examining one episode each for the sixteenth, 

seventeenth, and eigh teenth centuries.

Chapter 3 focuses on mechanical engineering when mathematization 

took hold in the late nineteenth  century and the rational– empirical dis-

tinction received new interpretations. The role of mathe matics was hotly 

debated and deeply controversial. Some actors tried to subsume engineer-

ing  under (applied) science, whereas  others wanted to establish the auton-

omy of engineering science. The chapter concentrates on two proponents 

of hybrid mathematization: Robert Thurston, a leading engineer in the 

United States who promoted the experimental laboratories at Cornell, and, 

on the German side, Carl Bach,  founder of the materials testing labora-

tory at Stuttgart and a prominent actor in the “Anti- Math Movement” of 

German engineering that erupted in 1895. Thus, we examine the contro-

versial role of mathe matics in prediction as a means to study the evolving 

autonomy of engineering.

Chapter 4 assumes a special position as a hub. The chapter covers all four 

modes of prediction spanning precomputer and computer times. Readers 

who enter the book with this chapter can move backward to precomputer 

times (chapters 2 and 3) or forward to the study of computer- based predic-

tions (chapters 5 to 8). Chapter 4 exemplifies our claims with an extended 

case study on quantum chemistry. From its inception in 1927, quantum 

chemistry experienced competition between two camps that worked in a 

rational mode of prediction, termed ab initio, versus a rational– empirical 

one called semiempirical. Whereas the latter mode was the leading one in 

the 1930s and 1940s, the electronic digital computer changed the game. 

Quantum chemists had always utilized math tools for iterative and numeri-

cal procedures, but with the technology of the digital computer, the entire 

research field developed into an iterative– numerical culture of prediction 

that was hegemonic up to the 1980s. A strong indicator, we argue, is that 

the conception of ab initio was revised— from the rational “derived from 
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first princi ples” to the iterative– numerical “computed without  human 

intervention.” However, quantum chemistry experienced another turn in 

the 1990s, a turn that made the notion of computational chemistry  popular. 

We analyze this turn with a case study on density functional theory, argu-

ably the most  popular theory in recent computational science. We find that 

the new technology of easily available and networked PCs is coevolving 

not only with a new mode of prediction that we call exploratory– iterative 

but also with the social  organization of modeling. Together they form an 

exploratory– iterative culture of prediction that leads to a further orienta-

tion  toward predictive success at the cost of explanatory potential.

The following chapters discuss the dynamic relationship between com-

puter technology, mathematization, and social  organization in the iterative– 

numerical (chapters  5 and 6) and the exploratory– iterative cultures of 

prediction (chapters 7 and 8). Chapter 5 follows Jay Forrester (1918–2016), 

an engineer at MIT and a pioneer of system dynamics, who directed the 

development of Whirlwind, the fastest and most expensive early- generation 

digital computer that was integrated into the Semi- Automatic Ground 

Environment (SAGE) air defense system. Both the person and the machine 

exemplify systems thinking in which prediction assumed a pivotal role, 

and the numerical mode of prediction matured with mainframe centralized 

computing machines. Over more than a  decade, Forrester expanded system 

dynamics from the level of an individual com pany to that of urban areas 

and to the global level. We examine the Club of Rome’s “Limits to Growth” 

study that appeared in 1972 and built on Forrester’s system dynamics. It 

presented a prototype for world modeling and put prediction in a policy 

context. Moreover, it marked a watershed beyond which computer model−

based predictions gained an edge over older ways of thinking about the 

 future. We argue that thinking about the  future and  political decision- 

making moved  under the umbrella of a culture of prediction.

Chapter  6 pioneers the history and sociology of computational fluid 

dynamics (CFD) software. It offers a case study to show the ways in which 

CFD models  were developed and how they moved to tackle new prob lems. 

Over the course of their travels, the models changed at many dif fer ent levels 

from the entities they could represent to the kinds of code (both algorithms 

and programming languages) used to modify and add on to the models. 

Computational fluid dynamics models and their construction and adapta-

tion mean dif fer ent  things to dif fer ent users. This chapter examines this 

Downloaded from http://direct.mit.edu/books/book-pdf/2369564/book_9780262379045.pdf by guest on 26 September 2024



8 Chapter 1

variety of social and epistemic phenomena that accompany the journey 

taken by CFD models.

Chapters  7 and 8 concentrate on the exploratory– iterative mode of 

prediction while investigating very dif fer ent scientific disciplines. Chap-

ter 7 discusses the Bayesian approach in statistics, which was a controver-

sial topic in the philosophy of statistics but was rarely applied in scientific 

work. In the 1990s, however, Bayesian statistics quickly turned into a 

widely used predictive method in many sciences. This chapter claims that 

the recent upswing of Bayesian approaches hinges critically on the technol-

ogy of highly available and networked computers. On their basis, we argue, 

Bayesian statistics joined the exploratory– iterative culture of prediction— a 

showcase of how mathematical and computational instrumentation inter-

relates with standards of rationality.

Chapter 8 is coauthored with engineer Hans Hasse, head of the Labora-

tory of Engineering Thermodynamics at the University of Kaiserslautern. We 

claim that the iterative– exploratory culture delivers predictions in ways that 

create new affinities between science and engineering. The pre sent chapter 

exemplifies this claim with a case study on thermodynamics. Linked to 

the iterative– exploratory culture of prediction, impor tant parts of thermo-

dynamics research migrated from physics to engineering. The core of this 

ongoing development, we argue, is how simulations combine theory with 

adjustable  parameters to produce predictions. This strategy of combination 

became pos si ble only in an iterative– exploratory mode of modeling.17 We 

find that bridging simplicity (of scientific laws) and complexity (of context 

of application) with the help of adjustable  parameters gears science  toward 

predictive power— and away from an explanatory capacity.

Chapter 9 offers an outlook on the  future. We venture into current con-

cepts and practices of machine learning—in par tic u lar, deep learning on 

artificial neural networks— and explore the question of  whether  these uses 

herald an emergent fifth culture of pure prediction. According to a common 

viewpoint, a good prediction redeems a claim that itself is based on other 

properties than merely the fact of the prediction. In some way,  whatever is 

able to deliver good predictions has got something right about the world, 

or about that fraction of the world  under investigation. And this something 

is the fundament and the true source of the predictive capability.18 Remark-

ably, “pure prediction” seems to turn this upside down: prediction hap-

pens on the basis of a method, or a generic model, whose repre sen ta tional 
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properties are very weak or even inaccessible. In other words, the outcome 

seems to be nothing but predictions.

Copyright Notice

Three chapters draw and elaborate on already published material.

Chapter 4 amplifies J. Lenhard (2014). “Disciplines, Models, and Com-
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2 Hitting the Target with Mathe matics

When modern science developed in the sixteenth and seventeenth centu-

ries, mathe matics played a distinct role. Although existing accounts assign 

very dif fer ent roles to mathe matics, they treat math mostly as a homoge-

neous block.1 We take a dif fer ent perspective and want to pay close atten-

tion to the rich and dynamic history of how mathe matics works as a tool 

for prediction. This history shows that  there are dif fer ent modes of predic-

tion that partly oppose and challenge each other, thus turning mathemati-

zation into an endeavor marked by complementarity and tension.

We identify the rational and the empirical mode of prediction. In a first 

take, the rational mode assumes that mathematical laws of nature capture 

the world’s structure and determine predictions through mathematical 

analy sis and derivation. The empirical mode synthesizes observations or 

experimental data into mathematical expressions that then allow predic-

tive extrapolation. Actually, one rarely finds historical examples that exem-

plify one mode in a pure form. The two modes rather resemble ideal types 

that stimulate and guide mathematization.2 How and in what proportions 

the modes are balanced in concrete practices is a  matter that scientists and 

engineers  handle with flexibility.3 Our examination shows that the question 

of when prac ti tion ers take a prediction as persuasive and when it counts as 

being successful is a remarkably open one— a question that dif fer ent cul-

tures of prediction address in dif fer ent ways.

One of the textbook cases regarding the application of mathe matics to a 

practical prob lem is ballistics. For more than four centuries, ballistics theo-

rists have perceived mathe matics as the tool that  will enable projectiles to 

hit their targets.4 Ballistics stands as a case for the continuous improvement 

of mathe matics in application, one that shows that dogged determinism in 
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applying si mul ta neously developing mathematical tools to evolving tech-

nological capacities yields results. And yet, with each pronouncement of 

greater accuracy,  there has been a caveat— some claim that complete predic-

tive accuracy is still elusive.

It is a general observation throughout this book that new technologies 

and mathematical instruments are used to refine predictions and increase 

their accuracy; but, at the same time, they open up new ways for  these 

increasingly specialized systems to fail.  Here, we exemplify this observation 

with the help of three episodes that unfold the history of prediction.

Episode 1 is about Niccolò Tartaglia’s “New Science” of ballistics that he 

proposed in the sixteenth  century—an early instance in which the ratio-

nal and the empirical mode become discernible, although they  were not 

fully, and definitely not clearly, separated. In episode 2, located in the sev-

enteenth  century, the two modes receive a clearer expression in the brief 

exchange of letters between Galileo’s (master) student Evangelista Torricelli 

and Giovanni Batista Renieri in which they dispute the predictive accuracy 

of ballistics. The tension between the rational and the empirical mode cul-

minates in episode 3  in the eigh teenth  century in which Benjamin Rob-

ins and Leonhard Euler both produced celebrated breakthroughs in their 

treatises on “new” ballistics. Robins mathematized the empirical mode of 

prediction.5 Euler championed the rational mode— the essential ingredient 

of rational mechanics. Ballistics continued to make significant advances. 

We close with a brief outlook at further advances in scientific treatment, 

new  measurement instrumentation, and new institutional  organization. In 

par tic u lar, digital computers entered the scene and became integral parts of 

two new cultures of prediction. However, we do not examine the computer- 

related part of the ballistics story. Computer- related cultures of prediction 

 will have center stage from chapter 4 onward.

2.1 Episode 1: With Reason, Not at a  Hazard

The application of mathe matics to ballistics precedes the use of gunpowder, 

but in the most complicated, nonexplosive cases such as that of the trebu-

chet, the more mathematically challenging aspects focus on the internal 

ballistics: the  process of generating velocity to expel the projectile. How-

ever, it is undeniable that gunpowder changed the rules and aims of warfare 

and of ballistic science. According to Mark Denny (2011), “For 300 years 

Downloaded from http://direct.mit.edu/books/book-pdf/2369564/book_9780262379045.pdf by guest on 26 September 2024



Hitting the Target with Mathe matics 15

 after gunpowder weapons appeared, it was thought that the trajectory of 

the projectile consisted of straight lines connected by circular arcs” (79). 

This account was challenged in the first half of the sixteenth  century by 

Niccolò Tartaglia in his 1537 treatise La Nova Scientia.6

Tartaglia (1499–1557) is a natu ral starting point. His treatise is the first 

work to frame a prob lem of practical relevance as a task for prediction based 

on scientific knowledge and mathematical tools. The case of Tartaglia illus-

trates how mathematization is not about the unfolding of eternal truths 

but about mixing and balancing heterogeneous sources and reasons, and, 

furthermore, about positioning the new science (including its proponents) 

in a social context. Tartaglia draws from a number of dif fer ent traditions 

and produces a type of mixed reasoning that he wants to establish as a 

“new science.” To achieve this, Tartaglia permits a baffling inconsistency: 

he first questions the straight lines, then uses mathe matics to analyze the 

trajectory of a projectile and supposes straight lines to carry out this analy-

sis.7 The inconsistency does not so much indicate flawed reasoning, but 

rather is motivated by systematic reasons. Tartaglia’s treatise exhibits severe 

shortcomings in both empirical accuracy and mathematical rigor. At the 

same time, his work outlines a daring construction of “mathematized ballis-

tics” as a new object. Tartaglia involves dif fer ent types of reasoning (ragioni) 

when framing this object of investigation. Without being explicit about it, 

he highlights the intricate tensions that hold between the dif fer ent modes of 

math- based prediction that we call the rational and empirical modes of predic-

tion. In Tartaglia’s new science of ballistics, we witness the speciation of two 

dif fer ent modes of prediction whose tension would accompany the develop-

ment of ballistics and the  process of mathematization for centuries to come.

From the outset, Tartaglia locates the new science of ballistics in a social 

context. He dedicates his work to the Duke of Urbino, who was overseeing 

the defense of Venice against the Ottoman Empire.8 The  political circum-

stances should make the new science a valuable gift.

I fell to thinking it a blameworthy  thing . . .  to study and improve such a dam-

nable exercise, destroyer of the  human species . . .  But now, seeing that the wolf 

[the Ottoman sultan Suleiman I, JL] is anxious to ravage our flock . . .  it no longer 

appears permissible to me at pre sent to keep  these  things hidden. (as cited in 

Drake and Drabkin [1969, 68–69])

At the same time, Tartaglia takes care to maintain contact with prac ti-

tion ers. His treatise answers, so the dedication reports, a question posed 
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to him by a bombardier at the Castelvecchio six years  earlier when he was 

working as a maestro d’abaco in Verona: At what inclination to the horizon 

would a cannon achieve maximum range? When Tartaglia chooses to put 

a bold claim for usefulness into his title: “The Newly Discovered Invention 

of Nicolò Tartalea of Brescia, Most Useful for  Every Theoretical Mathemati-

cian, Bombardier, and  Others, Entitled New Science,” he is appealing si mul-

ta neously to patron, theoretician, and practitioner.

The new science was about amplifying established opinions and goals, 

not about disruption. Many historians take this as inherent conservatism. 

We would like to point out that Tartaglia is framing the question in a new 

way. Above all, the new science is  going to be about prediction. Tartaglia 

does not merely answer the bombardier but proj ects the bombardier’s task 

as being a part of a comprehensive science- based practice. This is palpable 

when looking at the tool that Tartaglia invents for this task, the squadra 

(see figures 2.1 and 2.2).

The squadra was designed as the instrument to  measure the  angle of ele-

vation of a cannon barrel so that it could be adjusted. This  angle, in turn, is 

of value only when the bombardier has a mathematical procedure at hand 

A
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Figure 2.1
The squadra as depicted in Tartaglia’s Nova Scientia.
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that relates the ( measured)  angle to the target. The bombardier’s question 

about maximum range turns out to be a special case of this prob lem. One 

characteristic of a culture of prediction is that concrete instances of predic-

tion are embedded into a general practice of solution. Tartaglia acknowl-

edges the value of experience but insists that ballistics as a science (his 

invention) proceeds from experience to general rules.9 And mathe matics 

is the central ele ment in scientific reasoning about prediction. When gun-

ners act in line with the new science, so Tartaglia promises, they  will aim at 

their targets “with reason, not at a  hazard.”10

But what is reasoning about a trajectory supposed to look like? At the 

time, this question could not be answered in a straightforward way; fur-

thermore, it was unclear what it refers to. Thus, Tartaglia’s prime achieve-

ment lies exactly in constituting the trajectory as an object of inquiry. By 

mathematizing the trajectory of a projectile, Tartaglia turns it into an entity 

open for investigation. Consequently, the nature of this investigation 

depends on the available mathematical tools. Tartaglia invokes four dif fer-

ent kinds of reasonings (ragioni): physical and geometrical, demonstrative 

Figure 2.2
A cannon with the squadra at 45- degree elevation as depicted in Tartaglia’s Nova 

Scientia.
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geometrical, Archimedean, and algebraic. The wide spectrum of reasonings 

is remarkable  because it transcends disciplinary bound aries. Arguably, his 

background as maestro d’abaco was conducive to this versatility. Teaching 

practical applications of algebra, arithmetic, and geometry to artisans made 

him inclined to amalgamate mathematical approaches usually kept separate 

in the higher educational system.11 “In contrast to university and humanist 

mathe matics, which focused on abstract, rigorous demonstrations, the aim 

of the abacists was to teach concrete prob lem solving” (Ekholm 2010, 185). 

For instance, Tartaglia describes how he was employed to calculate  tables 

that bakers could use to determine the cost of bread on the basis of the cost 

of ingredients (Ekholm 2010, 201). Much like a baker would want to have a 

formula that connects the type and amount of dough to the fermentation 

and baking time, the bombardier wanted a formula connecting the  angle of 

elevation to the distance of target to be hit.

Tartaglia uses algebra12 in his treatise on ballistics as if it  were common 

practice for abacists: naming unknowns and then determining their value 

by means of equations. Tartaglia fuses this with geometry when he multi-

plies (unknown) sides to calculate areas— something absent from Euclidean 

geometry. Another type of reasoning mentioned by Tartaglia is geometrical– 

demonstrative. The Nova Scientia clearly mimics Euclid’s Ele ments—at that 

time, the gold standard of books on mathe matics— when it employs its 

theorems to proceed by geometrical demonstrations.13 Tartaglia is not fully 

successful in imitating Euclid— his demonstrations lack mathematical rigor 

and conclusiveness. At crucial points, Tartaglia alludes to experience but 

without relying on systematic experimentation. The aim of producing 

numerical values for practical prob lems by  whatever mix of mathemati-

cal techniques stood in stark contrast to what was taught in higher educa-

tion. Furthermore, he still drew on Aristotelean and impetus theories of 

motion.14 Whereas Tartaglia is usually criticized for this methodological 

mess, we would like to reverse the perspective.

The mathe matics of the Nova Scientia is indeed a “strange amalgam” 

(Ekholm) of abacus, axiomatic– deductive, and natu ral– philosophical tra-

ditions. Tartaglia treats none of  these ingredients flawlessly. But this sort 

of critique fails to appreciate Tartaglia’s main achievement. Through this 

amalgam, he can propose an agenda  toward prediction that links the arti-

san knowledge of the bombardier to both scientific knowledge and the 

duke’s interest. It is impor tant to bear in mind that mathematical tools 
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themselves had to evolve to become part of a practice of prediction.15 The 

prob lem and the tools coevolve when Tartaglia constructs the trajectory of 

a projectile as a new object of scientific investigation. To be clear, this cul-

ture of prediction— what bombardiers need to know and to do in order to 

shoot with reason and not at a  hazard— was more vision than real ity.

The frontispiece of the Nova Scientia depicts Tartaglia’s vision in a rich and 

telling way, with education, practice, mathematical disciplines, the sciences, 

Aristotle, Plato, and Tartaglia himself (see figure 2.3) pre sent in the picture.

We are shown an enclosure encircled by a high wall. Steps are depicted mounting 

up to a single gate guarded by a venerable man entitled Euclide. Only by this dis-

cipline is one admitted to the sciences within the enclosure. (Strong 1936, 57–59)

On the left of Euclid, who is acting as doorkeeper, one individual is try-

ing to enter the enclosure by his own means, but his ladder is too short. 

Figure 2.3
The frontispiece of Tartaglia’s Nova Scientia.
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 There is no way to shortcut mathematical education. A second opening of 

the enclosure is on the opposite side of the Euclid gate. Some steps lead 

up to Philosofia depicted as reigning on her throne in solitude. Actually, the 

opening is more  toward rather than leading away from the central enclo-

sure.  Philosophers have to move down to become involved in science. Both 

Aristotle and Plato stand on the steps, the former a bit closer to the arena of 

science. The sciences form a chorus of  women, each carry ing a label, among 

them Geometria, Astronomia, Arithmetica, Musica, Hydromantia, Geomantia, 

and Architectura. In the front row amid this chorus stands Tartaglia himself. 

He has no label, but the entire enclosure, spread out as a secluded place 

between philosophy and normal life, appears to be the arena for his new 

science. The other sciences marvel at it. The enclosure is a kind of shooting 

ground with a cannon and a mortar firing projectiles whose trajectory is 

depicted very plainly.

The frontispiece locates the new science among existing sciences, but, at 

the same time, it opens up new territory. Plato holds the banner NEMO HUC 

GEOMETRIE EXPERS INGREDIATUR [Only knowers of geometry are allowed 

to enter], and thus mirrors the figure of Euclid. In between them,  there is 

a space for mathematized science that is concerned with practical  matters. 

This is the new invention and discovery Tartaglia is proud of, or better, 

that the frontispiece illustrates. Even the new object of investigation— that 

is, the trajectory of a cannon ball—is included in the illustration. Remark-

ably, the trajectory on the frontispiece is continuously curved, and Tartaglia 

is counted as the first to question the common “straight line plus arc” wis-

dom. However, unlike what the frontispiece displays, this treatise actually 

models the trajectory as straight lines plus arc. For what reason would he 

allow such blatant inconsistency?

We argue that the reason lies in the claim for a predictive practice. In 

such a practice, mathe matics has to be conceived as a tool. For a tool to work, 

a number of conditions have to be met, including  acceptance, tractabil-

ity, and usability. Tartaglia was prob ably well acquainted with the parabola 

 because,  after all, he did publish the translation of Archimedes’s quadrature 

of the parabola. However, much like the frontispiece suggests, the only way 

to ballistics is through Euclid. At the time, demonstrative reasoning and 

analy sis demanded working with the geometrical ele ments known from 

Euclid. Consequently, Tartaglia moves from the physically adequate curved 
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trajectory to a mathematically admissible straight one. He acknowledges 

that his geometrical model is only approximately valid.

No trajectory other than the perpendicular can have any part that is perfectly 

straight,  because the weight of the body continually acts on it and draws it  toward 

the centre of the world. Nevertheless, we  shall suppose that part which is insensi-

bly curved to be straight, and that which is evidently curved we  shall suppose to be 

part of the circumference of a circle, as they do not sensibly differ. (Tartaglia [1537, 

Book II, Supposition 2] as cited in Ekholm [2010, 190], emphasis added)

According to Tartaglia’s account, mathematization does not automati-

cally result in a representatively adequate model but in a model whose 

flexibility can be used to adjust it in an (predictively) adequate way.16 How-

ever, predictive adequacy was a mere postulate, neither checked nor correct. 

In fact, Tartaglia argues about the form of the trajectory— straight upward 

according to  angle of shoot, circular arc of certain dimensions, fi nally per-

pendicular descent  toward earth—so that he can break down the prob lem 

into established building bricks and infer that an elevation of 45 degrees 

 will maximize the range.

Hence, for Tartaglia, the new science depends on a delicately balanced 

mixture. The agenda of prediction must be promising enough to interest 

the duke, it must be in line with the experience of prac ti tion ers (the eleva-

tion of 45 degrees, halfway between vertical and horizontal, was widely 

held to result in maximum range), and the mathematical instrumentation 

must be academically accepted (Euclidean geometrical shapes and forms of 

analy sis). One can denounce the willingness to re spect all  these conditions 

as opportunistic. Moreover,  there can be no doubt that predictions along 

the lines of Tartaglia’s treatise are of staggeringly low empirical adequacy. 

The success and fame of Tartaglia’s ballistics do not rely on the accuracy 

of the predictions. At the time, this accuracy could not have been assessed 

anyway. Rather, what makes Tartaglia influential is that he was the first to 

create an amalgam that constructed ballistics as a predictive science.

In Tartaglia’s amalgam, we can discern two modes of prediction, even if 

they are not elaborated in any clear way. The first can be called the rational 

mode. It adopts mathe matics to grant generality and authority in deriving 

predictions from general laws. The second mode we call empirical. It dwells 

on the flexibility of mathematical tools that can be adapted to practical 

situations. The next episode shows how the work of Galileo and his student 
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Torricelli advanced mathematization and further brought to light the two 

modes of prediction.

2.2 Episode 2: Early Expression in the Seventeenth  Century

Tartaglia’s work was impor tant to Galileo (1564–1642), born seven years 

 after Tartaglia’s death. Galileo has a protean reputation for being the inven-

tor of the experiment in science, for being a theoretician who advocated 

for the superiority of mathematization, and for being an engineer who 

actualized theory in technology.17 Notwithstanding the many reasons that 

distinguish Galileo as a pioneer,  there are continuities with Tartaglia. Both 

belong to the Italian tradition of mathematized mechanics.18 On the social 

side, both men undertook constant efforts to gain patronage.19 Importantly 

both also took up the “Archimedean” approach, which combined physical 

and mathematical reasoning.20

Compared to Tartaglia, however, Galilei introduces a much more elabo-

rate vision of what new sciences based on prediction would look like. Like 

Tartaglia, he hails ballistics as a “new science,” though for Galileo, this 

means that he achieves what Tartaglia had merely dimly intended. We start 

with a brief account of Galileo and then turn to the dispute between Tor-

ricelli, who elaborated and defended Galileo’s account, and Renieri, who 

complained about its lack of empirical adequacy. This dispute brings to the 

fore how wielding mathe matics as a tool for prediction involves both the 

empirical and the rational mode of prediction.

In his 1638 tract, Discourses and Mathematical Demonstrations Relating to 

Two New Sciences, Galileo introduces ballistics and the strength of materi-

als as new sciences.21 The fourth day of the dialogue between Salviati (the 

Copernican academician) and Sagredo (the educated layman) is devoted 

to ballistics and promises to exploit scientific knowledge to make predic-

tions. Galileo includes several  tables describing projectile trajectories for 

a variety of dif fer ent initial  angles (i.e., elevations of a cannon muzzle). 

A point of fundamental importance that distinguishes him from Tartaglia 

is that Galileo starts from a new theory of motion and derives the exact 

mathematical form of the trajectory from it. The projectile, so Galileo’s 

pathbreaking theory, is moving in the direction taken by the cannon bar-

rel, whereas, at the same time, it is constantly affected by a force  toward 

the center of the earth. Tartaglia had no mathematical concept of such a 
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theory and consequently could not derive the trajectory from theory in any 

mathematical way. Famously, Galileo describes the trajectory of a projectile 

as a parabola, and the  tables in Two New Sciences show the altitude and sub-

limity of each initial  angle. However, Galileo’s geometrical methods do not 

give him a general formula for the relationship between  angle and range.

Curious findings appear in the  table— and both Mersenne and Torricelli 

subsequently took up the  table and tried to refine it not only to produce 

more useful information for gunners but also to make it mathematically 

more rigorous. Their real interests, though, lay in the latter, despite lip  service 

to utility. In fact, the goals of rigor and utility, conditioned on the available 

mathe matics,  were at odds with each other.

The notion of mathematical rigor changed considerably over the course of 

history. Galileo used mainly geometrical methods, and it was the more geo-

metrico standard of Euclid that defined rigor in demonstration.22 The point 

for Galileo is that the theory of motion should be sufficiently mathema-

tized so that essential aspects of physical processes— such as the trajectory 

of a projectile— can be derived by mathematical reasoning. We deem this 

point of crucial importance: it shows that mathematization must aim at 

a balance. On the one side, a theory must be  simple enough that one can 

carry through the derivation with the mathematical means at hand. On the 

other side, it must be sufficiently rich in content so that one can derive rel-

evant quantitative consequences from it. Achieving a balance might not be 

pos si ble at all; or, if pos si ble,  there might be dif fer ent and conflicting bal-

ances. Distinguishing modes of prediction is a helpful tool when it comes 

to analyzing the balances attempted by dif fer ent actors.

What kind of balance does Galileo strike? He does not fully stand up to 

the promise of the rational mode  because he cannot offer a general solution 

to the question of the trajectory. Although he is able to derive his famous 

result that the trajectory is a parabola, and also prove that the 45- degree 

 angle therefore produces the maximum range, he is unable to pre sent a 

general account that would tell the gunner how to predict the range.23 And 

Galileo does not provide a prediction in the empirical mode  either  because 

his  tables are geometrical demonstrations rather than real predictions for 

gunners. Most significantly,  because Galileo relies on standard geometrical 

means, he can tackle the ballistics prob lem only if air  resistance is left out.24

The crucial question then is  whether ignoring air  resistance  matters in 

terms of the  actual prediction. If not, the rational and empirical mode would 
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yield congruent results; rigor and utility would be in accordance. Galileo is 

well aware that he has no  viable alternative to ignoring air  resistance, but 

he also suggests that this would not  matter in terms of the prediction. This 

suggestion shows his faith in the rational mode.  Here is how he deals with it.

In Proposition 7 of the Two New Sciences, Galileo establishes that the 

45- degree  angle results in maximum range.25 Sagredo and Salviati then dis-

cuss the relative merits of mathematical against experimental validation. 

Sagredo, the educated layman,  favors the former: “The force of necessary 

demonstrations is full of marvel and delight; and such are mathematical 

[demonstrations] alone.” Salviato, the Copernican academician, agrees: 

“The knowledge of one single effect acquired through its  causes opens the 

mind to the understanding and certainty of other effects without need of 

recourse to experiments” (Galileo 1974, 245).

Although Galileo praises the force and generality of mathematical dem-

onstrations, he assigns an impor tant role to experimental knowledge. 

Namely, “the knowledge of one single effect through its  causes” is the starting 

point on which the generalizing mathematical repre sen ta tion is based. In 

Proposition 1 of the Fourth Day, Galileo reports empirical knowledge that a 

projectile fired horizontally in the air follows a path that is a semiparabola. 

From  there, Galileo argues, one can move over to the mathematized theory 

and derive further knowledge. He acknowledges, however, that such a move 

might be provisional  because addressing a new situation might call for addi-

tional experimental coverage. Galileo  here navigates between the commit-

ment to experiment and the promise of the rational mode of prediction.

Galileo acknowledges the importance of the question of  whether the 

presence of air  resistance makes a significant difference. The parabola has 

led him to the maximum range Proposition 7. The parabola form required 

the no- air- resistance condition. Without it, the entire endeavor would be 

nil. At this point, Galileo refers to the common knowledge among prac ti-

tion ers. They knew empirically, Sagredo said, that 45 degrees is the correct 

result:

I already knew, by trusting to the accounts of many bombardiers, that the maxi-

mum of all ranges of shots, for artillery pieces or mortars— that is, that shot which 

takes the ball farthest—is the one made at elevation of half a right  angle . . .  But 

to understand the reason for this phenomenon infinitely surpasses the  simple 

idea obtained from the statements of  others, or even from experience many times 

repeated. (Galileo 1974, 245)26
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Was this (alleged) common knowledge of prac ti tion ers good enough to 

work as a basis for neglecting air  resistance altogether?

In projectiles that we find practicable, which are  those of heavy material and 

 spherical shape, and even in [ others] of less heavy material, and cylindrical shape, 

as are arrows, launched [respectively] by slings or bows, the deviations from exact 

parabolic paths  will be quite insensible. (Galileo 1974, 276)

Galileo knows that, with the geometrical means available to him, he can 

derive the parabola only when neglecting air  resistance. Without ignoring 

air  resistance, his new science of ballistics would have been a nonstarter. In 

other words, Galileo’s claim for prediction rested on his faith in the rational 

mode. Such a claim is plausible (only) in a rational culture of prediction in 

which this faith is shared.

At the time, the rational culture was by no means firmly established. 

Torricelli, with whom this episode continues, had to strug gle with how to 

defend Galileo’s prediction. Evangelista Torricelli was prob ably Galileo’s 

most ardent pupil. “Among Galileo’s leading followers only Torricelli seems 

to have been in general agreement with the master on  these points and 

may therefore be taken as his best representative” (Segre 1991, 91).27 He 

elaborated Galileo’s theory of ballistics, turning it into the general predic-

tive theory that Galileo arguably had strived for. Torricelli published his 

findings in 1644 in his Opera Geometrica, in the second section “de Motu.”

Torricelli believed that gunners  were dismissing Galileo’s  table  because 

it not only offered  little advice on calculating accurate trajectories but, 

according to Segre, it also contradicted their conventional understanding 

that up to 45 degrees, projectile ranges would increase in direct proportion 

to the  angle of elevation. Torricelli sought to make an improved  table that 

followed Galileo’s but allowed an empirical correction for air  resistance at 

high velocity. High velocities  were achieved by cannons; mortar shots, like 

nonexplosive weapons,  were considered low velocity by the two men.28 The 

claim was that the range was proportional to the sine of 2α, where α was 

the  angle of elevation.

Thus, Torricelli was able to express in a formula what the parabola meant 

in terms of prediction— and he alluded to Tartaglia’s predictive agenda by 

designing a squadra that made the predictive mathe matics directly usable 

(see figure 2.4)— a clear statement that ballistics, first, was now on a sound 

scientific footing and, second, had become the useful predictive instrument 

that gunners had sought for so long. Or so it would seem.
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Figure 2.4
The squadra from Torricelli (1644, 235) that correlates (predicted) range and elevation.
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Torricelli defended Galileo’s position on vari ous occasions. One part of 

the criticism targeted the theory of motion and, hence, was linked only 

indirectly to ballistics.  People such as Mersenne, Descartes, or Roberval 

did not accept that gravitational force would constantly accelerate a body 

 toward the center of the earth. They put forth empirical observations indi-

cating that falling bodies attained maximum speed. Torricelli reacted by 

stressing the mathematical coherence of the theory—up to the point when 

he stated that the  matter of true or false would not be impor tant.

I do not care  whether the princi ples of the De motu are true or false. For if they 

are not true, let us feign they are true, as we have assumed, and then look at other 

speculations derived from  these princi ples, not as mixed but as purely geometri-

cal. (Torricelli in a letter to Ricci, as cited in Segre [1991, 93])29

The conflict did not spare ballistics. In 1647, Giovanni Batista Renieri 

in Genoa wrote to Torricelli expressing concerns about Galileo’s and Torri-

celli’s results. Based on empirical tests,30 Renieri doubted Galileo’s parabolic 

account. “I was astonished that such a well- grounded theory turned out to 

work so badly in practice” ( English according to Segre [1991, 94]). Renieri, 

as opposed to Torricelli, was far more experienced in working with both 

cannons and the gunners who use them. For Renieri, ballistics was a real 

prob lem and not a philosophical puzzle.

Torricelli prob ably cringed but kept steadfast to his standpoint that the 

rational and empirical modes  were in harmony. The appeal of ballistics as 

a science depended on it being si mul ta neously both useful for gunners and 

a challenge for natu ral  philosophers. Torricelli wanted to preserve the core 

scientific result— that is, that the mathematical form of the trajectory is a 

parabola. Starting from the parabola, Torricelli had been able to provide the 

sine 2α formula relating  angle and range, cashing in exactly what the pre-

dictive agenda had promised. Renieri pointed out, however, that the predic-

tions  were apparently off the mark. Scientific “grounding” and predictive 

accuracy  were less in harmony than the Galileo– Torricelli account of bal-

listics wanted to have them.

Torricelli still did not fully abandon the supposed agreement between the 

rational and the empirical mode.31 He hoped that refined experimental tests 

would vindicate the theory. When Torricelli wrote back to Renieri with spe-

cific instructions for carry ing out experiments, Renieri diligently followed 

them but still did not come close to the ranges predicted by the  tables. 

Another of Torricelli’s defensive responses to Renieri was that in “de Motu,” 
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he was addressing  philosophers, not gunners (which is obvious  because it 

would be unlikely for gunners to have  either the skill or the time to read 

Torricelli’s Latin treatise).

For Torricelli, the retreat into the purely geometrical is acceptable as a 

philosophical move; for Renieri, this is pointless. Torricelli resorts to the 

rational standpoint: the mathematical derivation from theory is more 

impor tant and opens up the potential for predictions; their accuracy is a 

secondary prob lem. Renieri, in contrast, sticks to the empirical mode of 

prediction. Advancing mathematical treatment is valuable but  under the 

condition that it increases predictive accuracy.

For Segre, this episode is exemplary of the tension and conflicts between 

early modern philosophical and artisanal traditions, and the challenge of 

having any sort of dialogue between them. He argues that while Torricelli 

created the impression that he was working experimentally on  these  matters, 

in fact his assumptions and suggestions in the letters to Renieri about the 

pos si ble precision of cannon technology revealed him to be a novice in 

working with cannons. Indeed, A. R. Hall, in his Ballistics in the Seventeenth 

 Century (2009), also comments on the immaturity of engineering and tech-

nology in seventeenth- century weapons, claiming that they  were simply 

not standardized or reliable enough to support a science of gunnery.32 Con-

sequently, the empirical mode of prediction at that time was de facto an 

illusion. Neither did the relevant empirical data exist nor would it have 

been pos si ble to obtain them— despite the hopes and suggestions of Tarta-

glia, Galileo, and Torricelli.

 Here the episode raises the question of the tool character of mathe-

matics. Must the tool produce something practical? If so, then accuracy of 

prediction is the primary evaluation criterion. If the aim is to accurately 

predict trajectories and ranges, failing to do so must render the tool useless. 

But if the goal is to describe the geometry of a trajectory in theory, then Tor-

ricelli’s use of mathe matics is much more satisfactory. This is an instance of 

how the prob lem of prediction and mathematical tools codevelop.

On another note, the correspondence between Torricelli and Renieri also 

introduces the idea of “mixed mathe matics,” a term that captures what 

we have found in Tartaglia’s work in a much more unsystematic fashion. 

In the seventeenth  century,  there was no term for applied math; applied 

math prob lems such as ballistics  were referred to as “mixed mathe matics.” 

All sorts of engineering prob lems  were described by this phrase, yet what 
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was being “mixed” is open to some speculation.33 We have argued that 

when pursuing the predictive agenda of ballistics, researchers  were seeking 

a balance between the two mathematics- based modes of prediction. We 

have also argued that with the type of data and the mathematical tools 

available at the time, no balance or mixing could have fulfilled the hopes 

articulated by ballisticians. The next episode in ballistics jumps forward 

to the “classical” eigh teenth  century when the two modes of prediction 

parted ways and two cultures— a rational and an empirical one— matured.

2.3 Episode 3: Robins, Euler, and Conflicting Modes of Prediction

The third episode takes place about one  century  later in the 1740s. A lot 

happened in that  century that is relevant for the development of mathe-

matics and ballistics. We focus on formulating an argument about the two 

mathematics- based modes of prediction that then reached full bloom.34 

We see a significant further co- development of prob lems and tools that 

puts the empirical and the rational mode alongside each other. The leading 

characters in this episode are Benjamin Robins (1707–1751) and Leonhard 

Euler (1707–1783).

Robins and Euler both had multidimensional and peripatetic  careers, 

with the  English Robins  dying in India and the Swiss Euler in Rus sia. Each 

contributed to many dif fer ent proj ects, many of which  were extensions 

of Newtonian mechanics. Both  were particularly interested in producing a 

general solution (or a prediction) of the kinematics of high- speed cannon 

shots. Whereas Robins was the more practically oriented of the two, he 

was no mathematical slouch,  either.35 At the age of twenty, he published a 

proof of Newton’s quadrature in the Philosophical Transactions that got him 

elected to the Royal Society the same year. For most of his  career, Robins 

worked as what we would  today term a “civil engineer”— designing bridges, 

draining fens, planning harbors, and so forth. In his 1742 treatise, New 

Princi ples of Gunnery, Robins (1972) undertook to turn ballistics into a math-

ematized science with predictive power. He set up a comprehensive agenda 

that included both empirical and theoretical research and that can be seen 

as the first full account of the empirical mode of prediction in ballistics. 

Robins expressed this in the subtitle of the New Princi ples “containing the 

determination of the force of gunpowder and an investigation of the differ-

ence in the resisting power of the air to swift and slow motions.”
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Robins synthesizes research from very dif fer ent directions. He extends 

specific propositions from Newton’s Principia to ballistics. The New Princi-

ples offers a sophisticated account of the internal ballistics of cannons, a 

description of the production of gunpowder, and the  measurement of vari-

ous ranges and trajectories that he summarized in a set of  tables. Robins 

also designs an instrument, the ballistic pendulum, for  measuring the muz-

zle velocity of a projectile. He is aware that predicting an (external) trajec-

tory requires accurate knowledge about the initial conditions, especially 

muzzle velocity. And this input can be controlled only when gunpowder is 

standardized— hence his work on gunpowder. Robins sees another lacuna, 

namely  measuring air  resistance that is a— possibly major— factor determin-

ing the trajectory. To fill this lacuna, he invents another instrument called 

the “whirling machine.”  These two instrumental developments provide 

new data. Taking account of the empirical findings led to new methods of 

calculating projectile trajectories involving new equations and algorithms. 

In his New Princi ples, he writes:

This has principally given rise to the ensuing treatise, in which the force and 

varied action of Powder is so far determined, that the velocities of all kinds of 

bullets impelled by its explosion may be thence computed, and the enormous 

 resistance of the air to swift motions (much beyond what any former theories 

have assigned) is likewise ascertained. (4)

Unlike Galileo’s or Torricelli’s  tables, Robins’s  tables are designed specifi-

cally for use by gunners. One of the in ter est ing prob lems Robins acknowledges 

in his work is that his experiments often generated more variation between 

dif fer ent  trials than between trial and theory. In 1743, Robins had no statisti-

cal theory on which to rely when managing his data and determining which 

trial results should be  either relied on or discarded. But his observation of 

the prob lem stands out in contrast to the work of ballistics theorists, none of 

whom mention it as a challenge, and with some such as Torricelli seemingly 

very naïve about the inconsistency of real weapons in the real world. Clearly, 

the empirical data play a guiding role in Robins’s work. He calculates a bal-

listics  table with mathematical means, but producing data and inventing 

 measurement technology makes up a large part of his agenda. Mathe matics 

is needed to adapt data, technology, and theory to each other.

Robins’s work shows in a paradigmatic way how prob lems and tools 

coevolve in the empirical mode of prediction. One part of his research con-

cerned the effects of rifling. Robins used wooden bullets in rifled barrels to 
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show that the projectile had greater accuracy. He used a lead ball to show 

that rifling increased the projectile’s range. He discovered that the way the 

ball exits the barrel  causes the ball to rotate, and this disturbs the uniform 

air flow over the ball. Air flows faster on one side than the other, and the 

ball deflects  toward the higher- velocity side (in the direction of the spin). 

Robins proposed that the rifled bullet’s direction of forward motion coin-

cides with its axis of motion. That is, Robins developed a mathematical 

account of what  later became known as the Magnus effect.

Robins also in ven ted  measuring instruments. With the help of his 

“whirling arm,” Robins could confirm that air  resistance varies roughly as 

the square of the speed for slow- moving projectiles. This agreed with what 

Newton, Johann Bernoulli, and  others had assumed. However, he observed a 

sharp increase in  resistance (by about a  factor of three) at supersonic speeds. 

This was unanticipated and not accounted for by Newton and  others.36 

Robins was uncertain about how to treat this surprising finding  because it 

seemed to escape the standard expectations of ongoing mathematization.

Was his work an application of Newtonian mechanics?  Here, the notion 

of “application” is precisely what is problematic. In his treatise, Robins 

does not make a theoretical contribution to mechanics— nor does he fur-

ther develop the mathematical tools. Robins’s calculation of air  resistance 

certainly does not violate Newtonian mechanics, but Newton did not cover 

how air  resistance changed in complex ways relative to speed.  There is a 

well- charted history of Newton suggesting that air  resistance was propor-

tional to the square of speed but being unable to derive the consequences 

for the trajectory. Johann Bernoulli, who did not use Newton’s fluxions 

but the more algebraically framed Leibnizian calculus, was able to compute 

the range— and was proud that the “continental” calculus proved to be the 

superior mathematical instrument.37

But Robins approaches the  matter differently and not as a competition 

between mathematical tools, skills, or elegance when bringing phenom-

ena  under general laws. His air  resistance calculations are motivated by 

empirical data, and his aim is to develop a formula that would be in accor-

dance with his empirical findings. Thus, Robins establishes the empirical 

mode of prediction through his predictive agenda and achievements in 

 measurement technology.

In 1747, Robins received the Copley Medal from the Royal Society in 

recognition of his achievement in developing the new science of ballistics. 
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Published in 1742 as New Princi ples of Gunnery, his work on the predic-

tive agenda was a huge success. It was taken up as a book at Woolwich, 

translated into French by LeRoy for use in their artillery schools, and, most 

famously, read and commented on by Leonhard Euler who published the 

work in German in 1745 with a voluminous additional commentary and 

mathematical extension.

Euler pursues a dif fer ent approach that made him the outstanding leader 

of “rational mechanics.” He received a copy of the New Princi ples of Gunnery 

shortly  after its publication in 1742 and began to write a commentary and 

translate it into German (published 1745). He published a further commen-

tary in the Memoirs of the Royal Acad emy of Berlin in 1753 (Euler 1922b). Euler’s 

work not only extends the mathematical princi ples put forth by Robins but 

also makes some changes. We want to highlight that Euler sees mathe matics 

in a dif fer ent role and strives for a fundamentally dif fer ent balance between 

the modes of prediction. Euler delivers major achievements in elaborating 

the mathematical tool of calculus. In fact, objects such as Newton’s equations 

received what is nowadays their common form through the hands of Euler. 

For him, mathe matics serves as the backbone of rational mechanics. Con-

sequently, he tries to develop a tool that  will enable rational mechanics to 

cover relevant cases. At the same time, which cases are deemed scientifically 

relevant is determined by  whether analytical methods could cover them. This 

is a typical instance of the co- development of tool and prob lem— a dynamic 

that separates Euler’s and Robins’s accounts from each other.

Euler was a leading figure in eighteenth- century mathe matics and sci-

ence.38 For Clifford Truesdell, Euler was a hero of rational mechanics.

Mechanics is a science of experience; for the theorist, physical experience is bal-

anced against the experience of  earlier theories for the phenomena. The history of 

rational mechanics is neither experimental nor philosophical; it is mathematical; 

it is a history of special prob lems, concrete examples for the solution of which new 

princi ples and methods had to be created. But the solution of the special prob lem 

was never left to stand alone; since  there was only one true mechanics, the special 

case served not as an end in itself but as the guide to the right conception. (Truesdell 

1968, 96)39

Scholars have understood Robins’s New Princi ples and Euler’s translation 

very differently. Clifford Truesdell (1954) dismisses Robin’s work as a mere 

application of Newtonian mechanics and refers to the New Princi ples as “a 

 little  budget of rules, experiments, and guesses,” whereas he calls Euler’s 
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“ great treatise on ballistics . . .  the first substantial work on the subject” 

(xxxviii). According to this viewpoint, Robins’s work became scientific only 

through Euler’s annotations. Steele is of the opposite opinion: his hero 

is Robins who made ballistics a science that is relevant to prac ti tion ers.40 

We maintain that juxtaposing the two men as heroes of dif fer ent agendas 

misses the point. Both men set up a predictive agenda that assigned a cen-

tral function to mathematical tools. Both men attacked their agenda in a 

masterful way. However, their work was defined by dif fer ent modes of pre-

diction. And the contrasting assessments of their merit mirror the (implicit) 

preference for one of  these modes.

Euler (1922a) praises Robins’s experimental results but also acknowl-

edges that the true trajectory (i.e., its mathematically described shape) still 

remains not well known (prop VI, chapter 2). He sets himself the task of 

determining the trajectory— a showcase for the power of his mathematical 

methods. But they are not almighty, so Euler has to simplify the equations 

that Robins had come up with. Most importantly, Euler assumes that air 

 resistance depends on the square of the velocity— instead of square plus 

fourth power as Robins had proposed. This falls back on Newton and Huy-

gens, though neither of them had been able to treat the case mathemati-

cally in such a complete way as Euler. He calculates approximate trajectories 

based on Bernoulli’s solution. Euler formulates second- order differential 

equations that pre sent some of the earliest instances of the way such equa-

tions are conceptualized  today. He obtains equations for range, altitude, 

and velocity in both the ascending and descending part of the trajectory— 

the vertical descent as limiting case of the descending part, and the posi-

tive slope as asymptote for the ascending part. “As a demonstration of the 

ability of analytic methods to solve difficult physical prob lems of practical 

interest, the work was a masterpiece” (Barnett 2009, 100).41

The likes of Truesdell agree and take this appraisal as an indication of its 

overall scientific quality. But on the basis of Robins’s data, Euler’s predictions 

are still not a good match. Euler was surely aware that something like the 

fourth power of the velocity entering the equation would have rendered the 

entire prob lem intractable. He de cided to go for the solvable prob lem— that 

is, to define the prob lem of prediction so that it could be tackled by his math-

ematical methods.

 Here is a second example that highlights where Euler and Robins dif-

fer. Robins had observed the (Robins-)Magnus effect that influenced the 
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trajectory. Euler discarded the effect and held imperfections in bullet curva-

ture responsible. He allowed that  these kinds of imperfections could lead to 

deviations between empirical observations and prediction, but they could 

be plausibly left out of the picture  because they are concerned with ques-

tions of design and standardization. Rational mechanics is not in charge of 

dealing with design imperfections. Had Euler accepted the effect as part of 

the physical prob lem, he would not have been able to derive an asymptotic 

trajectory. Being able to derive predictions—in the rational mode— hinged 

on excluding the Magnus effect.

Like Torricelli and Renieri, Euler and Robins  were using mathe matics 

as dif fer ent kinds of tools for dif fer ent purposes and, most especially, for 

dif fer ent audiences. Euler’s audience was not gunners, as evidenced by the 

venues in which the work was published. Euler was not using mathe matics 

as the same kind of tool as Robins, although the mathe matics included in 

their two treatises  were very similar (remembering that, in fact, this piece of 

Euler’s work was merely a translation of Robins with commentary and “cor-

rections”). Both could claim  great success in their predictive agenda.42 How-

ever, they framed the concept of prediction differently—in the empirical 

respectively rational mode. For Robins, the empirical data  were the basis, 

and mathematization should create a practicable tool able to recover  these 

empirical data— and, of course, produce more predictions. For the empirical 

mode of prediction, the flexibility of mathe matics is a crucial ingredient. 

Euler, in contrast, was led by the adequacy of mathe matics as the tool to 

elevate rational mechanics. Consequently, he did not invest in the empiri-

cal side but tried to develop the calculus into a machinery for solving dif-

ferential equations and thus broaden the scope of rational mechanics.

2.4  Toward Cultures of Prediction

The modes of prediction became central pieces in what we call cultures of 

prediction. Such cultures comprise more than modes of prediction. They 

need established practices of prediction that are used (and learned) in a 

socially  organized and institutionalized way. The episodes  here in chap-

ter 2 have brought us to the point where the rational and the empirical 

modes of prediction are clearly discernible. The development of the ratio-

nal and the empirical cultures of prediction begins and gathers momen-

tum. When Truesdell looks back and describes rational mechanics, he is in 
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a way promoting the rational culture and also projecting it back into the 

eigh teenth  century. This book introduces and discusses cultures of predic-

tion in all of the remaining chapters, each culture with a mode of math-

ematical prediction, and each one entangled with the discourse on science 

and engineering.

We could have continued with episodes illustrating how mathematical 

tools coevolved with predictive prob lems. However, we  shall not do this 

for two reasons: first, the mathematical side becomes quite technical, and, 

second,  toward the twentieth  century, two impor tant  things happened that 

deserve treatment in their own chapters. One is the hybridization of the 

empirical and the rational mode. Such hybridity proved to be pivotal for 

predictions but was deeply contested, mainly  because of the way it played 

into the relationship between science and engineering. Therefore, we devote 

chapter 3 to the debated role of mathe matics in late nineteenth- century 

mechanical engineering. The second impor tant reason is that computation 

and numerical approximation emerged as new subjects of mathematical 

theory and practice. This led to new cultures of prediction (we discern the 

iterative– numerical and the exploratory– iterative) that are discussed in 

chapter 4 and all  later chapters.

We conclude this chapter with a brief outlook at how the rational and 

the empirical modes continued to shape the development of ballistics. In 

1852, Gustav Magnus published “Über die Abweichung der Geschosse: Und 

über eine auffallende Erscheinung bei rotierenden Körpern” [On the devia-

tion of projectiles: And on a remarkable phenomenon in rotating bodies] 

in the journal Annalen der Physik und Chemie. Thirteen years  earlier, Siméon 

Denis Poisson published his Recherches sur la Mouvement des Projectiles dans 

l’Air [Research on the movement of bodies in the air]. In his 1893 trea-

tise, “On the path of a rotating  spherical projectile,” Peter Tait’s comment is 

that “Poisson’s treatment of the subject is unnecessarily prolix, and in con-

sequence not very easily understood.” Thus, it is apparent that the mathe-

matics of ballistics had arrived among the community of physicists in the 

nineteenth  century, even though  there remained disagreement about the 

treatment. Tait was a Robins apologist; he compared Poisson’s treatment 

to Robins from about a  century  earlier. Tait also claimed that Magnus did 

not  really know the work of  either Newton (on this point) or Robins. Tait 

pointed out that Magnus also disparaged Robins’s work, writing that Rob-

ins generally believed the trajectory- diverting effect was produced by the 
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spinning projectile. But the phrasing makes it clear that Magnus considers 

this of  little influence in his own mathematical description. Magnus proved 

what Robins merely believed.

Moreover, Magnus was the first to outline a mathematical prediction. 

Robins’s was a demonstration of an empirical phenomenon that he did not 

translate into prediction—in part, due to the rarity of rifled weaponry that 

would make such a prediction useful to gunners. Magnus’s work yielded the 

predictive results that earned the phenomena its name (see figure 2.5), but 

Magnus’s calculations  were hardly aimed  toward gunners. They redefined 

the scientific frontier of fluid dynamics.43

For Magnus and Poisson, the question how the spinning of a projectile 

affects its trajectory remained not only an in ter est ing practical prob lem for 

military engineers and gunners, but also constituted a respectable math-

ematical concern. For  these mathematical physicists, accurately predicting 

the trajectory of a projectile was perceived as a true scientific challenge and 

not, as Torricelli would have had it some two hundred years  earlier, a  matter 

of  little intellectual interest, dismissed with a claim that mathe matics was 

not a tool for describing truth.

In a sense, Magnus has claimed owner ship of the calculation of the tra-

jectory of a spinning projectile by giving his name to the effect. It is equally 

clear that Newton described the effect in the seventeenth  century, and Rob-

ins both observed it in his tests and explained it verbally. But, in this case, it 

Magnus force

Figure 2.5
A sketch of the Magnus effect with streamlines and turbulent wake. Courtesy: Wiki-

media commons.
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was mathematical calculation of the trajectory incorporating the effect that 

conferred the naming rights.

Ballistics for gunners evolved along a dif fer ent path. By and large, the 

empirical mode of prediction became institutionalized. Proving grounds 

became locations endowed with considerable amounts of resources for not 

only  measurement and testing but also computation.  Giant ballistic pendu-

lums or electric chronographs  were designed to  measure muzzle speed and 

air  resistance even more accurately.44 The goal of ballistics included being 

able to express air  resistance as a function of speed obtained from experi-

mental firings. In France, the Gâvre Commission pursued this goal, as David 

Aubin (2017) has documented so well.45 This work involved mathematiza-

tion in a par tic u lar sense— namely, designing computational schemes that 

navigate between dif fer ent conflicting goals and conditions. Including an 

account of air  resistance and the Magnus effect made them scientific in the 

first place. But the theoretical backbone had to remain flexible enough to 

be adaptable to the growing amount of data. At the same time,  whatever 

approximation scheme was introduced, it had to be efficient in terms of 

computational resources and time. Mathematicians such as Siacci (1892) or 

Moulton (cf. Gluchoff [2011]) aimed at mathematical methods that strike 

a balance.

Ballistics had started out as the first field of new sciences in which math-

ematization promised to serve prediction. The empirical and the rational 

mode of prediction slowly crystallized into a state of being in conflict with 

each other, but often in a progressive way. In the early twentieth  century, 

however, prospects changed: approximation, computation, and economy 

posed new demands. Mathematization was not just about a refined account 

of physical complications. It was more about constituting a new subject  matter 

for mathematical methods: numerical approximation and efficient computa-

tion. However, enlarging the toolbox of mathe matics by adding stepwise and 

iterative algorithms turned computation into a bottleneck. Consequently, 

the empirical culture of prediction started to  organize computation on a large 

scale.46

The story of the ENIAC computer would fit  here.47 A World War II devel-

opment, the original impetus for a large computing machine was to aid in 

calculating ballistics  tables for use by the US Army. The proj ect began as a 

collaboration between the US Army Ballistics Research Laboratory at the 

Aberdeen ( Maryland) Army Proving Ground and the Engineering School at 
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the University of Pennsylvania. Firing  tables  were necessary to allow gun-

ners to aim large ordnance properly; and during the war, large numbers of 

new designs all had to have accurate firing  tables to be used in the field. 

Originally, teams of female  human computers  were assembled to make the 

necessary repetitive calculations, but this was slow (not due to the lack 

of skills of the mathematicians but rather to the scale of the task) and, at 

times, depended on other calculation machines, such as the differential 

analyzer, that  were also in short supply. The complication to this story is 

that by the time the computer was completed in 1946, the war had ended; 

ENIAC did nothing to speed up the calculation of ballistics  tables, and even 

before the end of the war, it had been repurposed to aim at calculations for 

the Manhattan Proj ect’s atomic weapons through the intervention of John 

von Neumann.

 Here we leave the history of ballistics. It has served to introduce two dif-

fer ent modes of mathematical prediction. As indicated previously, from the 

late nineteenth  century onward, ballistics would lead to a new, numerical 

mode of prediction that spans pre-  and postcomputer time and flourishes 

in the mainframe culture of prediction (see chapters 4 to 6). The follow-

ing chapter 3 on engineering epistemology  will analyze how mechanical 

engineering in the late nineteenth  century wanted to hybridize both modes 

of prediction, but had to strug gle with methodological, disciplinary, and 

institutional conditions.
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3  Engineering Knowledge, Autonomy, 
and Mathe matics

How do engineers and scientists use mathematical tools to attain knowl-

edge about the world, especially about the human- built world? Any answer 

to this question touches on deep philosophical assumptions about predic-

tion, explanation, and rationality. This chapter takes a close look at the late 

nineteenth  century in an effort to learn about mathematical tool use and, 

si mul ta neously, engineering knowledge.

The late nineteenth  century stands out as a time when engineering dis-

ciplines underwent formative changes.1 Layton argues that industry needed 

engineering science  because the new technology demanded a more scientific 

approach.2 Layton (1986) might be right when he ponders: “The transition 

from traditional rule- of- thumb methods to scientific rationality constitutes 

a change as momentous in its long- term implications as the industrial revo-

lution itself” (3). However, what is meant by scientific rationality  here? This 

concept is a moving target, undergoing changes in line with the changes in 

engineering and its contested intellectual positioning.

In a way, this calls for such an examination as the one that follows. It is 

easy to perform an investigation when it is guided by well- established pre-

conceptions. In such a case, checking such assumptions against historical 

cases becomes a difficult but noble task. We believe that wanting to learn 

about history and philosophy at the same time is one of the best ambitions 

to have. We show how engineering synthesized a culture of prediction. This 

is a hybrid culture that centers around a mode of prediction quite akin to 

the empirical mode introduced in chapter 2— and partly in opposition to a 

rational culture in science. Thus, equating mathematization with a strength-

ening of the rational mode of prediction would be just that kind of  mistake 

we want to avoid. Detailed studies such as the one in this chapter are a way 

to illuminate the dynamics and plurality of math- based predictions. They 
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shed new light on the epistemology of engineering. Engineers introduced 

and advocated a hybrid mode of prediction that combines both rational and 

empirical modes. In fact, the hybrid concept of mathematization plays a 

key role in arguing for the autonomy of engineering knowledge. Although 

the rational and empirical modes  were older and already firmly established, 

their hybridization was a competitive innovation that shows how modes 

of prediction, mathematization, and technology coevolved. Consequently, 

the emerging highly dynamic picture of math- based predictions has impli-

cations for high- level questions about our knowledge, especially about the 

perceived rationality of mathematization.

This chapter chooses Robert Thurston as its starting point. He was argu-

ably the most prominent engineer in the United States  after he reor ga nized 

Cornell’s Sibley College in the late 1880s. Seminal for our purposes is Thur-

ston’s quarrel with physicist Henry A. Rowland on the relationship between 

science and engineering. Against this background, we analyze the Anti- Math 

Movement [Anti- Mathematische Bewegung] in German engineering that 

ignited in the 1890s in the aftermath of the 1893 World’s Columbian Expo-

sition in Chicago.3 We point out that this Anti- Math Movement, contrary 

to the name it has acquired, was not, in fact, directed against mathematiza-

tion. Rather, it unfolded in a conflict between two modes of prediction: the 

empirical and the rational. A new hybrid culture of prediction was emerg-

ing, accompanied by controversies on mathematization and engineering 

knowledge, as the fight between Alois Riedler and Felix Klein reveals. The 

new culture is exemplified  here by the work of the engineer Carl Bach, one 

of the most prolific and influential mechanical engineers of this time. He is 

known as the  founder of the Materials Research and Testing Station in Stutt-

gart in 1884. We analyze his role in the “Movement”4 and examine a series 

of examples of how Bach combined experimental and mathematical work, 

thus promoting a hybrid mode of prediction. For him, systematic experi-

mentation and mathematical modeling should be mutually interdependent 

in order to deliver usable and relevant predictions. Bach was by no means 

singular in this re spect. On the contrary, his work was part of a wave; he was 

one of several pioneers who came up with a similar concept of hybrid pre-

diction around the same time such as Oliver Heaviside (United Kingdom) 

and Charles Steinmetz (United States). The final section elucidates how the 

new culture of prediction challenged the given understanding of scientific 

rationality. We identify a characteristic line of conflict— namely, the debates 
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over  whether the hybrid mode establishes rules or laws. This conflict reveals 

the tensions between prediction, explanation, and rationality that are so 

characteristic of engineering epistemology.5

3.1 Putting Engineering on the Map: Henry Rowland versus  

Robert Thurston

In the late nineteenth  century, both physics and engineering  were in a 

phase of substantial growth and searching for a professional identity. A key 

controversy was  whether and how pure science, applied science, and engi-

neering should be demarcated from one another. Was  there continuity, or 

even hierarchy?6

Henry Augustus Rowland (1848–1901), shown in figure  3.1, was an 

iconic proponent of the standpoint that would put pure science highest 

and engineering implicitly at the low end. Rowland, a physics professor at 

Johns Hopkins University, was Amer i ca’s foremost physicist of this time. He 

had studied with Helmholtz in Germany and remained a lifelong admirer 

of the German university system. From 1899 to 1901, he was the first presi-

dent of the American Physical Society. Rowland became world famous 

for his  handling of high- precision instruments.7 His diffraction gratings 

resolved 600 lines per mm and increased the accuracy of spectroscopy by 

Figure 3.1
Henry Augustus Rowland (1848–1901). Courtesy: Wikimedia commons.
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a  factor of ten.  These “Rowland gratings” formed the worldwide standard 

in spectroscopy for  decades. Speaking as vice president of the physics sec-

tion of the American Association for the Advancement of Science (AAAS) 

in 1883, Rowland delivered “A Plea for Pure Science” (Rowland 1883) in 

which he distinguishes pure from applied science. Whereas applied science 

has practical value, according to Rowland, it rests on pure science— which 

was still underdeveloped in the United States.8

Rowland was a beacon of and an activist for the rational mode of predic-

tion. He describes science as a logico- mathematical system in which laws 

discovered by pure science allow scientists to derive predictions from them. 

Once the theory is  there, what remains to be done is to exercise one’s skills of 

derivation. Rowland expressed his position as a challenge to engineers— for 

example, at the 1884 Electrical Conference in Philadelphia he declared that

every law of electricity necessary to be known is already known; it is only a ques-

tion of the brain that has the power to evolve the perfect machine, and when we 

say that theory does not agree with practice, it means that we have not got brains 

enough to apply the theory to the facts and get at the result. (Rowland [1886, 

111], cited in Kline [1995, 200])

Rowland’s claim is a strong and audacious one that leaves  little room for 

interpretation. Engineering is cast into a role of depending— mathematically 

and therefore in general—on pure science.9 Remarkably, Rowland does not 

mention potential prob lems on the mathematical side; he does not reason 

about what tools are needed or available, leaving it with the somewhat 

sophomoric “brains enough.” We find this blind spot to be pivotal. Our 

analy sis leads us to the opposite claim: making math- based predictions rel-

evant for engineering required a more empirical, hybrid mode of prediction 

markedly dif fer ent from the rational mode. This chapter examines how 

engineers developed this mode. Thus, rather than being the grounds for 

the dependence of engineering, it is mathe matics that strongly contributes 

to its autonomy.

Rowland’s plea did not go unchallenged by engineers. Robert Thurston 

(1839–1903, shown in figure 3.2), the most prominent mechanical engineer 

of this time, took up the gauntlet and used his 1884 address to the section 

for mechanical engineering of AAAS in Philadelphia to outline the “Mission 

of Science” as a sophisticated alternative to Rowland’s plea. Thurston was 

a specialist in iron and steel as well as steam engines.10 He began his  career 

as an assistant professor at the US Naval Acad emy in Annapolis; and from 

Downloaded from http://direct.mit.edu/books/book-pdf/2369564/book_9780262379045.pdf by guest on 26 September 2024



Engineering Knowledge, Autonomy, and Mathe matics 43

1871 onward, he headed mechanical engineering at the Stevens Institute. 

Thurston not only adhered to a school culture based on a  European model 

but also emphasized that experimental facilities  were a necessary part of 

engineering science. He started an experimental engineering laboratory at 

Stevens11 and, in the same year, conducted a series of experiments on steam 

boilers on behalf of a committee of the American Institute in which, for the 

first time, all losses of heat, all steam generated, and the quantity of  water 

entrained by the steam  were  measured with high precision. Based on  these 

observations, Thurston built a quantitative, predictive model that helped 

standardize and regulate boiler technology. This commissioned work pre-

sents an early example of how engineering would increase predictive power 

by combining mathematical and experimental approaches.12

The year 1884 was special for Thurston, and not just  because of the Row-

land challenge that led him to defend the status of engineering science. The 

Figure 3.2
Robert Thurston (1839–1903). Courtesy: Wikimedia commons.
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year brought a new offer for Thurston  because Cornell had set up a commit-

tee that was looking for a new head for Sibley College charged with reor-

ga niz ing the entire school of engineering.13 Thurston began as an outside 

advisor but eventually accepted the post himself. His “Mission of Science” 

address provided a programmatic meaning for what he planned at Cornell. 

“The mission of science is the promotion of the welfare, material, and spiri-

tual, physical and intellectual, of the  human race” (Thurston 1884, 231). This 

general approach embedded engineering in a scientific system while reserv-

ing a special role for it as the discipline able to cash in the promise of the 

mission. With that role granted, engineering can transform smoothly from 

art to science: “In the past the arts have led; in the  future we  shall see sci-

ence leading and directing  every development of the arts” (Thurston 1884, 

233). It is the utilitarian values that elevate science to “applied science”— a 

notion Thurston uses for engineering science.

Thurston continues his mission talk with a par tic u lar section on engi-

neering methodology and epistemology in which he advertises his own 

approach— that is, first developing a precise basis of empirical  measurements 

 under varying conditions and then distilling predictive (mathematically 

formulated) princi ples out of  these data. If development had been slow in 

mechanical engineering, it was  because this approach had not yet taken 

root.14

But it is only within the past few years that the conditions modifying the value 

of  these materials, as applied in engineering, have been carefully and critically 

studied by the light of experimental investigation. The effect of heat on strength 

and elasticity; the alteration of structure produced by vibration. (241)

Many more prob lems of this sort remained, including mechanical prop-

erties of materials, the effect of temperature on the materials, the corrosion 

of steam boilers, the value of lubricants, and the heating power of fuels.

Thurston is clear: Rowland’s position does not hold  water  because 

application is not a question of brainpower. Rather, it is a question of 

combination— Ron Kline (1995) speaks of “hybrid theory” (202–203). In 

the cases in which engineering is interested, prediction is beyond the power 

of math alone, requiring experimental testing and guidance. The math-

ematically formulated theory or model must be modified and amended by 

empirical data. How this can be done is again a question of mathematical 

modeling. In other words, Thurston, in effect, involves ele ments of both 
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of the rational and empirical modes of prediction. Only the hybrid prom-

ises the predictive power engineers  were seeking. In this way, engineering 

would be an applied science without depending on pure science.15

 Going beyond engineering epistemology, Thurston (1884) addresses 

education and institutions and does not fall short of promoting a nation-

wide architecture— “schools of science in  every city, colleges of science in 

 every state”—in full contrast to Rowland’s elitist ambitions (245). In other 

words, Thurston is promoting a culture of prediction that includes the 

hybrid mode of prediction as a component. Thurston fully convinced the 

Cornell committee and especially President White, who saw Thurston’s 

work at Sibley College as an epochal turning point: “So began a new era 

for Sibley College, for Cornell University, and indeed, for the country (. . .) 

Professor Thurston’s coming put an end to all divided counsels and began a 

new and better order of  things” (President White in 1915, cited in Durand 

[1939, 549]).

Thurston wanted to perfect the model of a pure technical school that 

would lead into research (arguably an elitist ambition, too). He raised 

entrance conditions, in this way delegating elementary work to other 

institutions. The curriculum included science, higher mathe matics,16 and 

language in the first two years— creating the expertise among students 

that they would need to work as engineering researchers in the combined 

experimental– mathematical context. The last two years covered specialized 

topics such as steam engineering. Some shop experience and training in 

drafting  were given alongside this (see Calvert 1967, 97).

Apparently, Thurston was an extraordinarily efficient  organizer. In 1890, 

 after only about five years, he wrote to Cornell’s president that his mission 

was now accomplished.17 That leads us to the 1890s, when Thurston was 

once more at a threshold in his  career. Cornell was now the leading place 

to study engineering in the United States, and Thurston was disseminating 

nationally and internationally.18 He turned into an ambassador for a hybrid 

culture of prediction.

The most prominent stage was at the 1893 World’s Columbian Exposi-

tion in Chicago. This exposition triggered a flurry of reports and program-

matic statements in which US engineers debated the status of engineering 

in the United States and the status of US engineering worldwide.  Here, we 

are particularly interested in how claims for a new culture of prediction 
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reverberated almost instantly in Germany. A quick glimpse at con temporary 

journals and newspapers suffices to show that both Americans and Germans 

felt that they  were at the height of scientific and engineering accomplish-

ments. Germany was a widely acknowledged model for university science 

and still a role model for the next generation of US scientists. However, 

when it came to the economic and academic success of engineering, Ameri-

cans felt on par and even in the lead  because of their experimental facilities 

for engineering. And they wanted the world to know.19

3.2 The 1890s Anti- Math Movement in German Engineering

From  here, the focus of our investigation shifts to Germany. What happened 

 there immediately afterward documents both how central and how contro-

versial the hybrid culture of prediction was for the developing identity of 

engineering science. The meetings at the 1893 Exposition started a chain 

of events that sparked a fierce controversy known as the Anti- Math Move-

ment of German Engineering [Anti- Mathematikerbewegung der Technikwis-

senschaften]. We need to backtrack a bit  because telling this story demands 

careful exposition. During the  later part of the nineteenth  century, Germany 

saw a rapid rise in science and industry.20 German engineers strug gled to find, 

or define, their place.21  There was an intense debate around engineering and 

its relationship to professionalization, science, education, and industry.22

Regarding education in technical institutes, the mid- nineteenth  century 

was dominated by professors of engineering who maintained a theoretical 

orientation in engineering and emulated the path of mathematized natu ral 

science. The leading persons  were Ferdinand Redtenbacher (1809–1863), 

Franz Grashof (1826–1893)— both at Karlsruhe Polytechnic School— and 

Franz Reuleaux (1829–1905) in Berlin (since 1879, the Königlich Technische 

Hochschule/Royal Technical Institute Charlottenburg).23 Consequently, the 

education of engineers was oriented  toward mathe matics with the goal of 

rendering questions of design and construction calculable— without car-

ing much about  whether the promised practical utility would actually be 

delivered.24

Teaching mathe matics had changed significantly over the course of 

the nineteenth  century. Whereas Gauss had given courses on calculation 

techniques and geodesy in the early 1800s, engineering students in 1870 

would learn more abstract and “rigorous” math. One illustration is how 
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mathematicians dealt with continuous functions. Continuity had long been 

a prime example of an intuitively graspable and physically relevant concept. 

Euler, for instance, defined a continuous function as one whose graph can be 

drawn without raising the pencil. In the mid- nineteenth  century, however, 

functions  were conceived of as arbitrary mappings, and this accordingly called 

for a more technical and abstract approach to continuity. Consequently, uni-

versities produced teaching professors with increasingly abstract conceptions 

of mathe matics.25

In short, by the 1870s, engineering was trapped between two stand-

points— a strong faction of industry- oriented engineers on the one side, 

who favored usability over academic status, and science- oriented professors 

on the other side, who took mathe matics and physics as their role model.26

Against this background, we  shall take another look at the 1893 Exposi-

tion in Chicago, this time from the German side. Alois Riedler, mechanical 

engineering professor at Berlin, reported from the 1893 Exposition in Chi-

cago and, even more importantly, from his trip to visit American technical 

institutes. In a study commissioned by the German Federal Ministry of Edu-

cation (Riedler 1893). Much to the satisfaction of politicians and colleagues 

alike, Riedler confirmed that German products  were now competitive. But 

Riedler’s goals  were bigger: he used the comparison with the United States 

to see which lessons German engineers needed to learn. He made two major 

points: first, he observed that the US system was based on much less math-

ematical education than the German. Second, Riedler identified the well- 

equipped laboratories, like the one at Cornell, as a crucial success  factor.27

In the aftermath of the Chicago Exposition, regional German engineer-

ing associations discussed Riedler’s report and its pos si ble recommenda-

tions for engineering education. Adolf Ernst, professor at Stuttgart, was 

commissioned by the Verein Deutscher Ingenieure (VDI) to synthesize  these 

discussions into a report that he presented in 1894 to the general assembly. 

This report, titled “Mechanical engineering laboratories” [Maschinenbau- 

laboratorien], demanded engineering laboratories through an expensive 

upgrading of technical institutes (THs).28 In agreement with Riedler, Ernst 

(1894, p.  1354) diagnosed that the education of engineers was suffering 

from a lack of experimental facilities and that the time assigned to labora-

tory instruction should be taken from the mathematical part of training.

One  factor that aggravated the perceived urgency of the situation was 

presented by Felix Klein, the renowned mathematician and influential 
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science  organizer. He had come forward with plans to establish a research 

laboratory and teaching institute on “technical physics”— that is, some-

thing akin to engineering science—at the university in Göttingen. This was 

not a mere coincidence. Klein had also been in Chicago: as a main speaker 

at the Mathe matics Congress.29 He took the lessons about experimental 

facilities as an opportunity to promote applied mathe matics. This proposed 

institute for “technical physics” [Technische Physik] would tie together 

applied mathe matics and mechanical engineering. This plan met strong 

 resistance from the side of engineers  because the institute would be located 

at a university without an engineering school. The engineers perceived 

this as an attempt to strengthen research related to engineering science, 

but also to funnel resources away from technical schools and  toward tradi-

tional universities.  Because Klein stepped forward at exactly the time when 

the VDI was chewing over the Ernst– Riedler reports, the need for a reaction 

was considered urgent, and the VDI felt it had to support Ernst– Riedler 

and rebuke Klein— that is, perform the somewhat tricky feat of confirming 

its scientific status, claiming research facilities, but stopping research from 

being absorbed by scientists at universities.

The laboratory movement quickly escalated into the Anti- Math Move-

ment [Antimathematikerbewegung].30 Most historical studies draw an overly 

simplified picture of this movement. Of course,  there was an influential 

(and loud) faction that was quite literally against math.  There was a second 

faction, however, that promoted a hybrid concept of mathematization that 

integrated experimentation with mathematization. This second faction man-

aged to infiltrate the “Aachen resolutions” from 1895 in an impor tant way.

The 1895 Aachen Crash and Subsequent Recuperation

The governing board of the VDI had set up a commission, led by von Bor-

ries, to synthesize what recommendations the VDI should issue following 

the reports of Riedler and Ernst. The commission came up with a text (von 

Borries 1895) that confirmed Ernst’s stance, claiming furthermore that the 

VDI should support the Technische Hochschulen (THs) in this agenda. The 

text was acclaimed by the 36th general assembly [Hauptversammlung VDI] 

of German engineers in the town of Aachen and became known as the 

Aachen resolutions [Aachener Beschlüsse] of 1895.

 Here is a summary of the nine points: (1) THs should provide not only 

a good education for average engineers but also opportunities for research; 
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(2) engineering laboratories are needed for (3) practical exercises during edu-

cation and for research; (4) courses in laboratories should become obligatory, 

whereas (5) other parts of the curriculum should be shortened; (6) teaching 

in auxiliary sciences should be oriented  toward understanding engineering 

sciences. In par tic u lar, abstract mathematical methods should be restrained, 

though not at the cost of an understanding of engineering. Use of math in 

applications might make it easier to master it as a tool; (7) point 1 renders 

it necessary to create facilities for physical- technical education in theoreti-

cal and experimental re spects  going above and beyond the general curricu-

lum; (8) final exams should be geared  toward general technology and less 

 toward examinations for state  service; and (9) teaching in laboratories can-

not replace gaining practical experience in the shop. The latter should last 

one year at least.

Most scholars take the Aachen resolutions as documenting the revolt of 

engineers and their desire for emancipation from the universities’ mono-

poly on  doing science. They allegedly expressed their wish to reduce mathe-

matics and resort to experimental laboratories instead.31  Going through the 

points, however, does not strongly indicate why this should be proof of 

an Anti- Math Movement. In fact, the wording of the resolution intention-

ally covers over the strongest oppositions. A last- minute revision had hap-

pened. Taking this situation into account, the Aachen resolutions should be 

read as a diplomatic feat, initiating an agreement between all stakeholders.

This story was revealed only as late as 1998 by Puchta (formerly Hensel) 

when she retrieved Bach’s letters in the archive of the TU Chemnitz. Peters, 

in 1895 the acting secretary of the VDI (the power ful position newly estab-

lished in the VDI’s reor ga ni za tion), was alarmed that the assembly,  eager to 

show strength, could vote for a resolution that would depict engineering as 

something separate and  independent from science, and that it would cut 

off all institutional and educational ties. Peters saw this as counteracting the 

autonomy of engineering science— and he knew he had com pany in this 

belief among  those engineers who had already worked  toward establish-

ing engineering as a science, such as Linde (Munich) and Bach (Stuttgart). 

Peters invited Bach and Linde as additional leading authors in formulating 

the text of the resolutions.32 Possibly, Bach is held as a ringleader in the 

Anti- Math Movement  because he is named as a lead author and he gave the 

most substantial contribution to the discussion of the Aachen resolutions 

at the general assembly.33
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This brings us to the second reason— namely, the content of the resolu-

tions. Bach introduced crucial last- minute changes to the already drafted 

resolutions. In fact, Bach was the one who added point 1 and hence brought 

in a new line of thought— that is, that technical institutes should also do 

cutting- edge research and that this would require a two- pronged approach 

consisting of an experimental and a theoretical part. For the first, labora-

tories are necessary; for the second, theoretical, mathematical modeling is 

key. Both have to come together. Thus, Bach captured the force of the labo-

ratory movement and, at the same time, strengthened the role of mathe-

matics. To make sure his point was accepted, Bach defended it in front of 

the general assembly.

In the discussion at the VDI assembly, Bach (1895) underlined that an 

average engineer does not need as much abstract math as is now obligatory— 

thereby appeasing the anti- math faction (see also Bach [1896]). Bach explained 

that point 1 of the resolutions was targeted at  those engineers who would 

turn  toward research in engineering science.  Because engineering research is 

dependent on mastery of mathe matics as a tool, Bach planted implicit sup-

port for mathe matics into the resolution— for which he got unan i mous sup-

port from the assembly. He went even further, brought Klein to Aachen in 

1895,34 and promoted an agreement with Klein’s initiative, the Aachener Frie-

den [Aachen peace]. Bach wanted to make sure that resources for research in 

engineering would go to technical institutes, not universities. Klein’s institute 

of “technical physics” would be acceptable if Klein  were to make it clear that 

he did not address (research- gifted) engineers but restricted the audience to 

physicists and mathematicians interested in engineering. In this way, one 

could even join forces (though this did not happen officially). Both men pro-

posed a hybrid between applied math and mechanical engineering, though 

with a markedly dif fer ent understanding of the math part.

The dust did not immediately  settle  after Bach’s initiative. He had 

designed a mediating resolution but could not prevent more militant 

standpoints from being articulated. The following half  decade saw an 

extension and partly a deepening of controversies around engineering and 

its scientific, educational, and institutional  organization. In the aftermath 

of Aachen, engineers and mathematicians engaged in a mass confrontation 

of sorts that eventually justifies the name “Anti- Math Movement.”  Because 

voices calling for the downgrading of mathe matics did not vanish, in 1897, 

all thirty- three professors of mathe matics and mechanics at THs signed the 
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“Darmstadt resolution” that opposed the status of being an auxiliary sci-

ence while maintaining the foundational status of mathe matics.35 A direct 

answer by fifty- seven engineering professors insisted on the merely auxil-

iary role. The 1897 VDI assembly in Kassel came near to rolling up Bach’s 

plan. It proposed a vote on banning higher math entirely from engineering 

education— the ban was voted down by a narrow majority.

Over the next  decade, the Aachen peace prevailed. A group of leading 

engineers and mathematicians, with Bach among them, went on to advertise 

the mutual benefits of hybridization.36 Engineering laboratories  were created 

at all THs. However, training did not change to a very  great extent. Reports 

suggest that students still did not receive hands-on lessons. Instead,  these 

laboratories strengthened the research profile of engineering. In terms of aca-

demic status, the THs obtained the right to award doctorates.37 Klein’s agenda 

was also successful. The Göttingen institute was founded with engineer Lud-

wig Prandtl, who had been Föppl’s assistant in Munich, and mathematician 

Carl Runge, who accepted Germany’s first chair for applied mathe matics.38 

However, in this agreement, the hybrid concept of mathematization worked 

as an umbrella term that hid crucial differences regarding engineering epis-

temology. Appreciating the emerging new (hybrid) culture of prediction 

requires a closer look that  will resolve  these differences.

We  shall now discuss and compare three of the main actors: Riedler, 

Klein, and Bach. The first two  were true opponents. We  shall analyze their 

controversy in the following subsection (3.3). Bach, the third actor, was 

not only the go-to mediator and bridge builder but also pioneered a hybrid 

culture of prediction (see section 3.4).

3.3 Riedler versus Klein: Dif fer ent Takes on Mathematization  

and Engineering

Alois Riedler (1850–1936, shown in figure 3.3) and Felix Klein (1849–1925, 

figure 3.4)  were both leaders in their respective disciplines; both  were con-

vinced that new technologies would call for a new conception of mathema-

tization; both  were pushing new initiatives in education; and both came to 

opposite conclusions. The role of mathe matics in engineering science marks 

the core of their disagreement. Whereas Klein defended the viewpoint that 

mathe matics is a foundational science and, consequently, that engineer-

ing is scientific to the degree it is subsumed  under mathematized applied 
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science, Riedler maintained the opposite: mathematization is a good and 

useful  thing only insofar as it fosters the autonomy of engineering.

Felix Klein was a geometer who studied in Bonn and Berlin and held 

professorships in Erlangen, TH München, Leipzig, and (from 1886 onward) 

Göttingen. In mathe matics, he is still known for his 1872 “Erlangen pro-

gram” to characterize spaces based on geometry and group theory.  Later in 

his  career, he  organized the rise of Göttingen to a world- leading center of 

mathe matics and mathematical physics (in the early twentieth  century). 

Klein was deeply involved in teaching and in reasoning about mathematical 

education. The nineteenth  century had seen the invention of pure mathe-

matics and its rise to the forefront in nearly all quarters of math research. 

Klein fully appreciated this fact that opened up many new ave nues for the 

discipline (not least pursued in Göttingen), but he also acknowledged the 

relevance of applied mathe matics  because the prominence of mathe matics 

Figure 3.3
Felix Klein (1849–1925). Courtesy: Wikimedia commons.

Figure 3.4
Alois Riedler (1850–1936). Courtesy: Wikimedia commons.
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(as a discipline in the university) rested on its significance for the sciences. 

Klein realized that technology was posing a new challenge: it demanded 

accurate predictions in increasingly complex circumstances in which tradi-

tional rational mechanics turned out to be rather helpless.

Klein perceived this as an opportunity to increase the relevance of mathe-

matics.39 Applied mathe matics should be developed to serve as a backbone 

for applied science, including mechanical engineering. According to Klein, 

pure and applied share the basic rationality— natu ral laws are described as 

mathematical functions— but in the applied case, additional conditions of 

technology have to be taken into account. How one should do this, Klein 

held, called for a mathematical research program. When proposing his 

vision, Klein usually addressed an audience of mathematicians and physi-

cists where he faced opposition to his appreciation of applied science (cf. 

Manegold [1970]). Thus, Klein’s strategy was to embed applied mathe matics 

into a broader appreciation of pure science and mathe matics.

At the 1893 World’s Columbian Exposition in Chicago, Klein was a main 

speaker at the international mathe matics congress.  There he praised the 

value of applied mathe matics and its use in applied and technical sciences 

(Klein [1894], sixth conference). Klein learned in Chicago how much Amer-

ican engineers  were convinced that experimental facilities are key for engi-

neering science. Klein realized he could  ride a wave  here, and he quickly 

developed an agenda advocating for a new type of research institute that 

should open up university research to the demands of technology and engi-

neers. He wrote a memorandum on a new institute for “technical physics” 

in spring 1895 that attracted immediate attention as well as a negative reac-

tion from the side of engineers as described previously. In a series of further 

talks, both to mathematical and engineering audiences, Klein tried to show 

how his plans  were in the good interest of  every party, including engineers 

(Klein 1895, 1896a, 1896b, 1898).  These talks  were met with criticism, often 

expressed in direct commentaries on the publication. Klein’s talk to engi-

neers on “Demand of engineers and education of mathe matics teachers,” for 

example, appeared in ZVDI (the publication journal of German engineers) 

in 1896 with harsh comments by Riedler. Where Klein argued for integra-

tion into modern mathe matics, Riedler called for separation.

Klein not only designed a new institution but also argued about mathe-

matics itself—in par tic u lar, about the mathematization of approximation 

techniques. Klein sought to make the case for the applied side by subsuming 
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it  under the rational mode of prediction (cf. chapter 2 of this book). Through-

out his work, he was “always underlining the relationship between the exact-

ness of the idealized concepts and the approximations to be considered in 

application” (Menghini 2019, 181). Klein described how a new technical 

mechanics [technische Mechanik] should adhere to the rational ideal but also 

differ from classic (rational) mechanics in four points: (1) prob lems must be 

less idealized (e.g., retain effects of friction); (2) some aspects are data- driven 

( because laws do not cover complex phenomena completely); (3) approxima-

tion (not idealization) is the goal for mathe matics; and fi nally, (4) graphi-

cal methods (instead of analytical ones) are more usable for engineers (Klein 

1900b). In a 1902 lecture course, Klein undertook to detail the relationship 

between “Precision Mathe matics and Approximation Mathe matics,”40 includ-

ing geodesy, drawing, and (as a central piece) the “approximated repre sen ta-

tion of functions,” with the intention of basing predictions on numerical 

methods.

In this way, Klein retained the rational mode and amended it with an 

approximation component.41 Overall, Klein stressed the unity of science 

and a sort of top- down mathematization. In his view, this would elevate 

technical mechanics to a science and connect it to the rational mode of 

prediction. Klein did not gain approval from the side of engineers. Riedler, 

Klein’s most out spoken critic, opposed the unity of science and top- down 

mathematization, breaking it down into an autonomy of (engineering) sci-

ence and bottom-up mathematization.

Alois Riedler (1850–1936) studied machine construction in Graz and 

Brünn before holding professorships at TH München, TH Aachen, and 

(since 1888) TH Berlin Charlottenburg where he was also appointed presi-

dent (Rektor) from 1899–1900. He was a specialist in pumping machines and 

fast- moving motors. Riedler was also a prolific publisher on engineering 

education, starting with the report on American technical institutes from 

his visit in 1893 (he particularly praised Cornell, MIT, and Stevens) and 

including his monograph (1895) that he tailored for the Aachen assembly.

Although Riedler is rightly seen as the ringleader of the Anti- Math 

Movement, his stance  toward math was not plainly “anti” but deserves a 

more nuanced look. He saw the importance of mathematization but had 

in mind a specific type of mathe matics, namely graphical methods, geom-

etry, and drawing. Apparently, Riedler rarely backed away from a contro-

versy. He attacked Reuleaux’s (his colleague in Berlin) vision of a theoretical 
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kinematics (Reuleaux’s pride) and threw it out of the curriculum.42 At the 

same time, in  every publication, Riedler (1896) hammered home that 

mathe matics “is an indispensable foundational tool, but not itself the foun-

dation” [unerlaessliches Grundwerkzeug, aber nicht Grundlage selbst]43 (305). 

Conversely, engineering science is not defined by mathe matics but rather 

by the way it uses mathematical tools to solve engineering prob lems.

In fact, he scoffed at engineers who did not use mathematical tools 

for design. For instance, Ziese (at the then famous Schichau shipyard) had 

designed a fast ship competing for the “Blue Ribbon” (fastest crossing of the 

Atlantic Ocean) as a scale-up of a fast torpedo boat. More academically 

trained engineers with some formal mathematical knowledge could have 

told him, Riedler said, that this would not work. And indeed, the boat was 

fit only for scrap when it arrived in Amer i ca.

For Riedler, connecting to some rational scientific structure was irrel-

evant. Instead, he underlined the flexibility of mathe matics. One could 

use coefficients and  parameters whose determination was left open for 

experimental  measurement. Such empirical ingredients  were no threat to 

rationality44—on the contrary, for Riedler, rationality lay in the efficient 

determination of coefficients. The engineer would formulate a prob lem 

whose efficient solution required mathematical and scientific means. 

Therefore, technical knowledge is on a higher level than mathematical 

(scientific) knowledge (Riedler 1898, 5).  Here, Riedler comes close to Thur-

ston’s position in the “mission” discussed previously.

Thus, for Riedler, mathematization amounts to seeing engineering and 

science from a methodological point of view45— that is, as a tool for tackling 

engineering prob lems— not as an entry point into the rational structure 

of nature. Mathe matics is a flexible tool without ontological import. The 

most impor tant goal for engineering is designing a device or  organizing a 

system of devices so that they are “efficient in industrial practice” [betriebs- 

brauchbar46]. Riedler saw that the complex conditions of modern technology 

required experimentation (in engineering laboratories) as part of finding 

an adequate formulation of prob lems. “Many are able to build machines; 

often practical experience is sufficient; but building machines and arrang-

ing them to the greatest practical benefit, this is the task of scientifically 

minded engineers” (Riedler 1898, 115).47

In sum, Riedler proposed mathematization but along a line very dif fer-

ent from Klein: not as a link to the broader theoretical structures of science 
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but as a flexible tool that served the autonomy of the technical (or engi-

neering) sciences, and that could be called bottom-up mathematization 

 because it follows the needs of the prob lems at hand. As with Klein, mathe-

matics is useful in creating predictions, but Riedler’s stance is much more 

like the empirical mode of prediction discussed in chapter 2.

3.4 Carl J. Bach: Building a Hybrid Culture of Prediction

Carl Julius Bach (1847–1931) was one of Germany’s leading mechanical 

engineers at the time. We have come to know him as a main actor in the 

Anti- Math Movement who pulled strings  behind the scenes, thus mediat-

ing the controversies not only within the engineering community but also 

between engineers and scientists.48 What makes him particularly in ter est-

ing in our context is that he proposed a hybrid culture of prediction as the 

way for engineering science to proceed. In fact, he implemented it. Bach 

pushed for experimentation and mathematization in a way that combines 

the older rational and empirical modes of prediction discussed in chap-

ter 2. We do not claim that this made Bach unique. Obviously, Riedler and 

Klein debated on, or fought for, their version of this mode. Approaches 

in engineering research tended to converge  toward this mode both in the 

United States (at Stevens, Cornell, and MIT among other locations) and in 

Germany (examples are the Munich and Göttingen institutes of technical 

physics). However, Bach articulated the hybrid mode in an influential way 

for the engineering profession. Moreover, we are also not claiming that 

Bach was a typical case. All actors discussed  here, from Thurston to Riedler, 

Klein, and Bach,  were pioneers who led their profession but  were (almost 

per definition) exceptions in their time.49

Bach started as a worker in the steel and then steam engine industry with-

out any academic education. He began his academic education in 1866 with 

a stipend at the Polytechnicum Dresden interspersed with periods of practi-

cal work. In 1872, he studied at the Karlsruhe Polytechnicum (TH), where 

he obtained his diploma.50 Bach then worked as an engineer in Germany, 

Austria, and  England before becoming director of the “Lausitzer Machine Fac-

tory,” Bautzen (Germany) in 1876. In 1878, he was awarded a professorship 

at TH Stuttgart. He did groundbreaking work on the strength of materials 

[Festigkeitsforschung]  after setting up an experimental fa cil i ty for this task. The 

Materialprüfungsanstalt [Institute for testing materials] opened in 1884.51
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Bach held mathe matics in high esteem. In his autobiography (1926), he 

reported that he was the most skilled student in mathe matics at Dresden. 

Proud that he had outwitted an older student who had held this position 

and  later became a mathe matics professor, Bach (1926) recalled that he had 

to give a preliminary course in mathe matics at Stuttgart (20).  After the first 

semester, even students who had already heard the regular course in math 

attended Bach’s course  because of its intellectual accessibility. In a passage 

on mathe matics that appeared in the foreword to the third edition of his 

book on elasticity, published directly  after the 1895 Aachen incident, Bach 

(1920) articulated his position combining a leading role for experiments 

with a necessary role for mathe matics: “In the engineering sciences, securing 

and enlarging empirical foundations has to assume priority. In this, mathe-

matics  will not only be an extraordinarily valuable tool, but  will pre sent the 

tool without which any deeper understanding would remain unattainable” 

(preface to third edition [1898, ix]).

In the 1890s, Bach was one of the most active and influential engineers 

in Germany. New materials (often va ri e ties of steel) and more complex 

machines had made systematic knowledge about the strength of materi-

als a bottleneck for mechanical engineering design. Bach made a name for 

himself by addressing this bottleneck. He could talk to both prac ti tion ers 

and the academic elite (similar to Thurston). Part of Bach’s high reputation 

came from two very  popular books. The first, Elastizität und Festigkeit [Elas-

ticity and strength of materials] appeared in 1889 and saw nine further edi-

tions up to 192452; the second, Maschinen- Elemente [Ele ments of machines], 

applied the findings on the strength of materials to the design of machine 

components. The first edition came out in 1896 and the thirteenth and 

final edition in 1922.53 His books  were a tremendous success with an entire 

Figure 3.5
Carl Julius Bach (1847–1931). Courtesy: Wikimedia commons.
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generation of engineers. Written in an accessible style, they showcased his 

hybrid approach to prediction— and thus made a case for the autonomy of 

engineering. In 1918, Bach— from then on “von Bach”— became the first 

technical engineer to be granted the official title “Excellency.”54

From  here onward, we  shall examine how Bach combined experimenta-

tion and mathe matics to obtain predictions. Bach presented a confident 

synthesis of vari ous cases in Elastizität und Festigkeit. In instructive fore-

words (keeping the forewords from  earlier editions), Bach reflects on his 

own approach. His work “starts from the assumption that the primary con-

cern is knowledge about the factual be hav ior of materials” (Bach [1920], 

preface to first edition [1889, iii]). Bach’s typical approach is to investigate 

where existing mathematical rules in engineering in fact  either made good 

predictions or failed to do so. First, systematic experimentation is needed— 

for instance, to determine strain in vari ous materials and situations. This 

typically results in  tables that collect  these data for certain forms and mate-

rials. Second,  these data are used to test existing (theoretical) mathematical 

rules— usually predictions in the rational mode. If the existing rules are 

not sufficiently adequate,55 new rules are sought via modification of the 

mathematical form. This two- pronged procedure hybridizes empirical fit, 

theoretical derivation, and skillful modification. Mathematization then is 

about having a flexible tool for creating predictive rules. Such rules have to 

fulfill two counteracting conditions: they have to be sufficiently general to 

be useful in new designs, and they have to be empirically adequate— give 

correct predictions—in practically relevant circumstances; and this, in turn, 

presupposes that they are tractable in practical cases.

Bach (1889) criticizes the viewpoint that engineering sciences  will be 

further advanced via mathematical derivations from taken- for- granted 

theories and laws (452). An illustrative example is Bach’s short piece on 

“Common  mistakes in certain hydraulic calculations” (1891) in which he 

challenges the theoretical gurus of his time.56 Bach questions the commonly 

accepted rules for calculation  because they might be misleading in the case 

of pipes that have sudden changes in dia meter. He documents his suspicion 

by experiments showing that the predicted slowdown of fluid velocity does 

not occur. Hence,  these rules are disconfirmed by Bach’s experiments. Bach 

goes on to analyze the mathematical derivation of the commonly accepted 

rules given by Reuleaux, Grashof, and Weisbach— the leading theoretical 

accounts of his time.57 Bach is able to single out one presupposition that 
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was used in all  these theoretical treatments but is, in fact, at odds with 

experimental  measurement: namely, they all wrongly assume an inelas-

tic collision when the cross- section is broadened. Bach also recommends 

mathematization but warns against following some perceived rational log-

ics of mathe matics. Of course, idealizations are necessary in Bach’s view as 

well, already  because tractability is a necessary condition, but they have 

to retain contact with experience and quantitative values from practical 

situations. Thus, one needs experimental facilities and mathematical tools 

working together.

Another example is Bach’s work on the  resistance of rivet connections 

against sliding (1892). Using rivets was a  popular design approach in build-

ing larger structures (see figure 3.6), but it had also seen a number of fail-

ures. According to the widely accepted theory of the time, the strength of 

the connection resulted from the strength of a rivet and the number of 

rivets— that is, the crucial  parameters are the material and dia meter of a 

rivet plus the number and location of rivets. Bach is not convinced and 

sets up systematic experiments that disprove this theory. He identifies the 

drag between riveted materials as the pivotal  parameter. This shows that 

the strength of a construction depends not so much on the number of riv-

ets but crucially on the carefulness and accuracy with which  these rivets 

have been affixed— rivets that are not tight do not add to the drag. As a 

result, Bach can point out a major  factor in design failures: “The usual way 

of calculating  resistance against shear is likely to be the main reason for the 

insufficient strength of many iron constructions” (1892, p. 1141).

Hooke’s Law and Bach’s Law

Bach had to strug gle in two ways with the character of the rules that would 

result from his strategy. First, dislodging long- hedged pillars of the discipline 

made it imperative to come up with replacements that performed better. 

Second, the newly established predictive rules could not claim the scien-

tific authority of the established rational laws. The theory of elasticity is a 

main example for Bach’s hybrid approach to prediction documented in his 

widely influential book on elasticity (1920, first edition 1889). The accepted 

theory of elasticity was based on Hooke’s law. Bach (1926) intended to put

on firm ground  those areas I worked in. However, I committed a sin in the eyes 

of some, for instance, when I turned the theory of elasticity from a discipline of 

the humanities into an empirical discipline. Before, the theory of elasticity started 
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from the theorem that tension and strain are proportional and then aspired to 

derive every thing  else by mathematical means. (32)

In the  simple case of an (ideal) spring, elongation of a spring depends 

linearly on the mass (gravitational force) applied on the one end. The law 

then includes a constant  factor that depends (only) on the spring.

ε   = α   × σ  (*)

where α is a constant number58 to be determined by experiment for each 

material. Roughly, the equation expresses the change of length per kilo-

gram stress. For each material,  there is a limit of proportionality— that is, 

Figure 3.6
Rivet construction. Courtesy: Wikimedia commons.
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the equation (*) becomes invalid for greater stress.59 In other words, the the-

ory of elasticity proceeds on the basic assumption that strain (elongation), 

epsilon, and stress, sigma, are proportional within certain bound aries.

Bach (1920) maintains that (*) is not a good basis for elasticity theory 

 because it leads to false predictions: “This work  shall show that it is not 

sufficient to assume stress and strain are proportional to each other, and, 

from this assumption, erect the building of elasticity theory by mathemati-

cal derivation” (preface to the first edition [1889, iv]). Instead, according to 

Bach, the design engineer “again and again” has to test the predictions and 

adapt the rules accordingly. Empirical experiments have the say, and pre-

dictive success or failure is the criterion that can show when mathematical 

considerations have used assumptions that simplify or idealize too much. 

According to Bach (1920), ignoring this condition has led to the slogan of 

a “contradiction between theory and practice” (ix). Bach holds that this 

contradiction dis appears when mathematical modeling is embedded in a 

hybrid culture of prediction. “Science and technology have to go hand in 

hand” (ix).

Bach puts his own recommendations into practice and uses a variety of 

tests for dif fer ent materials to show that α is not constant for many materi-

als. No limit of proportionality is defined then  because the material does 

not behave proportionally. However, the theory of elasticity presupposes 

proportionality as a basic fact.60 Bach therefore changed the conceptual 

framing of elasticity when he modified the mathematical form, a modifica-

tion that was called “Bach’s law” (Equation 5a in Bach [1920]):

ε   = α   ×   σ m. (**)

This equation contains two dif fer ent coefficients (α and m) that both 

depend on the material. In a sense, the difference between m and 1 indi-

cates nonproportionality (m   = 1 would be Hooke’s law). According to Bach, 

the power law (**) coincides well (for coefficients tuned to some specific 

material) with the data on all tested materials except for rubber and mar-

ble. This gives an apt impression of the sort of generality this law claimed. 

Elongation increases faster than tension for m > 1, which is the case for cast 

iron, copper, granite, concrete, and other materials. The opposite holds for, 

among  others, leather and hemp ropes.

Bach notes that the two coefficients of (**) are very sensitive to changes in 

the composition and treatment of the material such as that occurring with 
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calcination of steel. The coefficients are  parameters that can be adapted to 

data but cannot be derived from theoretical considerations. Bach did not take 

his law to be a fundamental law of nature (or a nature of materials). Instead, 

he admitted that  there might exist more elegant mathematical functions 

that attain a better fit.61 For him, the main value of (**) consisted in being 

predictive about the relationship between stress and strain (elongation). Pre-

diction would be impossible from the standpoint of Hooke’s law. This kind 

of insight— being open- minded about the sort of mathematization that is 

appropriate—is exactly what was needed to make an accurate prediction.

Much  later, in the preface to the seventh edition of 1917, Bach looks 

back to what had been achieved. When his book first appeared in 1889, the 

theory of elasticity and strength of materials had been considered an area 

of mathematical derivations alone, starting from the assumption of Hooke’s 

law (proportionality of stress and strain). This law was conceived of as uni-

versal. By empirical testing and experimentation, Bach and  others showed 

that most materials do not in fact obey this law. Nowadays, Bach resumed in 

1917, the material plays as impor tant a role as mathe matics. He even con-

cedes that the situation has reversed and that a surplus of empirical knowl-

edge on properties of materials awaits mathematical– intellectual digestion.

Bach promoted mathematization bottom-up in a way that ran  counter 

to the tradition of rational mechanics in which phenomena  were identi-

fied more or less through their mathematical repre sen ta tion. His approach 

was also directed against an overly empirical approach that would replace 

mathematical modeling with gathering data. Thus, Bach promoted a 

hybrid mode of prediction that navigated between the rational and empiri-

cal modes.

Moreover, Bach was working  toward a (hybrid) culture of prediction in 

which mathe matics provided no more than one component. Another com-

ponent is experimental facilities of sufficient power to detect inadequacies 

of the existing picture. But then one also needs  people who are educated 

and  organized in a way conducive to this hybrid approach. In short, engi-

neers, with Bach among them,  were building a hybrid culture of prediction.

3.5 Rules versus Laws: More on the Hybrid Approach

Although Bach was a pioneer of the hybrid approach, he was neither the 

only nor the first one. At around the same time (the 1890s), other engineers 
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 were devising similar approaches in de pen dently and in fields not  limited 

to mechanical engineering. We have shown  earlier that Bach ran into the 

prob lem of  whether his “law” should count as a law or (only) as a rule.62 

 Running into this prob lem is characteristic for pioneers of the hybrid mode 

of prediction. It does not just point out a moment of cultural  resistance 

from the rational side, but it also has an impor tant lesson to tell about 

engineering epistemology. Apart from questions of terminology,  there is a 

deeply troubling lesson for engineering knowledge  here. If predictive force 

results from partially abandoning the rational mode of prediction in  favor 

of a patchwork of (hybrid) rules, this undercuts the perceived link between 

mathematization and the rationality of science.63 Does engineering science 

uncover the rule of natu ral laws—or is it a systematic way to construct rules 

that work for predictions?

The common view held that the status of being a law is founded on gen-

erality, mathematical form, and derivation from more fundamental laws. 

However, rules such as Bach’s law gain their generality and their predictive 

force exactly by dispensing with  these  factors. One controversial sugges-

tion in the con temporary discussions was to categorize expressions such as 

Bach’s law as being a technical law in contrast to a scientific law of nature 

proper. We suspect that  there are more cases to be found and collected. 

What follows is a small sample of analogue cases. However, uncovering 

them requires a detailed look at how mathematical tools are used. Such a 

look is relatively rare in the historical lit er a ture.64 We  shall briefly introduce 

three cases, or rather vignettes, of the law- versus- rule debate.

Tetmajer’s Law

Ludwig Tetmajer (1850–1905) was assistant to Carl Culmann, professor 

for statics at the Eidgenössisches Polytechnikum in  Zurich (the  later ETH), 

where Tetmajer himself became professor in 1878. Three years  later, he 

advanced to a permanent professorship in building mechanics and, in par-

allel, became director of the newly founded Festigkeitsprüfungsanstalt [Insti-

tute for testing building materials]— from 1901 onward, the Eidgenössische 

Materialprüfungs- Anstalt (EMPA). This institution, a forerunner to Bach’s 

institute in Stuttgart, advanced rapidly. The  orders for testing  rose from 

525 in 1880 to 13,552 eight years  later.65 When the Internationaler Verband 

für die Materialprüfungen der Technik [International  organization for testing 

materials] was founded in 1895, Tetmajer served as its first president.
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Quite in line with what we described as the hybrid approach to mathe-

matization, Tetmajer not only made a name for himself for accurate testing 

but also aimed to cast his results into mathematical expressions of general 

applicability. His best- known achievement is “Tetmajer’s equation” (pro-

posed in 1886) that describes the buckling of rods. At the time, engineers 

designed ever more daring constructions with new materials, in par tic u lar 

with a growing variety of iron and steel.  These designs crucially required 

engineers to predict buckling— that is, secure the stability of a construc-

tion. Received wisdom held that Euler’s equation covers buckling. Tetmajer 

pointed out that this is correct only for the elastic case, whereas rods  under 

high pressure might buckle in a significantly dif fer ent way. In fact, Tet-

majer conducted extensive tests of building materials and synthesized his 

results into a law of buckling named  after him. Much as in Bach’s case, this 

law entails  parameters that  were introduced not for theoretical reasons but 

to make the law cohere to empirical data— that is,  these  parameters  were 

adjusted to results from empirical testing in the laboratory.

A tragic accident illustrates the importance of buckling. On the splendid 

summer day of June 14, 1891, a crowd of more than five hundred  people 

got on a train in Basel, Switzerland, heading for a festival at Delémont. 

Close to the town of Münchenstein, the train traversed a girder bridge over 

the river Birs when the construction failed and part of the train fell through 

the bridge into the river (see figure 3.7), killing seventy- three  people and 

injuring more than one hundred.66 Tetmajer was commissioned to examine 

the  causes of this catastrophic failure.

The bridge had already experienced some modifications. It had been 

designed and built in 1875 by Gustave Eiffel’s com pany that had mastered 

slender steel constructions.67  After a flood in 1881 and  later displacements 

of abutments that showed cracks, the bridge rested on (only) three instead 

of the original four piers, and several parts had been replaced and strength-

ened additionally. On the day of the accident, the train was so crowded 

that a second locomotive and extra cars had been added. Nonetheless, the 

bridge should have been safe—in theory.

Tetmajer found that something was wrong with the theory of statics. 

It was exactly that which he had discovered five years  earlier in 1886: the 

inadequacy of Euler’s equation in the inelastic case that was all too relevant 

for the bridge’s stability. The girders of the bridge  were  under such heavy 

stress that the inelastic case set in when the train crossed. Use of his own 
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equation, Tetmajer found, could have predicted that the bridge was insuf-

ficiently strong.

Whereas the usefulness of Tetmajer’s equation was widely acknowledged, 

its status as a “law” of buckling was debated controversially. An exchange 

in the Schweizerische Bauzeitung of 1895 between engineers G. Mantel, Felix 

Jasinski (France), and Friedrich Engesser (Germany) among  others pre sents 

the point. Mantel discussed buckling beyond the limit of elasticity; Jasinski 

pointed out that Tetmajer deserved the credit; Engesser then came forward 

with his own formula that would put Tetmajer’s equation on a rational 

basis— namely, it gave a simpler expression that was mathematically close 

to Tetmajer’s; and in the limit, it recovered Euler’s equation. Jansinski, 

however, replied that Engesser had made idealizing assumptions that are 

not justified empirically and lead to wrong values for buckling effects. In 

other words, Engesser qualified Tetmajer’s hybrid approach as a heuristic 

phase before the theory would once again reach rational ground. Tetmajer 

Figure 3.7
The second locomotive in the river. Courtesy: Wikimedia commons.
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disagreed. When he summarized his findings on buckling in a monograph 

on the laws of buckling (Tetmajer 1901), he insisted that mathematization 

should faithfully reproduce the experimental findings even if that fore-

closed a coherent (rational) form. In other words, Tetmajer advocated a 

hybrid approach that combined rational and empirical ele ments but did 

not perceive a hybrid expression such as his law of buckling as a prelimi-

nary or heuristic stage on the road to fuller rationality. For him, the hybrid 

type of mathematization was the adequate approach  because useful pre-

dictions depended on it— and  because the crucial point was predictions 

rather than coherence to a wider theoretical edifice.

Steinmetz’s Law

Charles Proteus Steinmetz (1865–1923) was a German- born mathematician 

and electrical engineer who emigrated to the United States. Edison and 

General Electric bought him (including his patents) out from a New York 

com pany, and Steinmetz became the leading engineer in Schenectady, New 

York, the major research and development site of General Electric. He was 

also known as the “Wizard of Schenectady,” holding more than two hun-

dred patents. His trademark was the use of mathe matics to solve design 

prob lems in AC (alternating current) technology that was new at the time. 

The Charles Proteus Steinmetz Award is one of the highest honors the IEEE 

assigns.68 Steinmetz gained his greatest prominence for two achievements: 

the theory of AC cir cuits and, in par tic u lar, the law of hysteresis, also called 

Steinmetz’s law.

What is the  matter with hysteresis? For engineers in the 1880s, ever 

more power ful AC systems had revealed that Maxwell’s assumption of con-

stant coefficients was wrong— that is, it ceased to produce adequate predic-

tions for design. Hysteresis, meaning  resistance to (de)magnetization, names 

the most impor tant phenomenon in this context. Such  resistance would 

lead to overheating and, therefore, energy loss. However, transformers 

depended on high efficiency, and it was crucial to design transformers that 

would avoid hysteresis as far as pos si ble.69 But if constant coefficients would 

not do, what  else could replace them?

Prac ti tion ers relied mostly on  tables that noted energy loss in some sam-

ples. From  there, they tried to extrapolate by rules of thumb— with  little 

success. Steinmetz started an attack strikingly similar to what occurred 

in Bach’s case. He launched an extensive program of generating relevant 

data by inventing new high- throughput  measurement instruments with 
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a variety of materials, and he combined  these with a sophisticated agenda 

to numerically integrate the evidence into a formula. Again, akin to Bach, 

Steinmetz introduced a new form with more  parameters, one of them  later 

called the “Steinmetz coefficient of hysteresis.”  After gathering data for 

more than two years, Steinmetz achieved a relationship that fit the empiri-

cal data with only a small error. In 1890, he published his equation in Electri-

cal World as the “law of hysteresis.”

On the one side, this law was a major breakthrough for design, and it 

was praised immediately by the engineering community. In 1892, the IEEE 

assessed that no paper of “more absorbing interest and practical utility has 

been presented to the [American] Institute [of Electrical Engineers] . . .  We 

are sure that electrical engineers  will feel a sense of relief in having fi nally 

gotten rid of another  factor of uncertainty in the designing” (Electrical Engi-

neer [Vol. 13, 1892, 87], cited in Kline [1992, 52]).

On the other side, the status of Steinmetz’s findings was questioned. Was 

it justified to speak of the law of hysteresis? Physicists doubted  whether the 

equation was sufficiently universal  because it rested on data analy sis rather 

than derivation. Ewing, a leading theoretician, found that the exponent 

varies between 1.475 and 1.9; and, therefore, the “law” should rather be 

called a useful design rule. Engineers such as Steinmetz  were asking for 

accurate predictions in a technologically relevant range. Steinmetz fi nally 

admitted (as Bach did in the case of elasticity) that hysteresis is a complex 

phenomenon that his equation (setting the exponent to 1.6) described only 

closely, but not perfectly. He  stopped calling it a law. Again, as in Bach’s and 

Tetmajer’s cases, the pivotal aspect was making adequate predictions ( under 

certain conditions such as available materials) with mathematical means— 

that is, design equations.  These equations contained rational (Maxwell) and 

empirical (pa ram e terization of hysteresis) components. Only such a com-

bination yielded predictions useful for design. Hence, hybridization was 

crucial. And faced with the choice of establishing continuity with existing 

theory or insisting on the practical usefulness of the predictions, Steinmetz 

(like Bach and Tetmajer) chose the latter option. This ties the hybrid mode 

of mathematization to prediction.

Heaviside’s Operational Calculus

Our third and final case is again from electrical engineering. Oliver Heavi-

side (1850–1925) had an outsider  career in  England; he started to work as 

a telegraphist and electrician while teaching himself mathe matics, physics, 
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and electrical engineering.70 Although James Clerk Maxwell is famous for the 

theory of electrodynamics, often referred to as “Maxwell’s equations,” it was 

Heaviside who used  these four equations to express Maxwell’s theory (Hunt 

1991, 245–247), thereby attempting to provide Maxwell’s theory with a 

more accessible and practically useful form.

In Heaviside’s time, electricity became a major  factor in industry and 

society, with Heaviside himself working on long- distance telegraphs. How 

Maxwell’s theory would be relevant for electrical engineering was not at all 

clear. Could predictions about electrical systems be derived at all? Heaviside 

took on the task of offering a positive answer to this question. He used 

vector analy sis and developed what he called “operational calculus”— a 

famously cumbersome mathematical technique for attacking “physical 

prob lems of technological importance” (Nahin 1988, 218). His calculus was 

good for obtaining predictions, but some of the symbolic abstracts  were 

not defined in a mathematically rigorous way. On the contrary, he had to 

experiment with his calculus to see  whether something meaningful would 

come out of it. In a way, Heaviside treated his calculus like a rule with 

some adjustable  parameters.  After adjusting  parameters to observed cases, 

his calculus would be able to predict. The electrical engineer W. E. Sumpner 

(1928) described Heaviside’s mindset in friendly words: “He was convinced 

about results as soon as he could verify them by severe experimental tests, 

and passed on without waiting to find formal proofs. He was a wanderer in 

the wilds and loved country far beyond railhead” (405).

As a result, Heaviside faced fierce opposition from mathematicians and 

physicists. Tait, for example, held that quaternions  were the right notion, 

not the somewhat more tool- like vector analy sis.71 Although he became a 

fellow of the Royal Society, Heaviside strug gled to gain recognition from 

the scientific establishment. His paper series (1892; 1893) “On operators 

in physical mathe matics,” which included years of experimentation with 

operators, ended abruptly  after Part II  because the Royal Society refused to 

publish more (normally, papers by fellows  were not reviewed at all).

Heaviside defended a hybrid notion of mathematization.  Because pre-

dictions of technological relevance  were the goal, mathematization would 

be well advised to take in empirical information. “Mathe matics is an experi-

mental science, and definitions do not come first, but  later on. They make 

themselves when the nature of the subject has developed itself. It would 

be absurd to lay down the law beforehand” (Nahin 1988, 222–223). Yavetz 
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(1995) provides a case in point when he shows that Heaviside’s distortion-

less condition did not come out of a purely mathematical analy sis. Empirical 

results showed the way— namely, “counterbalancing effects of inductance, 

capacitance, and  resistance in a leaky transmission line” (213). This sort of 

counterbalance is well in line with the hybrid mode of mathematization 

discussed  here.72

Despite their dif fer ent subject  matter,  these three vignettes on Tetmajer, 

Steinmetz, and Heaviside reveal striking similarities with Bach’s work when 

it comes to the hybrid mode of prediction. In the late nineteenth  century, 

developing, using, and defending this hybrid mode was a key component 

when engineers argued for the autonomy of engineering knowledge. Estab-

lishing engineering science meant creating a hybrid culture of prediction.

This hybrid culture is not  limited to the period studied  here. For example, 

Vincenti (1990) impressively describes how, in the mid- twentieth  century, 

engineers combined experimental  measurements and mathematical for-

malization to design the shape of an airfoil. What Vincenti describes—

in par tic u lar, the strategies of modifying and adjusting mathematical 

expressions— strongly resembles the cases considered  here. The use of com-

puters intensifies work with adjustable  parameters in a remarkable way, 

even making it the linchpin of a new culture of prediction, as the following 

chapters  will show.

Given that this standpoint was criticized mainly from the side of the 

rational mode, does that mean that the hybrid mode is (partly) irrational? 

Too much oriented  toward prediction? We do not think so— for two reasons 

that both have to do with the coevolution of rationality and instrumen-

tation. First, detailed studies of mathematical tools document that the 

perceived rationality is at odds with scientific practice. To pick out one 

exemplar of philosophical work, Wilson (2006) argues that the homoge-

neous classical picture of mathematical instruments dissolves on closer 

inspection into a facade of dif fer ent patches (see also chapters 7 and 8). The 

second reason concerns the concept of rationality itself: when the hybrid 

culture of prediction evolved (interdependently on levels of knowledge, 

method, education, and institution), it also changed the concept of ratio-

nality, gearing it  toward prediction.
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4 Overlapping Modes in the Be hav ior of Molecules

This chapter takes the bull of prediction by the horns. One of the most 

formidable challenges is to predict properties of molecules by mathematical 

means, and one can rightly call this a candidate for the grail of prediction. 

Not only is the number of molecules, even in a small piece of  matter, of a 

size at the edge of  human imagination, but the other wise successful strat-

egy of idealizing simplification also reaches its limits. To compute how elec-

trons interact in even a small number of molecules is still a task of nearly 

insurmountable computational complexity. In this area, the key to math-

ematization has been iterative strategies. Of course, such strategies predate 

electronic computers, but the vastly increased speed of computation that 

digital computers allow has opened up a new chapter in the coevolution of 

prediction, technology, and methodology.

We follow the trajectory of quantum chemistry that has been influenced 

strongly not only by mathematical techniques, especially iterative meth-

ods, but also by information technologies. The history of quantum chemis-

try covers all four modes of prediction— the rational and the empirical, and 

then the iterative– numerical and the exploratory– iterative— spanning pre-

computer and computer times. Although  there are not many notions that 

sound more technical than “quantum chemistry (QC),” the following text 

 will use a minimum of technical language, and passages that refer to math-

ematical arguments can be skipped without losing the line of argument. 

However, the study of QC makes it necessary to also consider the episte-

mology of iteration.1 To disentangle the concepts involved, we begin this 

chapter with a brief introduction to prediction and iteration (sections 4.1 

and 4.2) as a teaser for the epistemology of iteration, before turning  toward 

QC from section 4.3 onward.
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4.1  A Pioneer of Prediction

In the year 1917, in the French region of Champagne near the front lines 

of World War I, an ambulance unit took a break inside a cold and wet rest 

billet. The driver, Lewis Fry Richardson (1881–1953), a sportive young man, 

sat on a heap of hay and immersed himself in a dif fer ent world. In full con-

centration, his eyes  behind small metal- rimmed glasses, he filled page  after 

page over week  after week with rows and columns of numbers following an 

elaborate numerical scheme. “It is a source of won der that in such appall-

ing nonhuman conditions he had the buoyancy of spirit to carry out one of 

the most remarkable and prodigious calculational feats ever accomplished” 

(Lynch 1993, 69).2 Richardson was computing the first weather prediction 

based on quantitative physical laws. In fact, he was finishing the revision 

of his book manuscript Weather Prediction by Numerical  Process (Richardson 

1922) when he started to serve in the ambulance unit. In this manuscript, 

he had devised a new numerical way to tackle a mathematical model of 

atmospheric dynamics. The large majority of his meteorological colleagues 

had deemed such an effort impractical. For them, theoretical meteorol-

ogy was a topic in which one dealt with theoretical models and physical 

laws, whereas predicting the weather was a dif fer ent topic that had to be 

approached by entirely dif fer ent means.

The work of the eminent meteorologist Vilhelm Bjerknes illustrates this 

split between theory and prediction. On the one hand, he is known for his 

theoretical work putting together a system of fundamental equations for 

global atmospheric dynamics (Bjerknes 1904).  These equations are all well 

justified from the perspective of physics (motion and conservation laws), 

but they form a system that is impossible to solve analytically. On the other 

hand, Bjerknes did not even try to work with this system of equations for 

purposes of prediction. Instead, he devised a way to analyze the develop-

ment of weather fronts graphically on the basis of empirical data.3

Early on in his scientific  career, Richardson had de cided to work on 

the possibility of turning mathematical equations into predictive devices. 

Though perhaps idealistic, Richardson was fully aware that success depended 

on a difficult combination of  measurements and mathematization. He 

turned away from the rational– analytical perspective on mathe matics and 

designed a computational scheme based on iteration. What he was  after 

was a groundbreaking epistemological turn  toward the iteration necessary 
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when working with a discrete, noncontinuous model. In it, the atmosphere 

would evolve stepwise on a space– time grid, and the calculus would be 

replaced by an iterative finite difference algorithm.4 Crucially, such a proce-

dure would get rid of the complicated integrals that described the evolution 

of the system. They would be replaced by  simple computational steps that 

had to be iterated repeatedly at each of the grid points.

This iterative mathematical procedure, however, had to be based on 

developments in theory as well as in empirical knowledge. In the theory of 

turbulence, especially the transport of eddies, Richardson had to find rea-

sonable and yet unknown means of approximate treatment. Such approxi-

mation schemes could not be justified strictly from theory, and their results 

had to hold their ground against empirical  measurements. Hence, finding 

reasonable paths of approximation required accurate empirical knowledge 

about eddy transport. Such knowledge, however, did not yet exist and had 

to be based on new  measurement techniques for the higher atmosphere in 

order to obtain values for the initial conditions.

Hence, by 1917,  there  were doubts about  whether accurate weather 

prediction was pos si ble at all, and Richardson accepted that. However, he 

could erase  those doubts by actually making predictions. He de cided to 

add a chapter with a prediction obtained by the methods and numerical 

schemes explained in the main parts of his book. He showed his charac-

teristic hardiness in carry ing out the calculations  under the conditions just 

described. The prediction used one grid cell of several hundred square kilo-

meters in Germany, drawing on known data (including very low- quality 

estimations of conditions in the higher atmosphere) from May 10, 1910. 

Richardson started with the wind and air pressure conditions at 7 a.m. and 

calculated the conditions six hours  later. The result was catastrophically 

wrong. Somewhat surprisingly, Richardson included the example anyway. 

This decision is telling for two reasons: first, it was motivated by the sheer 

difficulty of obtaining any predicted values at all  because the computation 

took so long that Richardson did not have the option of starting with a 

dif fer ent set of conditions. Second, Richardson tolerated the wrong values 

 because he could argue that he proved the principal possibility of weather 

prediction.5 Richardson’s approach via iteration and numerical approxi-

mation was totally unusual at the time.6 Both the culture of mathe matics 

and that of meteorology  were biased against it. Mathematicians  were not 

willing to include what they considered to be low- quality “approximate 
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mathe matics” into their disciplinary canon  because they objected to trad-

ing theoretically demanding integrals for iterations whose difficulty arose 

from their  great number rather than their sophistication. Thus, Richard-

son’s finite difference approach was not accepted by the mathematical 

faculty at Cambridge (Hunt 1998, xvi). Meteorologists relied on entirely 

dif fer ent empirical and graphical approaches to prediction. Consequently, 

Richardson’s book that appeared in 1922 had a more or less negligible 

impact and was criticized for mixing up theoretical results about turbulence 

with computational schemes.7

Richardson fully realized that for his computational scheme to be practi-

cal, it had to satisfy two conditions: (1) computations had to be completed 

quickly enough for the prediction to still be about the  future; and (2) obser-

vations and computations together had to be socially affordable. He rea-

sons in the preface: “Perhaps some day in the dim  future it  will be pos si ble 

to advance the computations faster than the weather advances and at a cost 

less than the saving to mankind due to the information gained. But that is 

a dream” (Richardson 1922, xi).

Even if considered a dream, this vision stimulated Richardson (1922) to 

speculate on the  organization of computing:

Imagine a large hall like a theatre, except that the circles and galleries go right round 

through the space usually occupied by the stage. The walls of this chamber are 

painted to form a map of the globe. The ceiling represents the north polar regions, 

 England is in the gallery . . .  A myriad computers are at work upon the weather of 

the part of the map where each sits, but each computer attends only to one equa-

tion or part of an equation. [On a tall pillar in the  middle, in the center of the 

 spherical room] . . .  sits a man in charge of the  whole theatre; he is surrounded by 

several assistants and messengers. One of his duties is to maintain a uniform speed 

of pro gress in all parts of the globe. In this re spect he is like the conductor of an 

orchestra in which the instruments are slide rules and calculating machines. (219)

Nowadays, Richardson’s book is considered to be among the most promi-

nent monographs on weather prediction and an inspiration for computa-

tional scientists.  After electronic computers had changed the technology of 

computation, Richardson’s vision looked much more realistic. When George 

Platzman (1967)8 re- reviewed Richardson’s book in 1967, he expected even 

more than Richardson had dreamed of:

It seems likely that the  whole of physics and chemistry, with all their ramifica-

tions,  will in time be reduced to mathe matics, enabling the entire  future course of 
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material events to be predicted if only our powers of observation and calculation 

 were equal to the task. (520)

In other words, prediction  will be mathematized on the grandest scale 

of science if only two conditions fall into place: big data and computational 

power. It is remarkable that computational power is identified as a bottleneck 

exactly  after the computer had magnified this power enormously. Platzman 

already lived in a new culture of prediction whose use and needs of resources 

had changed.9 When the digital electronic computer became part of a cul-

ture of prediction, the concept of iteration acquired a central role. In the 

following, we  shall set out the epistemology of iteration, investigate its 

close relationship to the digital computer, and scrutinize the ways in which 

“small” computers induced an exploratory ele ment to the epistemology 

of iteration. As we  shall see, this epistemology  will also cast doubt on the 

claims about reduction that Platzman (and many  others) took for granted.

4.2  A  Rose Is a  Rose Is a  Rose

Iteration is a concept pre sent in nearly all domains of  human activity. Solv-

ing a prob lem by trial and error is a strategy based on repeated attempts. 

Exercises in  music such as playing the violin often consist in  doing the same 

 thing over and over— which  later might lead to a new level of  performance 

and understanding. Iteration— simply put:  doing the same  thing over and 

over— has surprisingly far- reaching epistemological ramifications.10 This 

chapter concentrates on iteration in a mathematical (and computer) con-

text in which formal operations are repeated. A  simple example is the mul-

tiplication n   × 7. For n   = 3, readers know the answer since childhood. For a 

bigger n, say n   = 268, the answer is less obvious, but calculation strategies 

from elementary school  will lead to the answer in a straightforward way. 

One way to do this is to follow an iterative algorithm: start with zero, add 

7, and do it again  until you have done it n times. This is an awkward algo-

rithm for a  human, but a tailor- made exercise for a digital computer. How 

can one characterize the epistemic significance of iteration?

 Here are two observations from the multiplication example: first, what 

appears trivial on the conceptual side is all but trivial on the practical side 

 because the abilities of  human operators are  limited. Consequently, strate-

gies are attractive that reduce the load of iteration. Second, iteration feeds 

into automation by computing machines. Accordingly, numerical strategies 
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pivot in the opposite direction and try to transform conceptually compli-

cated operations into a series of  simple operations— that are then carried 

out by a machine.

Differential and integral calculus can serve as a second, more advanced, 

illustration. Leibniz, one of the main inventors of calculus, was concerned 

with determining properties of mathematical curves (functions). Nor-

mally, this required tedious and complicated geometrical constructions. 

He aimed to devise some rules that would allow him to circumvent  these 

constructions— much like the way algebra, by calculating with letters, is able 

to shortcut arithmetical calculation with numbers. His calculus became a 

major vehicle for mathematization in physics. Like all instruments, it has its 

limitations. Often, dynamic systems can be described mathematically by a 

system of partial differential equations that is itself intractable. Calculus has 

paved a way for mathematization that (much  later) leads to dead ends. This 

brings into play the second strategy, the one we already encountered with 

Richardson. He replaced differential equations with difference equations— 

that is, he split up intractable integrals into a  great many additions. The 

second, iteration- friendly strategy was a dead end for classical analytical 

methods but turned into a broad ave nue for numerical operations—if only 

iterations could be executed in sufficient numbers— which is a big if.

This strategy reached full bloom with the digital electronic computer, 

but it is much older. Early examples are procedures for approximation such 

as the Newton– Raphson method.11 Their ingenuity lies in the balance they 

strike between replacing intractable prob lems by iterations of simpler steps 

and keeping the number of  these steps manageable. The epistemology of 

iteration asks what happened when the iterative strategy was pushed fur-

ther.  Human computers working with pencil and paper can navigate a rela-

tively narrow range of iterations, but  things look dif fer ent when algorithms 

are transferred to a nonhuman computer— that is, to a machine.12 Charles 

Babbage (1791–1871) was convinced that his Analytical Engine, a versatile 

mechanical calculator that could be programmed, would open up new 

territory for mathematization.13 Whereas Babbage’s machine was never 

finished, much less versatile semiautomated mechanical desktop calcula-

tors  were widely used in the second half of the nineteenth  century. They 

allowed the cumulation of additions in large numbers.14

Notwithstanding this history of iterative strategies, it was the electronic 

digital computer that catapulted iteration into the center of mathematization. 
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Through technological innovations from vacuum tubes to transistors to ever 

faster integrated cir cuits, the speed of computations increased vastly, making 

iterative strategies feasible that  were not even worth thinking about before. 

This had a major impact on mathematical modeling— and, the other way 

round, computing technology saw a constant stream of innovation. Tech-

nology, mathematization, and social  organization coevolved and formed an 

iterative culture of prediction.

4.3 Quantum Chemistry: Competing Pathways

From  here onward, this chapter follows the history of quantum chemistry 

(QC)— that is, the endeavors to computationally predict chemical proper-

ties of molecules.15 Tracing this subject  matter leads us through the study of 

dif fer ent cultures of prediction. In princi ple, prediction  faces daunting diffi-

culties  because chemical properties depend on the complex interactions of 

electrons. From our perspective, however, this is fortunate: in the attempt 

to access an almost inaccessible territory, mathematization, modeling, and 

technology coevolved in a very dynamic way.

QC spans all four dif fer ent cultures of prediction addressed in this book. 

It starts prior to the computer with rational and empirical approaches com-

peting with each other. We  shall analyze two crucial turns in the trajectory 

of QC. Both are connected to new conceptions of computational modeling 

that developed in line with the availability of new computing technology. 

The first turn began in the 1950s when electronic digital computers became 

available, and it was completed around 1970. By then, QC was firmly rooted 

in an iterative– numerical culture of prediction,16 often referred to as an “ab 

initio” approach. During the 1990s, QC underwent a second turn that is 

tied to the easy availability of small, networked computers. This second turn 

again led to the establishment of a new culture of prediction that we call 

exploratory– iterative.17

However, computational technology and infrastructure did not simply 

determine the path of QC; rather  there existed— and  there still exist— 

complementary conceptions of mathematical modeling that are in flux 

and closely related to available instrumentation. The computer has exerted 

a fundamental influence on the development of QC not just by chang-

ing computation in a technical sense but rather by leading to a rearticula-

tion of the practices of the QC community. Rather than determining the 
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development, computing technology played more the role of a boundary 

condition that informed the ongoing  process of mathematization.

The birth of QC started in 1926 when Erwin Schrödinger (1887–1961) 

published his wave equation describing the energy of a quantum mechani-

cal system. At the time, it was neither the only nor the first formulation of 

the new quantum mechanics, but Schrödinger’s formulation as a wave equa-

tion used the idiom of calculus and thus resonated with the mathematical 

practices of chemists. It was not clear  whether the potentially new field of 

QC, called “chemical physics” at the time, would lean more  toward chemis-

try or physics.18  There  were two complementary views of the intersection of 

physics and chemistry: the first can be called “principled theory” and fore-

grounded the physics side, whereas the second is often denoted as “semiem-

pirical” and brought in substantial experimental traditions from chemistry. 

Both flourished from the start. Let us start by turning to the first view.

The Rational Standpoint

The principled theory view holds that the Schrödinger equation contains 

all the information about the electronic structure of molecules that deter-

mines a system’s chemical properties such as the bond energy levels. Con-

sequently, the equation slips into the role of a fundamental mathematical 

law that governs significant parts of chemistry. This is the foundational step 

 toward a mathematization of chemistry, a mathematization that holds as 

much promise as rational mechanics did for physics.

However, the rational viewpoint had to face considerable difficulties 

due to the mathematical form of the Schrödinger equation. This equation 

expresses a system’s energy via a wave function Ψ (1, 2, . . .  , N) that has as 

variables all (N) electrons of an atom, molecule, or bunch of molecules. The 

electrons interact, and hence Ψ has 3N degrees of freedom (i.e., three dimen-

sions of space, leaving spin aside)— a number of discouraging cardinality. 

Even if one restricts the focus to only a few electrons and their interaction, 

solving Ψ is extremely difficult and computationally demanding— indeed, 

practically impossible beyond the simplest cases. Therefore, it was an open 

question  whether the principled possibility of prediction would translate 

into a mathematical approach that could, in fact, predict relevant properties.

A positive answer to that question came fairly quickly. In 1927, a joint 

paper by the German physicists Walter Heitler and Fritz London argued 

that some chemical bonds could be understood as a quantum phenomenon 
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(Heitler and London 1927). The argument was of a mathematical nature: the 

Schrödinger equation implied that two hydrogen atoms reduced the total 

energy when they formed a bond. Although the energy that Heitler and Lon-

don calculated from the equation was not very close to the energy known 

from experimentation, they took their result as a  great success. Chemical 

attraction, the computation showed, rested on electron exchange— that is, 

on a quantum- mechanical effect. For Heitler and London, this insight was far 

more impor tant than the accuracy of the quantitative value (cf. Nye 1993). 

This first mathematical result was immediately recognized as a proof of princi-

ple: mathematical prediction from the Schrödinger equation was pos si ble.

Quickly, a small group of quantum theorists, mainly physicists, became 

convinced that pursuing this path further would lead to a new QC. The next 

steps  were to tackle (slightly) more complicated cases and to produce more 

accurate values. Egil Hylleraas, a Norwegian physicist working as a postdoc 

with Max Born, devised an approximation of the two- electron system of 

helium and calculated values for ionization energy that  were very simi-

lar to  those  measured experimentally. This was taken as numerical proof 

that quantum mechanics does indeed govern chemical properties, and that 

mathematical prediction could be accurate enough to be chemically rel-

evant (Park 2009).

One should note, however, that  these results  were retrodictions— that is, 

mathematical derivations aimed at matching results already known from 

experiments. Hylleraas’s goal was to find mathematically plausible approxi-

mations that fit the values known from experiments (what Park [2009, 34] 

calls the “practice of theory”). Thus, although the rational approach saw QC 

as a genuinely theoretical endeavor, when it came to concrete values and 

the question of accuracy, the supremacy of experimental results was not 

challenged.

The aspiration of the rational viewpoint is expressed succinctly in the 

physicist Paul Dirac’s (1929) notorious quote that is cited in virtually  every 

portrayal of QC:

The under lying physical laws necessary for the mathematical theory of . . .  the 

 whole of chemistry are thus completely known and the difficulty is only that 

the exact application of  these laws leads to equations much too complicated to 

be soluble. (714)

This quote has been received in interestingly dif fer ent ways: on the one 

side, many quantum chemists  today focus on the claim of nonfeasibility 
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and find it overly pessimistic. New methods and strategies of computational 

modeling have been able to yield increasingly sophisticated approxima-

tions that make it easier to tackle  these equations numerically. On the other 

side, many historians and  philosophers have concentrated on the implied 

claim about the reduction of chemistry to quantum physics. Eric Scerri 

(1994), for instance, finds the Dirac quote to be too optimistic  because it 

overstates the implications of “mathematical theory.”19

Before long, the principled theory program ran into computation trou-

bles that derailed mathematization for  decades. In 1933, James and Coo-

lidge reached a veritable impasse: they used trial functions— that is, building 

blocks for approximations— and  were willing to add as many terms as  were 

necessary to obtain an accurate fit. Eventually, while the quantitative results 

indeed looked satisfactory, it also became clear that the computations  were 

forbidding—it took them about one year of intense work, including the 

use of mechanical computing devices, to finish them (Park 2009; Schaefer 

1986). It turned out that pairs of electrons constitute very special and rela-

tively easy cases, whereas existing numerical strategies would break down 

in other cases. Methods had focused on the outer electron shell for reasons 

of simplicity, but it appeared that by taking the inner shells into account, 

the approximations would actually become worse— the so- called “night-

mare of inner shells” (Park 2009, 48).

Thus, the principled approach became stuck. The derivation from the fun-

damental laws— that is, from the Schrödinger equation— demanded effective 

approximation strategies, and  there seemed to be no way to devise feasible 

procedures. Numerical strategies have to re spect what amount of iteration is 

doable in a reasonable amount of time. For instance, a trial function includes 

terms to be fitted, and one can use many terms to reach a good approxima-

tion (as James and Coo lidge  were trying to do). But this procedure normally 

requires iterating the approximation for each term (rather than deriving the 

terms analytically). Hence, a good quantitative fit depends on the speed 

and ease of performing iterations. However, the necessary iterations  were 

not manageable with the calculational means available to the researchers 

at that time:  these prob lems seemed to be insurmountable. The mathe-

matician and chemist Charles Coulson recalled in retrospect that  after the 

early 1930s, the development of wave mechanics came to a full stop and 

“despondency set in” (Coulson, cited according to Nye [1993, 239]).
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The Empirical Standpoint

A second view already complemented the first one early on. Right from the 

start, its proponents accepted that experimental approaches would be valu-

able resources. When computational procedures encountered components 

(integrals with physical meaning) too complicated to compute, one could 

first plug in values that had previously been determined experimentally 

and then continue with the procedure. In this way, empirical results helped 

to overcome—or rather circumvent— computational difficulties. In the 

context of QC, this approach is usually called semiempirical, and it did not 

encounter the impasse of the rational approach. “Devising semiempirical 

approximate methods became, therefore, a constitutive feature of quantum 

chemistry, at least in its formative years” (Simões 2003, 394).

Three persons are exemplary for this second strand: the chemist Linus 

Pauling, the chemist and physicist Robert Mulliken, and the physicist John 

Slater. All three  were born and educated in the United States, and, despite 

differences in their disciplinary affiliations, they followed a more pragmatic 

approach than the adherents of the first strand.20 All three worked in the 

1920s as postdoctoral scholars with quantum theorists in  Europe. Pauling 

visited Sommerfeld in Munich, Mulliken worked for Hund in Born’s labora-

tory in Göttingen, and Slater visited Bohr in Copenhagen.

The semiempirical approach was oriented  toward prediction and con-

ceived of computational modeling as a pragmatic combination of theory 

and experimental results. The foremost characteristic of all the semiempiri-

cal approaches is that experimentally  measured values are imported into cal-

culations in order to make predictions. One might notice that both theory 

and experiment  were crucial parts of semiempirical models, and that this 

seriously undermined claims of reduction to theory as expressed by Dirac.

A typical instance is Slater’s proposal to approximate a molecular orbital. 

 There  were two competing approaches: Pauling promoted the valence bond 

approach that worked with localized individual electrons that built bonds 

to form molecules. Mulliken advocated the molecular orbital approach that 

assumed a mixture of uncorrelated electrons that  were shared by one mol-

ecule. However, Slater proposed a nonlocalized orbital that belonged to a 

 whole molecule by a linear combination of atomic orbitals. In mathemati-

cal terms, modeling the combination in linear terms offered maximum trac-

tability and adjustability. In this way, Slater made the two complementary 
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approaches computationally compatible—in the  service of obtaining (i.e., 

predicting) accurate numerical values.

Often, the semiempirical approach is seen as an alternative or even a 

contradiction to the established culture of theoretical- mathematical phys-

ics. Coulson talks about the “Pauling era” to denote the turn in thinking 

when the pioneers of QC started to escape from the “thought forms of the 

physicist” (Coulson [1970, 259], cited according to Simões [2003, 396]). 

However, mathematical modeling also played an essential role in Pauling’s 

approach. One illustration is the notion of “resonance” that did not aim 

to represent some factual phenomenon but served to achieve better pre-

dictions. Coulson diagnosed that “resonance is . . .  a method of calcula-

tion; but it has no physical real ity” (Coulson [1947, 47], cited according to 

Simões [2003, 398–399]). Pauling, who viewed chemistry as a human- made 

endeavor anyway, did not find the lack of a physical real ity problematic— 

“unnatural” was not a criticism he cared much about. Mathematical model-

ing inevitably adds an ele ment of artificiality to any system. Models are, in 

impor tant re spects, dissimilar to the objects and phenomena they claim to 

represent, much like the ways a map represents a territory in specific ways 

for specific purposes.21

The first, rational approach has much in common with what we called 

the rational culture of prediction (cf. chapter  2). In it, mathematization 

unfolds the implications of fundamental laws. The semiempirical approach 

adds flexibility to the  process of mathematization, mixing repre sen ta tional 

and performance- oriented components much like we found in the empiri-

cal culture of prediction (chapter 2). Furthermore, a hybrid approach was 

able to produce predictions when the rational approach stalled, similar to 

what happened in late nineteenth- century mechanical engineering (chap-

ter 3). This was only the beginning of QC’s history. The rational approach 

revived  under new circumstances, when iterative algorithms and automa-

tization of computing set mathematization on a new track. The iterative– 

numerical culture of prediction flourished with the digital computer but 

has older roots that are worth inspecting.

4.4 Interlude: A Mechanico- Numerical Program

A central requirement of computational modeling is tractability. Computa-

tionally tractable models produce desired numerical values in a reasonable 
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time given the computational means at hand. This imposes a par tic u lar con-

dition on mathematical modeling  because such models do not work on the 

basis of general mathematical description but call for concrete algorithms. 

For instance, a mathematical model might indicate that a certain value is 

defined uniquely, whereas a computational model also gives a procedure for 

determining this value in practice. Furthermore, tractability is not an abso-

lute concept but depends on the instrumentation available, and algorithms 

tractable with one calculational tool may be intractable with another.

The mathematician Douglas  R. Hartree (1897–1958) clearly acknowl-

edged the importance of instrumentation for mathematical modeling. He 

combined  great mathematical skills with a passion for tinkering and for 

the automation of calculation. For instance, he built a working copy of 

Vannevar Bush’s differential analyzer out of Meccano parts that he filched 

from his  children’s toybox. Hartree was an early proponent of digital com-

puting machines. As early as 1947, he articulated a vision of computing 

technology and mathematical methods as “twins” (Hartree 1984), and he 

pioneered the iterative– numerical mode of prediction.

In QC, Hartree is best known for the Hartree– Fock method  going back to 

1927 when he devised an approximation strategy for wave functions (and 

energies) of atoms. This strategy presented a bold move  toward iteration at 

the expense of mathematically solving the Schrödinger equation. Hartree 

conceived the challenge in a new way, resolutely oriented  toward finding 

an adequate prediction rather than an analytical solution. He prioritized 

computation (instead of mathematical solution), devised a class of numeri-

cal procedures that could be iterated semiautomatically (with the help of 

some mechanical devices), and then specified a model for which one of 

 these procedures would work.22

 Here is a brief outline of how Hartree used iteration to work around 

computational prob lems. The Schrödinger equation is so mathematically 

complex  because each electron interacts with the  others so that a solu-

tion cannot proceed by splitting up the prob lem and calculating the sub-

problems in de pen dently one  after the other. Hartree’s approach starts by 

calculating the value of the potential of one electron, thereby assuming an 

ad hoc initial value and counterfactually assuming all other potentials as 

fixed— that is, as a given field. In the next step, the first electron assumes 

the value calculated in the first step, then the second electron is regarded 

as variable and all  others as fixed. Then the procedure is iterated. The first 
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series terminates when each electron has played the role of the variable. 

Then, the next series of iterations starts by taking the results of the first 

round as initial conditions. At the end of the second series of iterations, 

the values of all electrons are readapted. If they differ from the first series, 

the  whole procedure starts over a third time, and so on  until the values no 

longer change between two series of iterations. In short, each step ignores 

part of the electron interactions to find values that are mutually consistent, 

hoping that errors then cancel each other out. This procedure is known as 

the self- consistent field (SCF) approach.23

One can criticize Hartree’s approach as unprincipled and artificial, ori-

ented merely  toward numerical and mechanical feasibility. For Hartree, 

however, computational tractability outweighed the missing theoretical 

justification of the model. The SCF procedure partly ignores the interdepen-

dence of electrons— that is, the main obstacle in terms of computational 

complexity— whereby the procedure inevitably “mistreats” mutual interde-

pendence. It trades predictive capacity against theoretical validity. Hartree’s 

approach became widely accepted when experience showed that the pre-

dictions obtained by SCF— that is, Hartree– Fock— were good enough. Even 

 today, Hartree– Fock methods are still in common use.

The lesson Hartree’s SCF example teaches is as follows: if computational 

modeling aims to produce accurate enough predictions, modeling might 

develop according to its own demands and rationale— mediating between 

theory, experimental data, and computing technology but not determined 

by them.24 Hartree’s method took numerical feasibility as a guiding crite-

rion for co- constructing the model and instrument. His major contribu-

tion, we would like to argue, is not mastering the challenge of numerical 

feasibility but approaching the model and the instrument as one proj ect.

Hartree was not only an expert in computing technology in general 

but was also a very early proponent of digital machines in par tic u lar. He 

conducted pioneering work with the Electronic Numerical Integrator and 

Computer (ENIAC) in Pennsylvania and applied that experience to the 

development of the Electronic Delay Storage Automatic Calculator (EDSAC) 

computer at Cambridge University. Early on, Hartree (1949, 1958) realized 

from his experiences with the ENIAC and its general- purpose programma-

bility that digital computing would not merely make computation faster 

but would open up a new path for mathematization. Mathematical mod-

eling and computational technology would coevolve: “It is necessary not 
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only to design machines for the mathe matics, but also to develop a new 

mathe matics for the machines” (Hartree 1949, 115).25

4.5  Organizing Computation in the Iterative– Numerical Mode

The development of the iterative– numerical mode of prediction preceded 

the digital computer; and, moreover, the eventual establishment of a culture 

of prediction did not happen in one fell swoop. Rather, it was the outcome 

of an ongoing dynamics: how computation was  organized institutionally 

and technologically.

The advent of the digital computer did not change every thing com-

pletely, nor did it result in a new start for computational chemistry. Rather, 

digital electronic computers transformed already existing computational 

strategies such as the one heralded by Hartree: ones that worked with a mod-

erate amount of iteration and that  were designed for a mechanical integra-

tion technology. With the digital computer, algorithms that required many 

more iterative steps became feasible. Since the early 1950s, computational 

modeling had been seen increasingly as a topic that demanded special 

attention from quantum chemists. A small community formed that was 

located mainly in the United States and the United Kingdom. It included 

the arguably leading group of Robert S. Mulliken and Clemens C. J. Root-

haan at Chicago and the group of S. Francis Boys at Cambridge.

This community shared the belief that the conditions, possibilities, and 

limitations of computation  were main  factors for development. In other 

words, QC should not be determined by its theoretical object alone; rather, 

it should codevelop with computational instrumentation. The automa-

tion of computing was no longer viewed as simply an extension of  human 

mathematical skills but rather as a dif fer ent approach to mathematization 

altogether. In our example, this was privileging iterative– numerical proce-

dures over analytic solutions to partial differential equations.26 This new 

conviction was firmly rooted even before the digital computer became eas-

ily accessible for chemists. The first achievements of computational mod-

eling in chemistry  were not so much predictions of chemical interest—in 

this re spect, experiments still held the leading role, and computational 

accounts still aimed at retroacting known results— but the development 

and investigation of systematic foundations of computational modeling 

(cf. Schaefer 1988).
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Computational aspects influenced mathematical modeling quite funda-

mentally. A telling example is Boys’s (1950) introduction of a special class 

of basis functions for approximating orbitals called Gaussian functions 

 because they belong to the same  family as the Gaussian distribution (i.e., 

the “bell curve”) function. The agenda of Boys’s group was to treat chemi-

cally in ter est ing (i.e., bigger) molecules. Hence, computational virtues of 

models became a focus of research. It is impor tant to recognize that the 

concept of “computational virtue” is dynamic in two dif fer ent ways: first, 

the virtue of feasibility— that is, avoiding the computationally intractable— 

depends on the available computing technologies. Second, not unlike other 

virtues, it has a social character: at stake is the  performance of models in 

 those par tic u lar fields or on  those par tic u lar prob lems that the community 

deems in ter est ing— and that itself is dynamic. Boys was intrigued by the 

computational properties of Gaussian functions that made it pos si ble to 

tackle multidimensional integrals with relative ease. He established  these 

functions as a means to approximate the computationally much less trac-

table exponential or Slater- type orbitals, although it was known that such 

treatment introduced extra errors  because of the dif fer ent form of Gauss-

ians. However, Boys preferred computational tractability over quantum- 

theoretical justification.27 Soon it became clear that the use of Gaussian 

basis functions rendered tractable a range of molecules that formerly had 

been out of reach. This led to their widespread adoption along with the 

possibility that the accompanying approximation errors could be addressed 

via correction  factors.28

The community’s computational agenda was documented at a 1951 con-

ference on Shelter Island, New York. Mulliken gathered most of the leading 

 people working on QC at the time for a workshop with National Acad emy 

of Science support. Robert Parr and Bryce Crawford produced the official 

report of the conference: “National Acad emy of Sciences Conference on 

Quantum Mechanical Methods in Valence Theory” (1952).29 The rationale 

for the conference was the shared opinion that computational prob lems 

 were a major obstacle in resolving inadequacies in valence theory. Parr 

(1990), who attended as a young researcher, recalled  later that the members 

of this community  were so committed to tackling computational prob lems 

that they discussed “calculation as a way of life to be  adopted by us” (327).

The Shelter Island group was to make a joint and  organized effort by 

systematically assigning and distributing salient computational tasks, thus 
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trying to combine the relevant with the feasible. The envisioned strategy 

comprised two steps: First, a working group determined which of the math-

ematical integrals that created computational prob lems  were also of general 

significance— that is, occurred in a range of models. Such integrals could 

then play the role of building blocks for models in QC. The second step 

consisted in actually evaluating  these integrals and producing a collection 

of numerical  tables to be a shared asset of the QC community. “An informal 

Integrals Committee was established, centered at the University of Chicago, 

to collect and dispense integral information” (Parr and Crawford 1952, 

552). We see  here the intention to standardize computational models and 

to  organize a distributive mode for computational modeling.

4.6 Infrastructure and Bottlenecks in the Iterative– Numerical  

Culture of Prediction

Pro gress in computational modeling gave the rational approach a boost, 

though a  limited one. The attempts to calculate or numerically approxi-

mate solutions to the Schrödinger equation— what we called the ratio-

nal approach— had come to a halt in the early 1930s. The semiempirical 

approach dominated from the 1930s onward, not least  because it could 

profit directly from advances in  measurement and experimentation. How-

ever, on the basis of the advances in computational modeling made in the 

early 1950s, the prospects for a relaunch of the rational approach began to 

look more hopeful. One of the first new calculations was reportedly fin-

ished by Charles W. Scherr in 1955 who calculated the energy of the N2 

molecule. It took him and two assistants a year with a desk calculator (see 

Park [2003] for more details). Whereas Scherr profited from advances in 

computational modeling, his approach still consumed so much time that 

it remained largely impractical. Although computational strategies had 

turned complicated mathe matics into iterations, the available technology 

was still too slow.30

Quantum chemists  were aware that, in princi ple, the use of digital com-

puters held promise for an iterative– numerical mode of prediction. In prac-

tice, however, using the technology created more of a bottleneck. In the 

mid-1950s, only a small number of digital computers existed. They  were 

extremely expensive and  were owned mainly by government agencies, 

meaning that access was difficult for such scientists as quantum chemists. 
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Additionally,  these machines  were difficult to use in lieu of power ful com-

pilers and other software. Nevertheless, quantum chemists tried to get 

access to  these machines early on.

Bernard Ransil’s pioneering work illustrates both the promise and the 

limitations of digital computing. Ransil was computing wave functions of 

the H3 radical with the SEAC, the Standards Eastern Automatic Computer, 

one of the first electronic computers  housed at the National Bureau of Stan-

dards. The SEAC was the first fully functional stored program computer 

in the United States. In 1955, with a newly minted PhD in physics, Ran-

sil moved to the University of Chicago to join Mulliken and Roothaan’s 

QC group.  There he worked on nitrogen, specifically on the design and 

construction of the “first computer program to generate diatomic wave 

functions in minimal orbital LCAO- MO- SCF approximation” (Bolcer and 

Hermann 1994, 8).31 Ransil wrote this program in machine language for a 

UNIVAC 1103 computer located at Wright Field Air Force Base in Dayton, 

Ohio. Mulliken and Roothaan,  eager to gain access to digital computing 

facilities, had contracted computing time from the military. The infrastruc-

ture was not exactly inviting. Ransil had to prepare the set of commands, 

travel from Chicago to Ohio with a stack of prepared punch cards, and 

work overnight with the UNIVAC (see Mulliken 1989). The modification of 

the program was extremely tedious by  today’s standards due to the work-

ing conditions— working in Chicago, debugging in Ohio— and also due to 

the technical conditions of computation. In par tic u lar, machine language 

programs did not offer the relative  convenience of an optimizing compiler 

such as FORTRAN (first available in 1957 from IBM), so programming equa-

tions was much more tedious (requiring many, perhaps twenty times, more 

statements than FORTRAN would); and, furthermore, any modification of 

the model would regularly require substantial new programming. Never-

theless, the program ran eventually, and Ransil obtained the desired value.

Mulliken and Roothaan, who had looked eagerly over Ransil’s shoulder, 

considered this a breakthrough and shouted the result from the rooftops 

in “Broken Bottlenecks and the  Future of Molecular Quantum Mechanics” 

(1959). The bottleneck to which they referred was the complete automation 

of a computational procedure. They reported Ransil’s machine program 

that calculated impor tant aspects of wave functions of diatomic molecules. 

“The importance of such a machine program is illustrated by the fact that 

the entire set of calculations on the N2 molecule which took Scherr (with 
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the help of two assistants) about a year, can now be repeated in 35 min” 

(Mulliken and Roothaan 1959, 396). Of course, the speed of computation 

played a major role. Nonetheless, taking advantage of this speed presup-

posed conceptual as well as  organizational conditions— namely, accessibil-

ity and usability of the technology and the right kind of computational 

models geared  toward iteration. We see  here an early exemplar of the 

emerging iterative– numerical culture of prediction.

Our example involves two types of iteration: first, the iterations of arith-

metical or logical operations performed by the computer— that is, algorith-

mic iteration. The second type of iteration we call interactive. It involves 

a feedback loop between computer, model  performance, and researcher. 

Interactive iteration was difficult in Ransil’s case  because of the way the 

computing instrument was accessed. Interactive iteration demanded time- 

consuming, repeated  trials to make the software run successfully, and this 

also required trips between Chicago and Dayton plus negotiated access to 

the computer at Wright Field. Exploring modifications of the program was 

practically infeasible— too costly in terms of time and workload. Further 

exploratory work would have demanded an infrastructure in which  going 

back and forth between  running and modifying the model was a practical 

option. Therefore, although the bottleneck for algorithmic iteration was 

broken by work like Ransil’s, interactive iteration remained largely blocked.

An additional illustration of how computational infrastructure is related 

to, or rather prohibits, interactive iteration comes from West Germany. 

Digital computing entered science somewhat  later in Germany than in the 

United States. The Deutsches Rechenzentrum (DRZ), the German Center for 

Computation located in Darmstadt, bought a “central” digital computer 

only in 1961 and made it available to German universities. The first machine 

was an IBM 704, replaced by an IBM 7090 in 1963. German quantum chem-

ist Sigrid Peyerimhoff recalls that back in the mid-1960s, one had to travel 

to Darmstadt with a box of punch cards or prepared magnetic tape.  There, 

one handed over the cards to the staff at the DRZ who ran the program and 

returned the output. Of course, modifications had to be made frequently to 

debug the program. Thus, to avoid frequent traveling, successful researchers 

needed to know a DRZ staff person who could oversee the  process and was 

willing to take phone instructions. One could also send the punch cards 

by mail, but that would further slow down the  whole  process— debugging 

always required multiple attempts. Output was always sent back by post. 
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Such conditions allowed for only rudimentary interactive iterations. Pey-

erimhoff (2002) experienced how limiting the infrastructural bottleneck 

actually was during a stay in the United States (speaking about 1963):

In Chicago, I realized for the first time how impor tant it was to have access to 

a reasonably sized computer (IBM 7090) on campus, even if runs could be per-

formed only during the night. And furthermore, that a turnaround time of a day 

or two for computer jobs made all the difference compared to the German situa-

tion using a Z23 [Zuse type 23] or sending programs and outputs back and forth 

to the DRZ in Darmstadt by regular mail. (271)

Whereas interactive iteration was challenging from a practical point of 

view, it also formed an essential part of computational modeling. Of course, 

no programmer can escape debugging  because it is an iterative  process. 

Even more importantly, interactive iteration is at the core of  parameter 

variation when some model has a number of  parameters whose values are 

deliberately left open and assigned  later depending on the  performance of 

the model.32

The restricted accessibility of computing machines was widely seen by 

prac ti tion ers as presenting a major obstacle for QC  because it prevented 

 parameter variation as a working practice. In a famous passage from Mullik-

en’s Nobel lecture in 1966, he articulated the promise that computational 

modeling held for chemistry, but also identified one major caveat: “ There 

is only one obstacle, namely that someone must pay for the computing 

time.” Then Mulliken called for government support. Thus, the epistemol-

ogy of iteration is linked to technology and infrastructure: whereas the bot-

tleneck of mechanizing (algorithmic) iterations was broken, cost and ease 

of access emerged as new bottlenecks that prohibited interactive iterations.

Indeed, in the United States,  there was one group that strongly advocated 

for the establishment of a computing center for chemistry: the National 

Resource for Computation in Chemistry (NRCC).33 In 1964, the Lawrence 

Berkeley Laboratory received one of the first supercomputers, the CDC 6600 

designed by Seymour Cray. From 1971 onward, it was made available to other 

users who  were not members of the lab— mainly users working in high- energy 

physics but also some outside users such as chemists. Practically, this was sim-

ilar to the West German DRZ— getting onsite instruction, mailing magnetic 

tapes, sending instructions via terminal, and receiving printouts via paper 

mail. This was the reason for calling for their own center: quantum chemists 

wanted more access, not leftover computing time from nuclear research.
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But the exact structure and form of an NRCC was not determined. Should 

the NRCC follow the lead of physics and aim  toward supercomputing? Right 

from the beginning, the proposal was not favored unanimously among 

chemists. In par tic u lar, Michael Dewar opposed  these plans— computing 

time on a supercomputer fa cil i ty was very expensive and “with so much 

pressure to justify results, Dewar feared that extensive calculations of an 

exploratory nature would be too greatly inhibited” (according to NAS [1971, 

45]). Moreover, Dewar worried about a potential bias against semiempirical 

work that had proved so useful for QC. The mere presence of a supercom-

puter would potentially direct modelers  toward formulating complex models 

that, in turn, would require such a computer. Dewar advocated a network of 

smaller and cheaper computers instead. This was an approach that was ahead 

of his time and would not materialize for another two- plus  decades.

The controversy about the exact nature of an NRCC can be interpreted 

in light of the epistemology of iteration: on the one side, if algorithmic 

iteration  were to be accelerated so greatly, computational models of a new 

size could become tractable. To achieve this seemed to require supercom-

puter infrastructure. On the other side, critics such as Dewar stressed the 

importance of interactive iteration for exploratory computational model-

ing. This demanded cheap and easy access. Hence, the two types of itera-

tion demanded dif fer ent infrastructures and  were thus at cross purposes.

In 1977 the NRCC was fi nally established as a division of the Lawrence 

Berkeley Laboratory. The National Science Foundation and Department of 

Energy, the joint sponsors of an annual  budget of $1.75 million,  were well 

aware of the disagreements among computational chemists and insisted 

on a strict reevaluation only a few years  later. In 1980, they de cided to 

shut down the NRCC. A report summarizes: “Plug Pulled on Chemistry 

Computing Center” (Robinson 1980). One particularly significant reason 

for the shutdown was that new super minicomputers had become available 

in the 1970s. Their  performance was comparable to the  performance of 

older supercomputers, but they could be afforded,  housed, maintained, and 

controlled by a single department. Hence, compared to supercomputing 

centers, minicomputers offered better possibilities for exploratory model-

ing. Bolcer and Hermann (1994) aptly summarize that the NRCC lost its 

significance just at the moment it was implemented.

Another bottleneck for prediction was software. The dynamics of QC 

depended on software as much as on hardware.  Performance of the machine 
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is not the only criterion. The usability of a software, including prob lems 

with infrastructure and distribution, are of at least equal importance for 

modelers.34 Not all software is open source, meaning that users may not 

have access to the  actual program code. Even if they do, it may remain diffi-

cult to actually “understand” how the program works. A second, additional 

challenge was the compatibility between dif fer ent platforms or types of 

machines that  were in use (e.g., the IBM 7094, CDC 3300, TR, or IBM 360). 

In general, the question of portability of code was (and still is) a nontrivial 

prob lem that had to be addressed when one intended to work on dif fer ent 

machines or to distribute the code to other researchers. A third obstacle 

was how to  organize the distribution of programs— a question that directly 

affected the identity and pro gress of QC.

The standardization of software had a significant effect on the evolv-

ing identity of QC.35 A prime example is Gaussian, a software package 

first released in 1970 that was a comprehensive suite of quantum chemi-

cal models developed  under the leadership of John Pople (1925–2004) at 

Car ne gie Mellon. He assembled a “club” of experts who contributed vari-

ous modules to the package with the clear goal of addressing the broader 

audience of chemists who did not want to develop computational models 

but rather wanted to use  these models. The package is named  after the 

computationally  convenient and efficient Gaussian orbitals and Gaussian 

basis functions mentioned  earlier, whose employment served as a kind of 

computational rationale for the package.

Pople advocated standardization—an arguably inevitable  process to foster 

a growing field. He promoted the use of standardized test beds to be included 

in the programs’ extensive database about well- researched substances that he 

called “model chemistries.” The  performance of any model could be tested— 

computationally—by comparing its predictions with existing model cases. 

“Configuration interaction” was one example of the way standardization 

directed research. “Configuration interaction” was a method proposed in the 

mid-1950s, but it was too computationally demanding  until standardized by 

Gaussian- N model chemistries, when it became a ready- to- use tool of known 

computational order O(N5).36 In addition, the coupled cluster method of the 

late 1960s was infamous for using formal mathematical manipulations but 

became  popular once  these manipulations  were implemented— and thereby 

removed from the user— into the Gaussian suite.

Computational infrastructure changed again in the early 1980s when 

even smaller, affordable computers came onto the market. One of the reasons 
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for the success of MOPAC, the general molecular orbital package, was that 

it capitalized on  these new computers— namely, the VAX 11/780 minisuper-

computers from Digital Equipment Corporation.  These machines could be set 

up in a lab and had output screens so that researchers could use them inter-

actively—an opportunity that greatly increased the popularity of software 

such as MOPAC. The distribution of software was connected increasingly to 

the distribution of new hardware. In their brief memoir, Lipkowitz and Boyd 

(2000) saw the VAX 11/780 as a forerunner of the move to desktop comput-

ers operating on a departmental or even personal scale. They wrote, “ These 

machines changed significantly the way computational chemistry was being 

done at that time and expanded the horizon of computing for many chemis-

try departments” (viii).

By then, the field of computational chemistry had grown so much that 

very dif fer ent levels of expertise coexisted. The popularity of MOPAC, for 

instance, was based on the fact that one did not need to be an expert on 

computation and programming to use it. In general, this marks an impor-

tant development: groups of users outstripped developers and increasingly 

constituted nonoverlapping communities. Researchers who used compu-

tational models to derive predictions about molecules or substances of 

interest for them  were not usually specialists in computational strategies. 

This pre sents us with a new social  organization of QC— arguably a transfor-

mation typical for many “computational” fields. This new  organizational 

structure is not of an exclusively social nature. Rather, it is based on a com-

bination of developments in hardware technology, in software and compu-

tational modeling, and in social  organization. The question then is: Does 

this transformation lead to a new culture of prediction? And if so, how does 

it differ from the iterative– numerical culture linked to the mainframe com-

puter? Before we turn to this question, we  shall discuss how the iterative– 

numerical culture reshaped a central concept— namely, ab initio prediction.

4.7 Interlude: Ab Initio, Prediction, and Complete Prediction

In the context of the iterative– numerical culture of prediction, the term 

ab initio received a new meaning, and ab initio methods became  popular 

or even hegemonial in QC. This conceptual shift tells something seminal 

about the iterative– numerical culture of prediction. Though the term ab 

initio was originally used in computational chemistry in the 1950s, the 

notion became an impor tant marker in QC around 1970. The Latin term 
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ab initio can be translated as “from the beginning” and has many usages in 

scientific as well as extrascientific domains. In science, it is often used syn-

onymously with “from first princi ples.” When the term was coined in QC, 

computing from the beginning meant computing from the Schrödinger 

equation. The first appearance of the term ab initio was in Parr et al. (1950), 

and it was quickly and widely  adopted in the QC community to denote an 

opposition to semiempirical methods. Of course, the latter also relied on 

computation, but—in contrast to ab initio methods— they not only referred 

to laws and natu ral constants but also depended on the insertion of other 

empirically obtained values of physical significance.

In this section, we want to bring out a certain ambiguity in the conception— 

and also in the usage of—ab initio.37 This ambiguity arises from the fact that 

“opposing semiempirical” does not coincide with “being derived from first 

princi ples.” Rather,  these two properties belong to dif fer ent dimensions. 

When Parr et al. brought up the term ab initio modeling, it was the com-

putational aspect that was key. In their paper on configuration interaction 

in benzene (1950), their point was that the computation could run from 

start to finish without the interventional insertion of empirically obtained 

values.  Here, ab initio is used in the sense of automation: the goal was 

to specify a model, implement it as a program, and then assign par tic u lar 

initial conditions to this program as input to the computation. From this 

point onward, the result would be produced automatically without further 

intervention. This kind of procedure was also called “complete prediction” 

to emphasize the difference from semiempirical methods in which compu-

tation requires empirical values to be input at vari ous stages.38

Parr and his colleagues’ goal was to compute chemical properties rather 

than  measure them. The electronic digital computer was exactly the instru-

ment that let the automation strategies get off the ground. We already 

discussed Ransil’s work on nitrogen and Mulliken and Roothaan’s claims 

about breaking the computational bottleneck. With the first computational 

models  running without any intermediate insertion of empirically deter-

mined values, some quantum chemists such as Mulliken (Parr was in his 

group, too) became strong advocates of computer use in QC. Quickly, the 

term ab initio was used to discern dif fer ent camps in QC.

Already in 1960, Coulson had delineated the split of the field of quantum 

chemists into “ab- initio- ists”— whom he described as “electronic computers” 

(i.e., as  people counting on automation by computers) and “a- posteriori- 

ists,” which, for Coulson, meant “nonelectronic computers” (i.e., advocates 
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of mixed, semiempirical strategies; Coulson 1960, 170). Apparently, the 

appeal to ab initio as a category was more impor tant than finding elegant 

labels for the two groups. His statement documents that the term ab initio 

was already so common that it could indicate demarcation and also that 

the central issue consisted of electronic computation. The attempt to auto-

mate is aptly described as aiming for “complete prediction.” By using the 

term ab initio, however, one suggests that  these methods would derive their 

predictions from first princi ples. However, this is not the case  because of 

the nature of computational modeling.

Parr’s configuration interaction, for instance, can be seen as an ana-

log of Hartree’s self- consistent field (SCF) method, discussed  earlier in this 

chapter, that relies on an iterative computational strategy. The outcome, or 

termination, of SCF depends on a criterion defined by the results of the 

computation itself: becoming stationary or “self- consistent.” Hence it is an 

instance of “full prediction” or automation but also relies on ad hoc assump-

tions about its initial values as well as computational strategies that are justi-

fied by  performance rather than by being derived from first princi ples.

Thus, we can discern two dif fer ent senses of ab initio: one is the prin-

cipled sense in which ab initio computation means compute (solely) from 

the Schrödinger equation. The other is the automation (or computational) 

sense— that is, achieving complete predictions— that tolerates computational 

models that do not rest on quantum theoretical considerations. Although 

some parts of the reputation of ab initio methods may well rest on the prin-

cipled understanding of this term, our argumentation suggests that compu-

tational modeling normally relies on the second, computational sense. For 

instance, consider a set of basis functions. The set determines the class of 

functions out of which an ele ment with optimal fit can be calculated. This 

choice  will normally be  shaped by reasons of computational tractability— 

theoretical reasons, of course, but not quantum theoretical ones.39

An oversimplified view of this issue can be misleading. In their “broken 

bottleneck” paper, Mulliken and Roothaan (1959) compared their recent 

development of QC— that is, the first successes in automation and complete 

prediction— with the application of Newtonian mechanics to engineering. 

In both cases, it had taken many years to find efficient mathematical for-

mulations to treat prob lems quantitatively. Now, the authors claimed, this 

time has come in QC. Hence, they suggested that QC was now able to sail 

in the same  waters as rational mechanics. However,  there are reasons to 

disagree with their standpoint and analogy. Historical and philosophical 
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lit er a ture has shown convincingly that engineering knowledge is quite dif-

fer ent from an application of theoretical scientific knowledge. In par tic-

u lar, it may be the pretension of rational mechanics that a quantitative 

treatment of practical prob lems can be derived from it. But this preten-

sion is at odds with the historical rec ord, as many of our  earlier cases in 

chapters 2 and 3 have shown. Successful predictions are regularly based on 

sophisticated modeling. When  these models refer to principled theory, this 

does not mean that  these theories would in any sense imply the predic-

tions. When Mulliken and Roothaan took the success of computational- 

ab- initio approaches (complete prediction) as an indicator for the power of 

principled- ab- initio approaches, they fell into a similar trap.

Ignoring the difference between computational ab initio and first- 

principle ab initio suggests that the success of the computer has made true 

the old rational– mechanical dream of first- principle- based derivation. Such 

a viewpoint neglects the significance of computational modeling that is not 

an issue of theoretical derivation but rather an issue of mediation between 

theory, experiment, phenomena, and computational technology.40 It may 

be especially impor tant to emphasize that technology also influenced QC 

on the experimental side. Whereas new computational instrumentation 

did lead to an upswing of ab initio approaches, new instrumental, experi-

mental, and laboratory technologies (e.g., spectroscopy) also made avail-

able new and much more refined data.

The story of QC began with two dif fer ent pos si ble approaches: the prin-

cipled one and the semiempirical one. It is true that the semiempirical one 

was the leading approach, whereas the principled one more or less got stuck 

in an impasse early on. However, from the time that ab initio was coined 

in the early 1950s, it marked an opposition to semiempirical strategies. Back 

then, a majority of chemists saw the ambitions for sophisticated computa-

tional modeling as neither necessary nor helpful  because they narrowed the 

prospects for obtaining chemically relevant results. In the 1970s, ab initio 

methods started to become predictive, and, a  decade  later, a substantially 

broadened field of applications was much more easily accessible for com-

putational chemists. By that time, ab initio (in the computational sense) had 

become the leading approach in the community of computational quan-

tum chemists.

John Pople’s  career illustrates the point. He was always deeply interested 

in mathematical modeling, but it was clear to him that mathematical and 
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computational approaches should have an auxiliary role in chemistry. He 

thought that QC should focus on cases of chemical interest.  Because this 

was hardly pos si ble with ab initio methods, Pople preferred a semiempiri-

cal approach.41 In the 1970s, however, increasing computational power and 

the development of standard computational methods made it pos si ble to 

tackle in ter est ing cases on an ab initio basis. Pople became an influential 

proponent of ab initio methods, not least by codeveloping and promoting 

the Gaussian software package.42

However, it is necessary to distinguish the fact that a mathematical 

prediction was pos si ble from the existence of a mathematico- theoretical 

foundation of chemistry. The increasing range of predictive computational 

modeling in chemically relevant cases does not per se justify a strong foun-

dational claim.43 Rather, it proves the growing efficiency of ab initio in the 

computational sense. This marks a central point: computational modeling 

requires  measures that have neither a principled nor a semiempirical char-

acter. A principled strategy would have to specify a model completely from 

quantum theoretical considerations. A semiempirical strategy—in the sense 

established in QC— would plug in empirically obtained values of physical 

significance. Separate from both, computational models follow their own 

dynamics, sensitive to formal and instrumental conditions alike. Thus, the 

term ab initio exemplifies the autonomous dynamics of mathematization 

insofar as it  adopted a new meaning: in the rational culture of prediction, 

“from the beginning” meant to predict by derivation from fundamental 

laws, whereas in the iterative– numerical culture, the term  adopted a com-

putational meaning.

4.8 Two Gambits and a New Era: Density Functional Theory

The iterative– numerical culture of prediction was fully established by the 

1970s. But the story does not end  here. In the 1990s, a new culture developed 

that (again)  shaped QC. We  shall observe and analyze this culture by track-

ing the history of density functional theory (DFT). DFT actually has a longer 

history in solid state physics in which it has played an impor tant role since 

the mid-1960s, but it gained outstanding relevance in chemistry with the 

turn to “small”— that is, highly available and networked— computers. This 

turn indicates a decisive inflection point in the epistemology of iteration, 

leading to a new culture of prediction that we call exploratory– iterative.
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One would expect an upswing of computational QC on the grounds of 

the general availability of computational power. DFT, however, stands out: 

“The truly spectacular development in this new quantum chemical era is 

density functional theory (DFT)” (Barden and Schaefer 2000, 1415). One 

can readily read off the “spectacular development” from bibliometric data. 

A  simple survey shows that the number of articles with DFT in the title or 

abstract started off like a rocket in the  decade of the 1990s, quickly rising to a 

staggering fifteen thousand papers per year in 2015 (see figure 4.1).

Thus, the obvious question is: What happened with DFT around 1990? 

DFT was not a new theory; it had originated in solid state physics thirty 

years  earlier. How and why did it become relevant in chemistry more than 

a generation  later? One answer to this question focuses on the development 

and availability of new computational instruments. Another highlights a 

new conception of computational modeling. Still a third hinges on a reor-

ga ni za tion of the field, even the discipline, of chemistry. Together,  these 

 factors make up a new configuration.44 More specifically, we claim that DFT 

became a shining example of a new culture of prediction.

To explain and justify this claim, we first have to introduce DFT. We  shall 

keep the necessary technical arguments to a minimum. QC generally deals 

with the electronic structure of atoms and molecules. The Schrödinger 

equation expresses the energy of such structures as a wave equation. 

Attempts to solve this equation had been at the root of QC since 1927, 
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Figure 4.1
The number of papers with “density functional theory” in the title or abstract per 

year in ISI Web of Science database. Courtesy: authors.
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and dealing with the extraordinary complexities of the equation  shaped QC 

into an iterative– numerical culture. DFT addresses the same energy as the 

Schrödinger equation does, but in a mathematically alternative way that 

promises to remove much of the complexity. Due to electron interactions, 

each Schrödinger wave function has 3N degrees of freedom (N being the 

number of electrons)— a large number. DFT, however, expresses the same 

energy in terms of the joint electron density— that is, an “object” in space 

with only three degrees of freedom (see figure 4.2 for an illustration).

The computational advantages of reducing complexity have led to the 

practical use of this approach in engineering, but the legitimacy or theory 

 behind this approach was not clear; it held a more heuristic status. The 

condensed  matter physicist Walter Kohn (1923–2016) played a major part 

in advancing this heuristic approach to the level of theory. He and his col-

league Pierre Hohenberg (1934–2017) produced two theorems (Hohenberg 

and Kohn 1964). Their first theorem states that the ground state energy is 

determined uniquely by the corresponding electron density ρ(r), that is, 

E   =   E (ρ(r)). This equation has to be read as saying that the energy E can be 

expressed as a function only of the electron density ρ. The second theorem 

is a mathematical variational princi ple: E [ρtrial] ≥  E [ρ]— that is, any hy po-

thet i cal density  will give a larger energy than the correct one, and hence: 

“the exact ground state energy and density can be calculated without 

recourse to the Schrödinger equation, at least in princi ple” (Bickelhaupt and 

Baerends 2000, 3). Therefore, DFT determines the energy without recourse 

to the Schrödinger equation and its devastating complexity. However, as 

Bickelhaupt and Baerends aptly write, the promise holds “in princi ple,” 

Figure 4.2
The electron density of phenol. The darker regions refer to higher density (i.e., the 

probability of electrons visiting this region). Courtesy: authors.
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whereas in practice,  there are still serious prob lems of computational com-

plexity. Hohenberg and Kohn proved the existence of a function that gives 

the energy and depends only on the electron density. But this existence is 

meant in a mathematical sense— that is, the sheer existence of such a func-

tional relationship between E and ρ is proved, but the theorem does not 

give a clue as to what that function looks like or how it can be determined.45 

The interaction of electrons that we already identified as a main source of 

computational complexity— electron exchange and correlation effects—is 

covered by DFT in an implicit way by the (unknown) functional relation-

ship itself. The space of mathematical functions is extremely large. Hence, 

actually determining one par tic u lar function might be very difficult. Up to 

this point, the elegant and mathematically proven theorem did not show a 

way of predicting. It was like an elegant suitcase without a  handle.

Kohn was aware of this shortcoming and, together with his coworker 

Lu Jeu Sham, he introduced a practical computational scheme (Kohn and 

Sham 1965). This scheme postulated a reference system of N noninter-

acting electrons, so that interaction effects (exchange and correlation of 

electrons) can be captured by a local potential vxc(r)— a deliberately coun-

terfactual assumption. The modelers assumed—in  favor of the model— that 

the exchange and correlation effects can be expressed via the local poten-

tial to a sufficiently appropriate degree. At the same time, this assump-

tion is a crucial idealization  because it opens up paths for computational 

treatment. The (hy po thet i cal) Kohn– Sham potential was an attempt to deal 

with the unknown functional relationship by (counterfactually) assuming 

an idealized situation. It places a numerical  handle on the prob lem of how 

to approximate the unknown functional and has been the main basis for 

further developments in DFT.

The move Kohn and Sham undertook is characteristic of mathematical 

modeling; variants of it occur in all episodes told in this book. It aims to 

reconcile prediction and feasibility. It is impor tant to realize that the ques-

tion of appropriateness is one of model  performance, not one of theoretical 

justification. The model— the local potential—is deliberately false in rela-

tion to quantum theory but useful in relation to prediction. In other words, 

resourceful modelers play a kind of gambit. They reduce the bond with 

theory and create a model that can make predictions efficiently. What effi-

ciently means depends on what instruments are available, and using  these 

instruments requires adequate mathematization. Therefore, the gambit has 

Downloaded from http://direct.mit.edu/books/book-pdf/2369564/book_9780262379045.pdf by guest on 26 September 2024



Overlapping Modes in the Be hav ior of Molecules 103

to be reinvented by each culture of prediction. Of course, like any gambit, 

the loss is certain and the gain not guaranteed.

DFT was immediately successful in solid physics, particularly in crys-

tallography in which molecular structures are rather regular. Kohn’s 1964 

and 1965 publications (with Hohenberg and with Sham)  were im mensely 

influential papers. Indeed, they are the most highly cited papers ever in the 

American Physical Society’s flagship journal Physical Review (Redner 2004).46 

However, DFT had almost no uptake in chemistry. The number of papers on 

DFT in chemistry journals languished at around thirty per year throughout 

the 1970s and 1980s. The Kohn– Sham approximation scheme did not pro-

vide predictions accurate enough for the less regularly structured cases that 

 were the main interest for chemists.

All this changed fundamentally in the 1990s. DFT shot up to become 

the arguably most highly used theory in all of science. A large share of the 

15,000 articles (in 2015 alone) comes from chemistry, which documents 

that the “spectacle” Bickelhaupt and Baerends diagnosed in 2000 is still 

ongoing. Another indicator of DFT’s prominence is the Nobel prize that 

Kohn won in 1998 “for his development of density functional theory.” To 

his own surprise, the theoretical physicist Kohn received it in chemistry. 

He shared the prize with John Pople, the mathematically minded chemist 

and  organizer of Gaussian, who earned it “for his development of computa-

tional methods in quantum chemistry.” By the way, this was the first time 

in its history that the Nobel Prize was awarded for computational model-

ing. Somewhat ironically, before the turn, the Gaussian software package 

had not included DFT approaches  because they  were not seen as competi-

tive in relevant cases.

The 1990s turn rests on a new conception of computational modeling 

that synthesized two ele ments: first, a strategy of mathematization that 

assigns exploration a pivotal role, and second, the technology of easily 

accessible and networked computers. In a sense, this new conception fur-

ther expands the autonomy of modeling.

We have already seen that models comprise artificial and deliberately 

false components, as illustrated by the Kohn– Sham scheme. The local den-

sity approximation is a theoretically informed pa ram e terization scheme 

that allows for dif fer ent par tic u lar specifications, such as the exact form 

of the local potential, that are not derived from quantum theory. How-

ever, such pa ram e terization influences the  performance so that the model 
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can be adapted to known experimental data or model chemistries. This is 

done through iterative procedures that check  performance, then modify 

the model or the  parameter values, then check again, and so on.

This type of approach is typical for computational modeling (see Len-

hard 2019, chap. 1), and it provoked an equally typical criticism  because 

artificial components seem to lack justification. In our current example, 

the assumption of the Kohn– Sham approach is that for  every system of 

interacting electrons moving in an external potential,  there exists a local 

potential such that a system of noninteracting electrons  will obtain the 

same density. The status of  these assumptions was debated. “For some time 

a physical meaning of  these KS orbitals has been denied” (Bickelhaupt and 

Baerends 2000, 5). The crucial question then is: Can predictive  performance 

compensate for a deficit in physical meaning? A culture of prediction allows 

an affirmative answer: the gambit of mathematical modeling.

The 1990s turn comes with a further change in perspective. Waiving 

physical meaning (partly) ceases to be perceived as a move that needs sub-

stantial justification. Instead, constructing models with many adjustable— 

that is, not yet specified— parameters becomes the standard. Although such 

models are still theoretically informed, the increasingly impor tant role of 

pa ram e terizations makes the model’s  performance in prediction all the 

more impor tant. Mathematization fulfills a new and distinct function  here. 

It provides the stage for active exploration. The perceived drawback— this is 

what the talk of gambit concedes— became a favored move. In this way, the 

1990s turn adds a second gambit to the first one.

This change in the conception of modeling rests on a technological 

component as well. Exploration must be practical— that is, using the com-

puter to explore the be hav ior of a seriously underspecified model must be a 

feasible option for researchers.  There is no other way to  handle “artificial” 

 parameters.  Because they often lack physical meaning, they have to be jus-

tified by  performance; and, moreover, their values have to be assigned via 

an exploratory procedure. Such procedures, in turn, require constant access 

to and direct feedback from computers. This was provided by the power ful 

but affordable, easily accessed, typically networked computers that became 

widely available during the 1990s. Only then did a new combination of in- 

principle theory complemented by a layer of iterative, semiempirical adap-

tation become attractive and the basis for an exploratory mode of research.47
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In the late 1980s and early 1990s, Becke, Lee- Yang- Parr, and Perdew  were 

among  those who introduced a new generation of density functionals.  These 

functionals contain a relatively large number of adjustable  parameters. 

Moreover, most of  these  parameters lack physical meaning. At the same 

time,  these functionals work for model chemistries— that is, they per-

form well in the standard cases of QC. This development exemplifies the 

new type of mathematization. In a sense, modeling becomes more formal 

insofar as it is guided by mathematical properties (of the pa ram e terized 

functional) rather than physical meaning.  These mathematical properties, 

however, cannot be examined analytically but only by exploration. The 

synthesis between modeling and technology became a cornerstone of a 

new exploratory– iterative culture of prediction that adds an exploratory 

ele ment to the older iterative– numerical culture.

4.9 Coming to Grips with the New Culture

The epistemology of iteration and the social  organization of the new culture 

coevolved. Both users and functionals multiplied. DFT quickly diversified 

into a host of vari ous functionals, and they did so in two dimensions: first, 

via  parameter assignment, one functional can be adapted to specific condi-

tions, substances, or mixtures of the two. Second, new functionals can be 

spawned with relative ease. So- called hybrid functionals illustrate the point. 

Modelers combine existing functionals— for instance, by using a weighted 

average of them. Which weighing  factors work best depends on the case 

 under consideration and can be determined by iterative– exploratory testing 

of a model against available data. The result is a large number of function-

als, most of them streamlined to predict in a specific and prob ably narrow 

range of cases.

How a more general- purpose software should  handle this situation is not 

straightforward. Gaussian, to stick with our example, began to incorporate 

DFT modules in the early 1990s due to the pressure of DFT’s predictive suc-

cess and demand in the community. At this point, the ab- initio- oriented 

community that developed Gaussian signaled that DFT had been accepted 

into the acknowledged set of methods. The main argument in  favor of DFT 

was the ratio of speed— that is, relatively low order of computational cost—

to predictive accuracy. To the extent that users could access computational 
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resources easily and cheaply, the need to adapt functionals to specific cases 

of interest did not constitute a drawback.

But if the exploratory part is particularly impor tant, does that not con-

tradict the somewhat unifying and standardizing outlook of the Gaussian 

software package? In fact, over the past generation, Gaussian has lost much 

of its standardizing rationale. On the one hand, it has many competitors 

that offer a diverse range of functionals. A preliminary search on the inter-

net indicates that  there are more than one hundred DFT- related packages 

on the market, of which roughly 25  percent are open, 35  percent academic, 

and 40  percent commercial. Such packages proliferate  because they often 

specialize in niches defined by certain materials or contexts of application.

On the other hand, Gaussian itself has reacted to the exploratory nature of 

DFT. It offers an increasing diversity of functionals to users. If one functional 

is known to work well for one class of substance and another functional 

for another substance, it may well be that the weighted average (so- called 

hybrid) is a good compromise when substances are mixed. Accordingly, 

recent releases of Gaussian provide more than a dozen density functionals, 

and the user’s reference guide recommends trying several of them to cross- 

check results (Foresman and Frisch 1993).

That even developers put only  limited faith in the validity of function-

als did not go unnoticed. A main argument against DFT is that, from a 

theoretical point of view, functionals remained ad hoc insofar as they  were 

in an unclear relation to the correct functional (cf. Barden and Schaefer 

2000). Exploration does obscure this relationship, and thus runs  counter 

to a well- established philosophical account of modeling that describes 

mathematical modeling as building a hierarchy in which one idealization 

approximates a less idealized level with real ity at one end. According to this 

account, one can move up and down (de-)idealization like a ladder.48 But 

such a ladder presupposes a clear approximation relationship. Alas, despite 

continuing efforts  toward clarification, results are meager. When Perdew 

et  al. (2005) reviewed this work— and contributed to it— they bemoaned 

that prediction and exploration drive the dynamics of DFT and move at 

a higher speed than attempts at clarification and validation. Recently, the 

validation prob lem has been tackled in an attempt that is a true offspring of 

the exploratory– iterative culture. Lejaeghere et al. (2016) tested the consis-

tency of vari ous DFT softwares not by analyzing their functional form but 
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by a massive parallel test on identical cases (with sixty- eight coauthors)— a 

computational way of living with the unclear relationship.

The social  organization in the new exploratory– iterative culture of pre-

diction differs remarkably from the older mainframe culture. The software 

suite Gaussian serves as an illustration. It was first released in 1970 as an 

academic endeavor by Pople and  others. Its appearance indicated that QC 

had settled on a framework and methods. The program itself fostered stan-

dardization via the models, algorithms, and model chemistries it imple-

mented. Gaussian remains the market leader in QC software, but around 

1990, it underwent significant changes to maintain its position. First, 

Gaussian started to also provide versions that run on the Microsoft- DOS 

platform, reflecting that the new field was ready to address users of small, 

desktop computer systems. Second, in 1987, Gaussian went commercial— 

that is, it changed from the academic setting at Car ne gie Mellon to become 

Gaussian, Inc. From then on, the software addressed a broadened audience 

of theoreticians, experimentalists, and engineers. Typically, the users of 

such instruments would not be part of the developer community (e.g., not 

mathematically well- versed quantum chemists) and would have very dif fer-

ent knowledge, skills, scientific goals, and types of proj ects.49

The extraordinarily high number of publications on DFT methods goes 

far beyond the size of the community of quantum theory experts. Rather, 

it draws from the much larger reservoir of authors including engineers who 

are interested in predicting the be hav ior of molecules. Scientists who work 

with DFT usually have considerable expertise in finding the right way to 

work with and to modify functionals. It is exactly the goal of the software 

to make it easy for the user to work with functionals without being an 

expert on their derivation or construction. Typically, laboratories and work-

ing groups maintain their own inventory of functionals and adaptation 

techniques plus internal preferences and practices regarding how and when 

to use them— something new members become encultured to.

The community of DFT users is based on a multitude of distributed 

local adaptations, all connected through a networked infrastructure. It is 

the dynamic combination and adaptation of building blocks, facilitated 

by networked infrastructure, that instantiates the recent success of DFT, 

rather than the unifying theoretical framework and the quest for some-

thing like “the” correct functional. Users do not need  great programming 
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skills  either. Often, they may not even be able to look at the code  because 

the software code is closed and proprietary (as is the case with Gaussian).50 

Consequently, the emergence of a commercial market and wide accessibil-

ity have been accompanied by a loss of expertise on the side of many users. 

Critical reviews of this phenomenon are legion and by no means restricted 

to QC. To give just one example, the “tutorial on post- Hartree– Fock meth-

ods” warns: “ These days, software vendors make it easy to run a calculation 

at the ‘touch of a button.’ Is the button you are pushing the right one?” 

(Lipkowitz and Boyd 1994, vii). In other words, software is part if the social, 

philosophical, and technological fabric of the new culture of prediction.51

Thus, the case of QC since the 1920s spans dif fer ent cultures of pre-

diction. In the pioneering phase of QC, the rational approach competed 

with the (semi) empirical one that we also examined in  earlier chapters. 

Whereas the first saw predictions as the natu ral outcome of theory, the lat-

ter picked up the experimental tradition of chemistry. The digital computer 

brought a turn to an iterative– numerical culture of prediction. This culture 

included the use of large and expensive (mainframe) computing machines 

and their centralized  organization. A further turn occurred around 1990 

when easily and cheaply accessible networked computers became available, 

and when mathematization moved to a genuinely exploratory mode. An 

exploratory– iterative mode of computational modeling, we have argued, 

characterizes this culture.52

We conclude our investigation of the exploratory– iterative culture with 

a brief look at what happened to the concept of the ab initio method. DFT 

undermines this concept; or, to put it better, the exploratory mode of math-

ematization undermines this concept. On first view, DFT is an ab initio 

method in our terminology introduced previously—ab initio in the prin-

cipled sense. Kohn– Sham’s claims about an alternative to the Schrödinger 

equation are mathematically proven. Being more ab initio is impossible. 

However, an exploratory mode of modeling is orthogonal to a theoreti-

cal foundation, or at least to the idea that the models should be derived 

from  these foundations. We have already discussed the ambiguity of ab 

initio methods between a first- principle sense and a complete- prediction 

sense that emerged with computational modeling in the mainframe era. At 

that point, iteration became a crucial tactic within computational strate-

gies, and ab initio was understood as complete prediction. In the 1990s, an 
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exploratory mindset developed, again giving cause for concern on the side 

of researchers understanding themselves as ab- initio- ists.

Historically, a chief tenet of quantum chemistry has been that predictions about 

the structure and properties of molecules  ought to be based on the quantum 

theory and not on pa ram e terizations, heuristics, or empirical correlations, how-

ever accurate they may appear to be. That sentiment has changed quite a bit as 

the prob lems have become more complicated. (Barden and Schaefer 2000, 1407)

In other words, the predictions by DFT rely on exactly that kind of 

 measures that ab- initio- ists tried to ban. Complete prediction does not just 

dilute or weaken the original, principled sense. Even worse, in the explor-

atory mode of modeling, prediction thrives by violating the principled 

sense of ab initio. Mathematization is not assuring coherence—as the host 

of density functionals shows so vividly. Rather, it is managing plurality and 

opening up ways to diversify functionals and models in the hunt for accu-

rate predictions.
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5 Systems Thinking and the Limits to Growth

 There has hardly ever been a more dramatic staging for the publication of 

a scientific study than that of The Limits to Growth (Meadows et al. 1972). 

Commissioned by the Club of Rome, it was presented to a hand- picked 

audience of scientists and politicians assembled in the Smithsonian Institu-

tion. The message was alarming: if the growth of the economy, pollution, 

and population continues, the world system  will collapse in less than a 

 century. News spread in almost no time and informed a broad public audi-

ence about the predicament of humankind.

In a sense, this kind of message was nothing new. Warnings about dooms-

day testify how predictions about the world’s fate are almost as old as history 

itself. Nonetheless, The Limits to Growth was dif fer ent  because it was a scien-

tific prediction, and one that used a computer model. On the  political side, 

it is often identified as the starting signal for an environmental movement 

that synthesizes  political action and scientific prediction.1 On the scientific 

side, the study marks the culmination of system dynamics, pioneered by engi-

neer Jay Forrester (1918–2016), inspired by modern computers, and claim-

ing to be in possession of the right method for dealing with complexity.

The study was a product of a new type of mathematical modeling. While 

maintaining the goal of prediction, it geared mathe matics  toward iteration 

and complexity. At the same time, the study shows how thinking about 

the  future was being channeled  toward computer modeling and advancing 

 under the umbrella of a mainframe culture of prediction. In fact, we claim 

that The Limits to Growth is an exemplar of a newly emerging culture of pre-

diction that has both an iterative and a numerical character.2

Our work profits much from the history of computing that revolves 

around the digital mainframe computer and its rich technological, social, 

and institutional context. Machines such as the ENIAC and conceptual 
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documents such as the “First Draft of the EDVAC”  were groundbreaking 

achievements that are widely acknowledged by historical scholarship. This 

scholarship has made it clear that computers did not originate from  there 

simply in a straight line but rather have prehistories showing how they 

developed along a branching network.3 In this chapter, we concentrate on 

Forrester’s work  because it is a critical piece of history that shows, as if  under 

a magnifying glass, how technology, mathematical tools for making predic-

tions, institutional contexts, and conceptions of the  future have coevolved.4

The following section  5.1 starts with the prehistory of The Limits to 

Growth. It examines Forrester’s work at the MIT as a leader of Whirlwind, 

a proj ect that started out with the mission to manufacture a  pilot train-

ing device and ended up building a real- time feedback computer. It was 

the fastest and most expensive early generation digital computer that went 

operational in 1952 and became part of the air defense system SAGE. Typi-

cal for mainframe machines, Whirlwind was an expensive resource embed-

ded in an institution that  organized its use and controlled access.5 At the 

same time, Whirlwind is a special case  because Forrester and his coworkers 

arrived at the iterative– numerical mode of prediction via an engineering 

approach that was in competition with the mathematical one. Further-

more, we argue, Whirlwind’s design informed Forrester’s conception of sys-

tem dynamics. He was hunting for a sort of holy grail: a techno- scientific 

system that could inform decisions via computer- based predictions in a 

very general— and very technocratic— way.

Section 5.2 examines Forrester’s system dynamics, an instance in a broader 

movement of systems thinking that became  popular during and  after World 

War II when it “effloresced into a number of forms, including operations 

research, systems engineering, systems analy sis, and system dynamics” 

(Hughes and Hughes 2000, 1). Each of  these variants paved a new path 

to predictions, and each attributed an impor tant role to the computer.6 

Forrester ignored existing mathematical techniques almost completely and 

geared system dynamics  toward the computer in a way that made model-

ing look almost effortless. Indeed, while the Club of Rome was pondering 

 whether modeling the entire world system would be feasible, Forrester cre-

ated his model in just a few hours. For him, the step from a com pany to a 

city or even to the world required no more than some minor adaptations 

in the model.

Downloaded from http://direct.mit.edu/books/book-pdf/2369564/book_9780262379045.pdf by guest on 26 September 2024



Systems Thinking and the Limits to Growth 115

The Limits to Growth did not just attract wide attention; it also drew criti-

cism. Section  5.3 discusses vari ous lines of critique that demonstrate the 

prob lems with which the new culture had to contend. In par tic u lar, the 

study’s validity was questioned from a mathematical perspective, from 

the (quickly evolving) computer modeling community, and from the estab-

lished culture of expertise. At issue was to what extent the new culture of 

prediction could establish its own standards for validity.

The Limits to Growth marks a turn  after which thinking about the  future 

was perceived increasingly as an activity inside the mainframe culture of 

prediction. Section 5.4 explores a wider perspective and locates the discus-

sion in the futurism of the 1960s and early 1970s. Does this establish the 

 future as a legitimate scientific subject—or rather eliminate it? We invoke 

the  philosopher Hannah Arendt and the historian Reinhart Koselleck to 

suggest that conflicting answers are pos si ble.

5.1 Whirlwind: Hunting the Ultimate

Jay Forrester, a young engineer with experience in radar systems, earned 

his spurs as the man ag er of the Whirlwind proj ect at MIT.7 This proj ect 

started as a mission impossible in 1943–1944 when the navy’s Bureau of 

Aeronautics initiated a plan to develop an Airplane Stability and Control Ana-

lyzer (ASCA). Unlike existing flight trainers, the ASCA should be a universal 

device able to simulate any airplane by computing the feedback response to 

the  pilot’s actions based on a physics model of the aircraft’s dynamics. The 

ASCA was never built. The proj ect followed a winding path, including a 

change in goals from the ASCA to a general- purpose computer and in fund-

ing institution from the navy to the air force in 1950. When Whirlwind 

went into  service in 1952, it was “the first high- speed electronic digital 

computer able to operate in ‘real time’ ” (Redmond and Smith 1980, vii),8 

and it built the computation backbone of the behemoth SAGE air defense 

system.9 This path  shaped Forrester’s concept of system dynamics.

When Forrester examined existing flight trainers as well as the servome-

chanical10 equipment being developed at the time at MIT, he realized that 

crucial components  were not available— the ASCA simulator required a ver-

satile, fast, and reliable computer; a formal mathematical model of the air-

craft; and some version of computational fluid dynamics that would make 
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the former two ele ments work together. In short, the ASCA was “essentially 

a physicist’s dream and an engineer’s nightmare.”11

Forrester had the stamina to not be para lyzed by this nightmare. He first 

geared the proj ect  toward creating a computer, but achieving the desired speed 

and reliability still looked to be an unsurmountable task. A lucky coincidence 

helped him out. His colleague Perry O. Crawford, who was well networked in 

the computing community, suggested to Forrester that some digital machine 

might look promising (see Mindell 2002, 291). In fact, the very first confer-

ence on digital computing was about to take place at MIT, the “conference 

on advanced computing techniques” (October 30–31, 1945). It was a revela-

tion for Forrester. Presper Eckert, John Mauchly, and their team at the Moore 

School of Electrical Engineering reported on the ENIAC, the digital computer 

that was about to be presented to the public and was much admired at the 

conference. Another highlight was John von Neumann’s  presentation of the 

EDVAC design that promised a far more versatile machine.12 Forrester made 

up his mind immediately: his MIT group needed a digital computer.

However, the principal advantages of such a machine by no means 

implied that the design was settled. Even if, in theory, a computer had the 

potential to fulfill the reliability, speed, and versatility demands of the proj-

ect, in practice, no such technology existed. Even worse, the decision to con-

centrate on the computer part alienated the navy that had commissioned a 

training device for  pilots. In this situation, Forrester’s rhetorical skills proved 

to be at least as impor tant as the technological and scientific expertise of 

his group.13 More than once, he was able to secure more funding (costs 

 were excessive) and avert the impending proj ect termination. The story 

of the ASCA/Whirlwind is as much a story about institutions and social 

 organization as it is one about scientific and engineering challenges.14 How-

ever, the ASCA prehistory was inscribed into the Whirlwind computer. The 

machine was designed for high- speed feedback (real- time computation) so 

that it could act as the central control instance in a larger system of prediction 

in which decisions could be urgent and predictions would have to be deliv-

ered immediately. Ideally, so Forrester envisioned, such a system would be 

flexible and universal enough to deliver predictions in almost any context.

 Were a stranger to ask, “Can you do my computing job?” wrote Forrester, the 

answer appropriate to a minimum computer’s capacities must be, “Prob ably, but 

we must analyze it to find out.” But if one possessed the ultimate system Forrester 

had in mind, then the answer to the question could safely be: “Yes, what is it?” 
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Forrester was  after the ultimate. (Redmond and Smith [1980, 186], citing Forrester 

to Stratton, March 3, 1950)

The air force took over, and the Whirlwind computer became opera-

tional in 1952 (see figure 5.1), then forming the computational core of the 

SAGE system for air defense. It worked with computer- based real- time 

analyses of incoming data from radar stations and made very quick deci-

sions about impending threats— supposedly such as  Russian aircraft.15 This 

system encompassed vast dimensions in terms of its geo graph i cal spread, 

the  people involved, and its development costs. A system that marshals 

amounts of money of the order Whirlwind did  will be accessible to only 

a narrow and highly qualified circle of customers.16 Even if the computer 

might be called general- purpose, it was a part of a system targeting very 

select purposes. In this, Whirlwind resembled other mainframe machines. 

And this is a typical feature for the mainframe culture of prediction— while 

computing machines in a somehow ideal sense are called general- purpose, 

in their factual institutional context, they have extremely restricted pur-

poses. Consequently, predictions, or the attempts to get predictions, are 

channeled  toward such purposes.

 Here is an illustration of how precious the Whirlwind computational 

resource was. Forrester had spotted the expensive and fragile vacuum tubes 

as the weakest spot in the technology of Whirlwind.17 His arguably most 

significant achievement in engineering was the development of magnetic 

storage. It made computer memory si mul ta neously faster, much cheaper, 

and more reliable (see figure 5.2). When he and his group came up with the 

Figure 5.1
Whirlwind computer room, 1952. Used and reprinted with permission of The MITRE 

Corporation © 2023.
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prototype of the new storage in 1952, they needed to test it on the Whirl-

wind system to make sure it actually worked as well as the laboratory results 

promised. However, the machine was already in operation, and it was not 

pos si ble even for Forrester to get some computing time on Whirlwind. The 

tasks assigned to it  were deemed too urgent to allow any intermission.18 For-

rester’s group had to build a separate (smaller) computer to test the storage. 

The expensive technology of the computer and the urgency of the demands 

mutually justified each other. Whirlwind had grown into a gigantic high- 

speed machine. As an example of early mainframe computers, Whirlwind 

was outstanding in terms of its size, speed, and cost. At the same time, typi-

cal for mainframe machines, it was part of an even larger system that regu-

lated access to the instrument.19

When developing Whirlwind, Forrester and his group followed a some-

what special concept of mathematization. They started from mechanical 

Figure 5.2
Tube versus magnetic storage; top: the circuitry from Proj ect Whirlwind’s core memory 

unit; bottom: the core planes from Proj ect Whirlwind’s core memory unit. Displayed 

at the Charles River Museum of Industry, Waltham, Mas sa chu setts. Attribution: Dpb-

smith at  English Wikipedia, creative commons.
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apparatuses (such as aircraft simulators) and thought of computational 

means to speed  things up. That is quite dif fer ent from starting with math-

ematical equations. In other words, they approached high- speed iteration 

from the engineering side, as mathematization of the servomechanism. 

That formal mathe matics should not have the leading role met with skepti-

cism.20 In par tic u lar, Mina Rees and her colleagues from the mathe matics 

branch of the Office of Naval Research  were concerned about what they 

saw as a lack of mathematical expertise in the Whirlwind group. In her 

critical reviews, she took as her point of comparison the general- purpose 

digital computer that von Neumann and Goldstine developed at the IAS, 

Prince ton. Her principal point was that Whirlwind suffered from exploding 

costs and could achieve  little  because the key prob lem was a mathematical- 

conceptual one on which Forrester’s group had insufficient expertise.21 For-

rester needed all his rhetorical skills to save the proj ect. His strategy was to 

sell Whirlwind not just as a general- purpose computer but as part of some-

thing bigger— a predictive system supporting real- time decisions. In this way, 

Figure 5.2
(continued)
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he fashioned prediction as a link between science and policy. And building 

this link meant designing expensive technology. Forrester and Everett (his 

coleader) argued that the IAS was building a computer that would “appar-

ently be for their own laboratory studies and mathematical prob lems” 

(cited in Redmond and Smith [1980, 124]). The MIT computer, on the other 

hand, must meet special requirements in terms of speed and reliability that 

 were outside mathematical expertise and made the proj ect so expensive.

Whereas the navy’s Office of Naval Research (ONR) remained skepti-

cal, the proj ect was saved financially when the air force took it over in 

1950. Nonetheless, the MIT and IAS groups followed dif fer ent approaches 

to mathematization. The IAS group targeted established and intractable 

mathematical prob lems such as solving systems of partial differential equa-

tions, and they viewed the computer as a new instrument to solve  these 

equations with new numerical tools. The Whirlwind group proceeded differ-

ently. Indeed, they  were not qualified to address the mathematical prob lems 

regarding fluid dynamics and the like— Rees was right on this point. Instead, 

they  adopted an engineering perspective and undertook to mathematize 

the feedback functions of servomechanism by iterative– numerical means.22 

The Whirlwind group more or less assumed that the mathematical con-

cepts  were  there and that the hardware was the point. Forrester did not 

feel at all indebted to mathematical prob lems. For him, the capabilities of 

the computer came first, and the mathematical part of the predictive sys-

tem would simply fit in with this. That is,  there  were dif fer ent and partly 

conflicting views regarding what mathematization would look like in the 

emerging mainframe culture of prediction.

Thinking on prediction coevolved with technology. The mainframe cul-

ture of prediction began to flourish in the 1950s, thriving on big science 

and military funding. Computers  were expensive, and access to them was 

highly regulated. Over the course of the 1960s, computers became more 

accessible instruments and the mainframe culture broadened.23 Forrester’s 

work can still serve us as an example.  After Whirlwind became operational, 

he left the proj ect. However, he remained in the orbit of MIT and joined the 

Sloan Business School where he founded the System Dynamics Group in 1956. 

By way of system dynamics, Forrester could pursue his vision of a system of 

prediction. The following sections examine how The Limits to Growth study 

exemplifies the mainframe culture of prediction.
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5.2 Systems Thinking: A Machinery for Prediction

In 1970, the Club of Rome, an informal and exclusive circle that perceived 

itself as an “invisible college,” was preparing to commission a study on the 

“predicament of mankind.” At the time, issues such as the nuclear threat, 

population growth, and environmental pollution had created a sense of 

urgency and the belief that society needed to decide about its own  future.24 

The Club of Rome thought that computer models  were the right means for 

predicting pos si ble  futures and finding out how a transition from growth to 

a (noncritical) equilibrium state might happen.25 The Club asked Forrester, 

the famed pioneer of computer- based management models, to inquire 

 whether a study was doable. Forrester happily accepted. In an unforeseen 

way, a stranger had asked for a prediction— what could be a more challeng-

ing task for Forrester than predicting the  future course of the world?

When the Club of Rome asked Forrester, something remarkable hap-

pened. It took him only a  couple of hours to set up the model (see Forrester 

1971). System dynamics apparently had been waiting for the Club to ask. 

This observation, we argue, tells how much systems thinking26 is a machin-

ery for prediction. Of course, the almost immediate answer the Club of 

Rome received from Forrester was conditioned on buying into the model 

architecture of system dynamics.

The full study was conducted by MIT’s System Dynamics Group led 

by Forrester’s former student Dennis Meadows with Forrester acting as 

 consultant (Edwards 2000, 243). Forrester was not shy about showcasing 

the role of his approach. In 1971, before The Limits to Growth (LtG) came 

out in 1972, he managed to publish his own study World Dynamics. In the 

introduction, he claimed owner ship of world modeling.27 Both Forrester’s 

study and LtG promoted the systems framework as a new way of perceiving 

the world.28 In fact,  there was allegedly no alternative:

All [members] are united . . .  by their overriding conviction that the major prob-

lems facing mankind are of such complexity and are so interrelated that traditional 

institutions and policies are no longer able to cope with them, nor even to come 

to grips with their full content. (Watts in Foreword to Meadows et al. [1972, 9/10])

This reads as if the insights into complexity and  political urgency force 

the move to system dynamics and computer technology— a message con-

veyed consistently in both Forrester’s and Meadows et al.’s studies. However, 
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 there is a rich texture of values and preferences that are part and parcel of 

system dynamics.

For Forrester, the world constituted but one instance for the system 

dynamics approach. According to this, the structure of any system is 

defined by entities and flows between them that are controlled by valves. 

The flows depend on the state of the entity, thus creating a system of feed-

back interactions much like in a servomechanism. The overall dynamics 

result from the mutual influence between entities that regularly takes the 

form of nonlinear relationships ( because feedback effects accumulate). This 

property is infamous in mathe matics  because a solution— that is, determin-

ing the system be hav ior by integrating basic equations— becomes intrac-

table.29 However, this is of  little concern in system dynamics  because the 

system be hav ior is computed forward step by step, thriving on iterative 

capacity while avoiding intricacies of mathematical analy sis. This kind of 

algorithmic strategy needs a computer to iterate the feedback over and over 

 until some be hav ior becomes manifest.

Forrester himself identifies four pillars on which system dynamics rests: 

(1) information- feedback control theory inspired by servomechanisms, 

(2) decision- making pro cesses as a task for prediction adapted from military 

tactics, (3) replacing mathematical analy sis by computer experimentation, 

and (4) digital computers whose cost had fallen so much that they became 

eco nom ically feasible for users beyond the military.30

Forrester’s first book was on Industrial Dynamics (1961). It sets out to 

reduce all functional areas of managing a com pany to a common basis

by recognizing that any economic or corporate activity consists of flows of 

money,  orders, materials, personnel, and capital equipment.  These five flows are 

integrated by an information network. . . .  Industrial dynamics is a way of study-

ing the be hav ior of industrial systems to show how policies, decisions, structure, 

and delays are interrelated to influence growth and stability. (Forrester 1961, vii)

One pertinent example from this book is the supply chain of the bever-

age industry and dealers. The stock in soda or beer depends on feedback 

loops between demand and planning.  These can easily lead to an unstable 

situation in which the stock shows overshoot and collapse— the signature 

phenomenon of system dynamics (see figure 5.3).

The model architecture is quite generic. Renaming the entities and 

adjusting their interaction handily results in another subject such as urban 

dynamics.31 Beer shortage in a retailer’s stock is not so dif fer ent from food 
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shortage in the world. “Forrester argued that ‘systems of information- 

feedback control’  were the essential  organizing princi ple of all complex 

 organized entities, from biological organisms to machines and computers” 

(Edwards [2000, 237], referring to Forrester’s Industrial Dynamics [1961, 15]). 

Indeed, Forrester published accounts of modeling a com pany (1961), a city 

(1969), and the world (1971) in which the model architecture remains very 

much the same. This generic approach removes a crucial bottleneck: the 

model is not intended to represent detailed mechanisms.32 Hence, knowl-

edge and evidence about such mechanisms are dispensable. Moreover, mas-

tering the mathe matics of complex interactions also becomes dispensable 

 because the computer simply grinds out the model be hav ior. Therefore, 

system dynamics combines mathe matics and technology in a way that 

creates an effective engine for prediction.

Forrester’s world model devises five system levels: population, capital 

investment, natu ral resources, fraction of capital devoted to agriculture, 

and pollution.  Because the exponential growth of any subsystem  will 

fi nally outstrip the resources, the phenomena of overshoot and collapse 

are typical for system dynamics models. In the case of world dynamics, 

population growth is assumed to be exponential and  will therefore play the 

dominating role, growing  until the quality of life becomes too small given 

the  limited reservoir of nature.33 Forrester’s results show that exponential 

growth leads to collapse due to  limited resources (not very surprising). 

Depending on the speed of population growth, the model predicts that this 

 will happen within the next fifty to one hundred years. LtG works with a 

refined version of Forrester’s world model and specifies fifteen basic and 

derived level variables. The subcomponents are modeled in more detail, 

but the main tendencies coincide with Forrester’s coarser model. Figure 5.4 

displays some typically graphical output, showing phenomena not unlike 

 those of industrial dynamics (figure 5.3).

 Behind the generality of system dynamics and the apparent ease of mak-

ing predictions— that means, once the computer is available and the model 

is set up— there lurks a premise: scientific predictions are relevant in the con-

text of decision and policy to the extent that the predictions rest on well- 

established, commonly accepted methods and assumptions.34 At the same 

time, LtG was part of a new culture of prediction whose selling point was that 

established methods  were inadequate for making predictions. When For-

rester, Meadows, and their colleagues promoted system dynamics and LtG, 
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they had to balance  these counteracting demands— and perform a tightrope 

walk. Meadows et al. (1972) highlight two advantages of a formal model:

First,  every assumption we make is written in a precise form so that it is open to 

inspection and criticism by all. Second,  after the assumptions have been scru-

tinized, discussed, and revised to agree with our best current knowledge, their 

implications for the  future be hav ior of the world system can be traced without 

error by a computer, no  matter how complicated they become. (22)

In short, prediction requires mathematization—an established feature of 

science, but making the math model predictive requires working with com-

puter models. Thus,  these models are necessary to understand how “the 

traditions of civilization can be altered to become compatible with global 

equilibrium” (Forrester 1971, 125).35 According to this perspective, predic-

tions based on computer models become a sine qua non for predicting— and 

controlling— the  future of humankind.

The usual mathe matics of prediction and control modeled the dynamics 

 under consideration with the help of differential equations and then used 

Natural
resources

Quality
of life

Capital
investment

Pollution

Years

Population

Figure 5.4
The reduced usage rate of natu ral resources leads to a pollution crisis. Forrester (1971, 

75), chapter 4, “Limits to Growth,” figure 4.5.
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the toolbox of mathematical analy sis, such as Laplace transforms, to solve 

 these equations. But this imposes severe limitations regarding what systems 

can be considered. “More complex systems containing multiple information- 

feedback loops, non- linearities, and positive as well as negative feedback  were 

considered to be mathematically intractable” (Kline 2018, 290). Forrester 

approaches model building from the perspective of the computer’s iterative 

capability. Defining feedback relations between entities and then simulat-

ing forward practically bypasses the prob lem of a mathematical solution.

The key point is that the dynamic is specified through the relation-

ships between model levels or components in a way that allows stepwise 

forward computation. Even if feedback loops result in a complex mutual 

 dependency that cannot be addressed analytically, an iterative algorithm 

can still walk through the time evolution. Based on high doses of itera-

tion, one can then observe and visualize the model be hav ior. This shows 

how strikingly dif fer ent the iterative– numerical mode of mathematization 

is from the rational mode discussed in the first chapter. Devoid of auto-

mated high- speed iteration, only low doses of iteration are affordable. Con-

sequently, the iterative– numerical mode can make predictions about the 

be hav ior of systems far beyond the reach of traditional mathe matics. At the 

same time, this approach is tied to iterations  because it loses the generality 

of mathematical solutions— that is, many properties can be investigated 

only by first  running simulations and then inspecting their outcomes.

To the mathematical community, this approach looked a bit outlandish. 

It had not grown from mathe matics; rather, it came directly from the tech-

nology of the computer. How then does Forrester’s system dynamics relate 

to more traditional mathematical approaches?

Richard H. Day, working at the Mathematical Research Center, Univer-

sity of Wisconsin, compared Forrester’s system dynamics to conventional 

mathematical concepts and language (Day 1974). He discussed an exam-

ple that he could use to translate between the two approaches. Of course, 

this strategy meant that only a model of low complexity was eligible. Day 

chose the Solow growth model, well known in economics as a toy model 

for growth.36 When he rephrased Solow’s model into Forrester language, 

Day found “with perhaps a touch of irony” that this made the model 

appear much more complex. The system dynamics model first needed the 

three entities plus valve- controlled flows between them and then delivered 

a prediction (conditional on all  parameters set) but did not provide any 
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principled insight into the relationship of the variables. On the other hand, 

according to Day (1974):

Its not inconsiderable advantage is that  every structural hypothesis in a model 

can be represented graphically. Its disadvantage is that it increases the number of 

variables and equations, in this way possibly increasing the appearance of com-

plexity. (261)

In the numerical– iterative culture of prediction, this disadvantage is irrel-

evant or even a rhetorical advantage  because complexity now indicates the 

need to bring in computer methods. The digital computer almost inverts 

the landscape of tractable algorithms.37 Digital computers perform feedback 

loops and iterations automatically and at high speed. Thus, highly iterative 

algorithms— something mathematicians had previously tried to avoid or 

restrict— become attractive through the computer. Iteration is what main-

frame computers are good at. The pull  toward iteration heavi ly influences 

computational methods and mathematical modeling. This warrants calling 

the mainframe culture of prediction an iterative– numerical culture.

5.3 Contested Road to Prediction

Indeed, LtG attracted a  great deal of attention from a wide audience and 

became a bestseller in  Europe, the United States, and Japan. It also triggered 

a number of follow-up studies from a growing number of modeling groups. 

Ashley (1983) depicts the dramatic impression the study made:38

Within months the idea of world modeling (once considered thoroughly auda-

cious if considered at all) becomes imaginable to governments and general pub-

lics, as well as to professional social scientists. And within a few more months 

numerous follow-on world modeling studies are underway around the globe. 

What Karl Deutsch would proclaim “a new stage . . .  in the study of world affairs,” 

the “stage of large- scale computer- based world models,” is upon us. (496, referenc-

ing Deutsch [1977, 1])

However, what looked like one movement from the actor’s perspective 

was actually composed of heterogeneous developments. The blossoming 

of world models did not last long.  After a second generation of models,39 

the entire movement started fading (cf. also Andersson [2018, 184]). In a 

sense, it became a victim of its own success. Dif fer ent groups developed 

models that elaborated on dif fer ent aspects designed to predict events or 

trends in line with their own interests. One example is the Bariloche model, 
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named  after an Argentinian region and built by a group of Latin American 

researchers (Herrera et al. 1976). They constructed a more detailed model 

showing that the impending catastrophe could be avoided with just mini-

mal sacrifices from third- world countries. Another instance is the model-

ing group led by sociologist Deutsch that argued that extant world models 

did not take adequate account of societal dynamics (Deutsch et al. 1977, 

27). A third and last example is the Club of Rome’s second report Man-

kind at the Turning Point (Mesarovic and Pestel 1974). The Club wanted to 

react to the criticism that the first report was a “model of doom” with an all 

too predictable outcome. Therefore, it commissioned “a less deterministic, 

more disaggregated, multilevel world model” (Deutsch et al. 1977, 21). The 

International Social Science Council (ISSC) started an initiative to integrate 

and synthesize the growing model zoo (see the entire volume of Deutsch 

et al. [1977]). They acknowledged the prob lems— “We have prob lems of the 

compatibility of concepts, data, existing models, programs, and comput-

ers” (Deutsch et al. 1977, 10)— but could not solve them.

It turns out that computer modeling is a tool with an inbuilt tendency to 

diversification. Computer modeling is an exercise that is hardly regulated 

by scientific conventions. It does not require the kind of disciplinary train-

ing that rational mechanics required. Furthermore, the building of models 

requires working  under computer- imposed conditions of a technical nature 

with which active modelers have to comply, especially in mastering soft-

ware. For instance, Forrester’s (1980, chapter 8) group at Sloan had devel-

oped the DYNAMO compiler and made it publicly available. However, using 

it meant following the predesigned paths; not using it created difficulties 

in accessing the computer— difficulties that researchers without much tech-

nical expertise in computers wanted to avoid. And with mainframe com-

puters changing from expensive and scarce to available resources, model 

sprawl set in— featuring a number of dif fer ent  factors such as more natu ral 

resources, more effects of economic growth, or societal dynamics. In short, 

a plurality of world models evolved, each one predictive but hardly compat-

ible with each other. The result was that any single model looked arbitrary.

The critical perspective on arbitrariness also concerned system dynamics 

itself. Of course, Forrester was proud of system dynamics’ general nature. 

 Others raised doubts. Taken with a grain of salt, how can a model that 

captures beer supply also have something meaningful to say about the pre-

dicament of humankind? Two salient lines of criticism  were that available 
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data  were insufficient to build a predictive model, and that the prediction 

was worthless anyway  because the be hav ior was overdetermined from the 

outset (overshoot and collapse).40 In par tic u lar, if the outcome depends on 

conditions and assumptions that are not well known, the prediction does 

not seem trustworthy— with the exception of  those behavioral features that 

remain invariant  under changing conditions. This is exactly what Forrester 

and the LtG study highlighted: with exponential population growth, a col-

lapse  will happen, quite in de pen dently from data about other parts of the 

dynamics that are not available anyway. From the start, the robustness of 

this be hav ior was taken for granted.41 “Forrester was among the first to 

insist that computer models could serve impor tant policy purposes even in 

the absence of good data” (Edwards 2000, 239).42

Forrester, who was seasoned in warding off attacks since his Whirlwind 

days, anticipated both criticisms. He insisted that being predictive was all- 

important and required computer- based world modeling. World modeling 

had to perform a tightrope walk.  There was no alternative way to obtain 

predictions, but  these predictions did not depend on the data and mod-

eling assumptions (except for population growth). The resulting claim 

sounds almost paradoxical: the world model is a first step that is merely 

tentative but also without alternative. Forrester devotes considerable space 

in his study to arguing that his model is far from perfect and that it provides 

a starting point for  later improvements. He claims only a modest status for 

his model— that is, validity in a relative sense:

The theory of world structure . . .  may seem oversimplified. On the other hand, 

the model presented  here is prob ably more complete and explicit than the  mental 

models now being used as a basis for world and national planning. The  human 

mind is not adapted to interpreting the be hav ior of social systems. (Forrester 

1971, 123)43

Forrester does not just admit that his model can claim only a prelimi-

nary status. He also actively calls for improved versions. This move was a 

clever gambit  because all that his modesty took for granted was that his 

model was on the right track to prediction, even if highly imperfect. From 

this point of view, the issues of data quality and adequacy of repre sen ta tion 

 were not crucial.

Another line of argument took the opposite standpoint, criticizing For-

rester and system dynamics for being too restrictive. Main proponents  were 

experts in management theory, a field with its own established research 
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and institutions. In a sense, this line did not accept Forrester’s gambit and 

felt uneasy with the new culture of prediction and its version of technical 

rationality. Ansoff and Slevin (1968) illustrate the case; in their reaction to 

Industrial Dynamics (Forrester 1961), they argue that the entire enterprise is 

misguided. The system dynamical mathematization  will not make man-

agement more objective  because setting up and adapting the model is even 

more subjective than traditional judgments by man ag ers. In other words, 

business schools should not transfer management competence to engineers 

and modelers.

Herbert Simon (1996), the prominent economist,  political scientist, and 

cognitive scientist, attacks the rationality in a more direct way. He remem-

bers when he was part of the President’s Scientific Advisory Committee and 

Forrester presented to this committee on a promotional tour shortly before 

the Club of Rome study was published.

My reaction was one of annoyance at this brash engineer who thought he knew 

how to predict social phenomena. In the discussion, I pointed out a number of 

the naive features of the Club of Rome model, but the  matter ended, more or less, 

with that. (Simon 1996, 301)

Simon is struck by the fact that Forrester orients his approach  toward the 

iterative capabilities of the instrument and does not pay attention to how 

social phenomena should be represented. Indeed, Forrester ignored the exist-

ing discourse on rationality and formal methods, provoking Simon’s remarks 

on the brash engineer. Simon pioneers a dif fer ent approach to computer- 

based modeling, using a model as a symbolic repre sen ta tion of  human reason-

ing (for Simon’s work on artificial intelligence and bounded rationality, see 

Crowther- Heyck and Simon, [2005, chapter 9]). Kline (2018) rightly observes: 

“In the United States, social scientists in the related field of management sci-

ence critiqued engineer Jay Forrester for creating a modeling technique at 

MIT’s business school outside the culture of social science” (302–303). For-

rester is a showcase member of the mainframe culture of prediction who 

valued behavioral characteristics and prediction over description and repre-

sen ta tion. The debate on which grounds computer methods should target 

predictions echoes the rational– empirical tension explored in chapters 2 and 

3 in which the grounds on which mathematical methods arrive at predictions 

 were highly contested. In the mainframe culture, again, a strug gle is taking 

place over who has, and for what reasons has, the authority to define what 

is “rational.”
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5.4 Open or Closed  Future

Forrester’s work and the LtG study have served as a sample of the mainframe 

culture of prediction. This sample reveals typical features of the coevolu-

tion of social  organization, technology, and the iterative– numerical mode 

of prediction, thus confirming the findings on computational chemistry in 

chapter 4. At the same time, this par tic u lar sample is very special insofar as 

it is about the  future— not just like any temporal prediction is about what 

 will happen in the  future, but in a grander sense. It is about predicting the 

 future of the world. What could be a more ambitious scheme for prediction?

As we saw  earlier in the chapter, the  future was a hot topic at the time, 

and the LtG can surely be seen as a part of the  future movement. Interest-

ingly, this movement reacted in two markedly dif fer ent ways when The 

Limits to Growth opened the door to scientifically predicting the  future. One 

camp welcomed with open arms the idea of predicting the  future with com-

puter models and the game- changing effect of the LtG report. This camp 

was in the mainstream of planning and management that sought ways to 

enlarge the range of scientific predictions. In the early 1970s, with LtG as 

an influential paradigm, dealing with the  future became professionalized 

and defined increasingly through technologies and methods of computer 

modeling. In other words, futurology moved  under the umbrella of the 

mainframe culture of prediction.

The second camp was skeptical of prediction. According to this point of 

view, LtG, and computer- model- based prediction in more general, narrow 

down thinking about the  future  because any modeling approach conceives 

of the  future as the temporal pro cessing of modeling assumptions. This 

deprives the  future of its proper open character. The second camp included 

intellectuals as diverse as the urban theorist Lewis Mumford, the journal-

ist Robert Jungk, the Marxist Ossip Flechtheim, the activist- economist- 

sociologist  couple Elise and Kenneth Boulding (the cofounder of general 

systems theory), and the American economist John McHale. What united 

them was that, in one way or the other, they called for an alternative notion 

of the  future: “To Flechtheim, the  future was not a science of prediction, 

but a new and more systematic utopian reflection on the pre sent” (Anders-

son 2012, 1412).44 Taken with a grain of salt, the  future movement was 

fighting a cultural  battle over  whether to integrate with or separate from 

the mainframe computer culture of prediction.
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This  battle, of course, is over the question  whether mathematization 

(computer modeling)  either eliminates the  future from scientific discourse 

or rather makes it relevant. And answers to this question are rooted in basic 

positions about what thinking about the  future is or should be. The oppos-

ing standpoints of  philosopher Hannah Arendt (1906–1975) and historian 

Reinhart Koselleck (1923–2006) might exemplify this point.45 Although 

both reason about modernity in a very general sense and do not have some-

thing like the mainframe culture of prediction in mind, their positions fit 

this issue quite strikingly.

For Arendt (1951; 1958) and  others such as Walter Benjamin, predicting 

the  future poses a fundamental  political prob lem: if the  future can be calcu-

lated or predicted from the pre sent in a mechanistic (algorithmic) way, so 

Arendt holds, pro gress becomes a totalitarian force. Forecasting the weather 

is often useful. Such predictions, of course, are based on the firm assump-

tion that the driving forces of the weather remain the same. In the very 

same way, predicting the  human  future by similar methods means neglect-

ing the inherent possibility of change. The  future is then a mere extrapo-

lation (if a complex one) from the pre sent. Arendt diagnoses a pervasive 

 human crisis linked to modernity  because humanity has replaced all escha-

tological and moral notions with the totalizing idea of constant pro gress.

The German historian Reinhart Koselleck takes the opposite stance. He 

views this movement not as a crisis but as a liberation. For him, bringing 

together  future and (scientific) prediction does not so much implement 

a dangerously totalizing idea of pro gress but a liberation from the grip of 

(religious) tradition. Koselleck asks what kind of experience is opened up by 

the emergence of modernity?46 “For Koselleck, in striking contrast to Han-

nah Arendt . . .  it was the separating out of a secular and manmade  future 

from the grip of Chris tian ity that gave the  future its  political relevance” 

(Andersson 2018, 14–15). World modeling, part of the mainframe culture 

of prediction, belongs to what Koselleck calls the scientification of the 

 future. According to him, this  process has replaced one form of power with 

another and closes a dangerously open  future (Koselleck 1981, 176–179).

In summary, our examination of the mainframe culture of prediction 

leads to the question of  whether mathematization, or computerization, 

threatens to further close a  future that should remain open or rather helps to 

close a  future— hence making it predictable— that is dangerously open. This 

is an eminently  political question of undiminished importance.
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6 The Fluidity of Computational Models

This chapter pioneers the history and sociology of computational fluid 

dynamics (CFD) software.1 CFD emerged in the mainframe culture of pre-

diction and built up, to this day, one of the major applications for com-

puter simulations. Although computing centers  were largely unconnected 

over several  decades, and although getting access to a computer presented a 

major bottleneck up to the 1960s (see chapter 4),  there was, nonetheless, a 

degree of travel activity. This chapter highlights how, during the mainframe 

era, the movement of models was linked closely to persons and their work, 

whereas during the era that followed, networked computers came with a 

dif fer ent social  organization and travel pattern of software. As a piece of 

scholarly work on computational models, our aim  here is to explore new 

ground and indicates potential directions for further research.2

In this chapter, we argue that the commonly used  metaphor of circu-

lation overlooks the social epistemology of the use and repurposing of 

models. Instead, we want to discuss the ways in which models travel, show-

ing that, by traveling, they change to their very core.3 The  metaphor of 

travel offers more rhetorical space in which to discuss how models change 

when used by dif fer ent scientific communities. In addition to offering an 

account of the effects of movement on dif fer ent communities, this chapter 

also lays out the technologies from computer hardware and software to 

mathematical modeling techniques that allow such movement to occur. A 

computational model has a medium that can facilitate or interfere (or both 

in dif fer ent ways) its adoption and adaptation by new users. The develop-

ment of networked desktop computers has greatly boosted the travel of 

CFD models through common and commercial software packages, internet 

model hubs, and changing disciplinary reward structures. Nonetheless, CFD 

models and their construction and adaptation still mean dif fer ent  things to 
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dif fer ent users. This chapter examines this variety of social and epistemic 

phenomena accompanying the travel of CFD models. We examine the 

complex interaction of software, technology, and social  organization along 

three dif fer ent configurations: work at a relatively isolated, military- related 

supercomputing center (Harlow at Los Alamos), university- based work on 

building up an international community (Spalding at London and Purdue), 

and a more recent applied field (traffic simulation) that uses CFD as a tool 

for prediction.

6.1 The Partly Missing History

A look at a science or engineering textbook  will often reveal that it offers a 

kind of canonical history of the technique or theory being explained. For 

example, a mechanics textbook  will often offer a glimpse of Galileo and 

Newton as a way of showing that, despite being in the twentieth or twenty- 

first  century,  these ideas have been around awhile, have been proven, and 

have famous, or sometimes should- be- famous, names attached to them. 

It is common to find thermodynamics referring to the conundrum of the 

steam engine and a parade of international figures including Sadi Carnot, 

James Joule, Rudolf Clausius, and Walter Nernst.  These origin stories are 

often whiggish and vastly oversimplified, but they serve a purpose: to 

establish the staying power and the importance over time of the prob lems 

and solutions at hand. Upon opening a textbook in computational fluid 

mechanics (hereafter referred to as CFD), typically no such origin story is 

offered. This is curious. To what can we attribute such a lack? Is it the rela-

tive youth of the field? This cannot be the case  because fluid dynamics in its 

precomputer form has a long, distinguished, and commonly cited canoni-

cal history to draw on (the Bernoullis and such). The story of computation 

needs only to be a postscript. Perhaps not attaching them to any par tic u lar 

set of prob lems is part of the effort to show the flexibility and mobility of 

CFD techniques? But this cannot be true  either  because the prob lem sets 

that follow  will inevitably show a range of specific engineering prob lems 

that benefit from the application of CFD. This would also imply a particu-

larly historical reflexivity on the part of engineering textbook authors that 

seems unlikely. CFD is also not a basic engineering science; it is typically 

taught only to advanced undergraduates or gradu ate students for whom 

the socialization and disciplinary inculcation that an origin story provides 
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is viewed as unnecessary. This may be true, and it is common to see origin 

stories missing from other computational techniques such as finite ele ment 

textbooks. But it is not the case that CFD has no easy- to- tell or revealing 

origin story. CFD textbook authors would do well to understand, simplify, 

and bastardize the origin story of CFD  because it does make for good sto-

rytelling and inculcates the value of per sis tence in the face of difficult 

problem- solving.

However,  there are also a number of challenging methodological dif-

ficulties. First, it is hard to create a balanced account of CFD software. 

 There is a dark, hardly vis i ble side to it that deserves more appreciation. It 

is uncontroversial to say that “CFD can be traced to the early attempts to 

numerically solve the Euler equations in order to predict effects of bomb 

blast waves following World War II at the beginning of the Cold War” 

(McDonough 2007, Prologue).  These attempts at prediction happened in 

Los Alamos and targeted the conditions relevant for atomic bomb explo-

sions. Of par tic u lar interest as well as difficulty  were interactions between 

hydro-  and thermodynamics. All this work was classified, and much of it 

still is— such as material properties at high temperatures. Only stripped- 

down versions of code have been published. Naturally, this impedes histori-

cal work. How unpublished code travels can hardly be accounted for. As a 

consequence, the work by Spalding in Huntsville prob ably gets more credit 

 here than it deserves relative to the work done at Los Alamos. How one 

should compensate for this, however, is an open question.

Second, comparison can usefully sharpen the case for how code trav-

els. Of course,  there are more or less parallel cases such as that of density 

functional theory in which a large number of software packages are used in 

a tightly networked infrastructure (see chapter 4 on computational chem-

istry). Comparison with nonsoftware tools that travel is arguably of equal 

value. One pertinent point for comparison is David Kaiser’s work on “the 

dispersion of Feynman diagrams” (2005).4  These diagrams originated from 

Feynman’s work, also at Los Alamos, and spread out like tools to influ-

ence education and communication. Kaiser’s point is that the diagrams 

traveled mainly through a network of postdocs. Over the years, dif fer ent 

groups of scientists learned to use  these diagrams in dif fer ent ways. Kai-

ser stresses the differences between his work and that of Bruno Latour:5 

“Whereas Latour emphasizes ‘optical consistency’ (even ‘immutability’) as 

an essential feature of why diagrams and other scientific inscriptions carry 
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so much force among scientists, I focus instead on unfolding variations 

within their work—on the production and magnification of local differ-

ences” (Kaiser 2005, 7). CFD pre sents a dif fer ent case  because when code 

travels, this means that it is changing and developing. On the one hand, 

dif fer ent codes are predictably inconsistent with each other. On the other 

hand, all CFD codes have a backbone of mathematical theory, of computer 

programming techniques, of predictive success, and of predictive failure. 

Fi nally, comparison could and should include the dif fer ent cultures of 

prediction as discussed in this book.  Those rare examples in lit er a ture on 

CFD that mention some history address only the history of mathe matics, 

including that of algorithms, but not that of software.6 The following text 

contributes to changing this.7

One of the benefits of mathematical models is the ease with which they 

can be tested and applied to dif fer ent kinds of prob lems, even when new 

applications may have  little to do with the physical systems  these models 

 were originally designed to represent. In this chapter, we offer a case study 

in computational fluid dynamics (CFD) to show the ways that CFD models 

 were developed and how they moved to tackle new prob lems. We argue 

that by traveling to new users and fields, the models themselves changed 

on many dif fer ent levels ranging from the entities they could represent 

to the kinds of code (both algorithms and programming languages) used 

to modify and add on to them. CFD is an ideal case study for examin-

ing the travel of computational models  because its use is so wide- ranging, 

being applied in every thing from mechanical engineering and physics to 

economics, traffic simulations, and accident reconstruction (e.g., the Hajj 

stampede of 2015).

6.2 Cold War Research

Many computational techniques have long precomputer histories, and, in 

the case of CFD,  there is a very long and distinguished history in fluid 

dynamics. As with many canonical histories, fluid dynamics—or, some-

times, fluid mechanics— traces its origins to the Greeks, starting with 

Archimedes and a theory of buoyancy.  Things  really get  going in the early 

modern period with the research of Galileo’s “disciple” Torricelli, the oft- 

forgotten Versailles- based Mariotte, and the famous Bernoulli  brothers, fol-

lowed by the mathematical antics of Jean D’Alembert and Leonhard Euler.8 

Downloaded from http://direct.mit.edu/books/book-pdf/2369564/book_9780262379045.pdf by guest on 26 September 2024



The Fluidity of Computational Models 137

Despite much research in the nineteenth  century, including the work of 

Helmholtz, the canonical story of fluid mechanics is  really characterized by 

the Torricelli to D’Alembert period.

CFD  really begins in the Cold War and is continuous with research prior 

to World War II. However, the field of fluid dynamics had expanded sig-

nificantly in the prewar period due to the invention of the airplane. This 

focused on the challenges of aerodynamics, with the work of Prandtl as a 

key. This work was also carried out by his student von Karman, who emi-

grated to the United States in 1930 to  organize the Aeronautical ( later Jet 

Propulsion) Laboratory at Caltech.

The computational story has to begin in the Cold War  because it is coter-

minous with the computer and also provides the basis of prob lems that 

needed solving. It begins at a famous site, the Ames Research Center in 

Sunnyvale, California. In the early 1950s, Ames was the secondary research 

fa cil i ty of the National Advisory Committee for Aeronautics ( later NASA). 

In the 1950s, a  great deal of Cold War−oriented aerodynamics work was 

being performed  there. One prob lem in par tic u lar defied conventional 

modeling attempts and would be passed on to more dedicated computing 

facilities at Los Alamos by the early 1960s.

This prob lem was as follows. While  doing research on the nose of a long- 

range ballistic missile, researchers found that modeling the pressure distri-

bution was troubling  because of a counterintuitive finding: mathematical 

analy sis seemed to suggest that a blunt nose would experience less aerody-

namic heating than a sharp slender one.9 The issue of aerodynamic heat-

ing, related directly to pressure, was an impor tant one  because the nose 

cone of the missile needed to remain intact during re- entry through Earth’s 

atmosphere. Temperatures reached 7,000 K, so the structural integrity of 

the body was at stake in the modeling. The question became how best to 

model the distribution of pressures and temperatures around that blunt 

nose. Mathematically the prob lem is messy. The steady flow near the nose 

is subsonic, whereas the downstream flow is supersonic. This means that 

two incoherent sets of equations are needed to model the phenomenon. 

The subsonic flow is represented by elliptical partial differential equations 

(PDEs), whereas the supersonic is modeled with hyperbolic PDEs. But  these 

two regions meet at a boundary called the sonic line (see figure 6.1). There-

fore, the model needed to be mathematically consistent at this boundary. 

The effort to model the phenomena was driven by a design question— what 
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is the optimal shape of the nose to have the best, and most predictable (i.e., 

smoothest), pressure and temperature distributions?  Because the models 

produced at Ames could not be solved by hand, the prob lem was passed on 

to the computational facilities at Los Alamos.10

At Los Alamos, the prob lem was delivered to physicist Frank Harlow 

(1928–2016).11 Harlow set up a model that could be solved by using a com-

puter. Rather than focus on the hand- off of values from the elliptic model 

to the hyperbolic, Harlow drew a mesh over the  whole cone, and tried to 

calculate the pressures at the nodes of the mesh. In this way, he traded 

the (unattainable) general mathematical solution for a stepwise procedure 

working with many nodes. In other words, he transformed the prob lem 

into something that lends itself to an iterative– numerical strategy. This sort 

of transformation was the centerpiece of the iterative– numerical mode of 

prediction.12 The computer could solve  these meshes iteratively and avoid 

the difficulties of insolvable PDEs. Harlow combined the Eulerian approach 

using a fixed mesh with a Lagrangian approach in which the mesh followed 

the flow. As a result, the fluid masses moved with the Lagrangian, whereas 

the mesh itself stayed stationary on the nose cone.

Harlow also focused on producing a graphical output or picture of the 

pressure distributions. For him, this would be a significant development: 

Bow shock

Sonic line

Elliptic
region

Hyperbolic
region

M > 1

M < 1

y

x
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δ

Figure 6.1
Qualitative aspects of flow over a supersonic blunt body (original caption of fig. 1.1, 

Anderson [2009, 4]). Courtesy: Springer.
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that the best way to understand the output of a fluid model was not as 

a value  table, although that was easy enough to produce and was often 

needed for design purposes. But, rather, to understand the situation at 

hand, a visual display would be very helpful. This orientation set in motion 

a priority for CFD models to produce visual displays of the complex phe-

nomena they  were designed to create (and predict). As display and printing 

technologies have improved,  these graphical outputs have become all the 

more impor tant and sophisticated. We have not been able to find the origi-

nal output of the nose cone but have found relatively con temporary work 

by Harlow on another set of prob lems that he was modeling using CFD in 

the early 1960s; see figure 6.2.

Harlow’s techniques  were an impor tant beginning, but Harlow was 

a physicist inside a national weapons lab. He was neither committed to 

distributing the methods he developed nor  were the proj ects always easy 

to declassify. Harlow did define the method in the following way: com-

putational fluid dynamics is, in part, the art of replacing the governing, 

and unsolvable, partial differential equations of fluid flow with numbers, 

usually experimentally derived, and advancing  these numbers (guided by 

equations) in time and space to obtain a final numerical description of the 

complete flow field of interest. Harlow also offered a how-to for building 

fluid flow models that  will be impor tant as CFD travels to new questions.

• Define and represent the system geometry.

• Divide the area or volume into cells (a mesh).

• Define the governing equations of the system (e.g., in the case of the 

cone, this was the elliptical and hyperbolic equations of subsonic and 

supersonic flow).

• Set the boundary conditions.

• Run the simulation on the computer.

• Produce a visually informative output.

• Analyze the results.

• Tweak the model’s repre sen ta tional features and boundary conditions if 

needed and rerun the simulation.

This list continues to be descriptive of the  process of making CFD models 

to this day, though  there are additional steps once the simulation has been 

run to produce the most visually informative output, steps that are typi-

cally called “postpro cessing.”
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Figure 6.2
Harlow’s 1965 Science article modeling fluid flow at a sluice gate. Cover of Science vol-

ume 149, issue 3688. The original caption (p. 1092) is: “Surging  water  under a sluice 

gate is simulated by computer calculations. The sequence of figures shows unre-

touched computer output, illustrating early stages in the development of a hydraulic 

jump from a backward- breaking wave. Such numerical solutions of the full nonlinear, 

time- dependent Navier- Stokes equations make pos si ble the detailed study of this and 

numerous other prob lems in fluid dynamics.” Reprinted with permission from AAAS.
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6.3 Imperial College as a Dif fer ent Kind of Site for  

Knowledge Production

Even  after Harlow’s retirement, the CFD work at Los Alamos was  little 

known outside the US Department of Defense. However, other research-

ers  were working on CFD. This section focuses on a very prolific group at 

Imperial College (IC) in London: a group who produced a large number of 

CFD disciplines in the 1970s and 1980s. It was led by Brian Spalding (1923–

2016) from New Malden, a London suburb. Spalding had a 1952 PhD from 

Cambridge that had been supported by an Imperial Chemical Industries 

(ICI) scholarship. Spalding wrote his dissertation on a method of unifying 

von Karman’s hydrodynamics, Georgii Kruzhilin’s heat transfer equations, 

and Ernest Eckert’s mass transfer models to produce a general mathematical 

theory of heat and mass transfer with and without combustion. The insight 

gained by Spalding’s thesis was that chemical reaction rate constants do 

not influence combustion  until a critical rate of mass transfer is reached. In 

1954, he was hired as a reader in applied heat at Imperial College, and by 

1958, he was a professor of heat transfer. Throughout the 1960s, he built 

up a large research group (averaging around thirty members) with students 

from all over the world, several of whom followed in his footsteps with ICI 

fellowships. Over his  career, Spalding trained approximately one hundred 

gradu ate students (i.e., around three new PhDs per year).

 Here are three examples:

• In 1964, Suhas Patankar arrived from India on an Imperial College schol-

arship and put Spalding’s theory into FORTRAN code.

• In 1965, Akshai Runchal also arrived on an Imperial College scholarship. 

Runchal had initially planned to work on the drying of sprays, thinking 

that was something of interest to ICI (which is largely a paint com pany); 

Spalding told him that it was not in ter est ing but that he should come 

and they would find him a proj ect. He worked on finite difference solu-

tions for low Reynolds number fluids.

• In 1965, Micha Wolfshtein came from Israel to work on High Reynolds 

number flows.

Runchal was working on lit er a ture reviews and de cided that the math 

department might be able to help him.  There, he learned about the prom-

ise of using finite- difference methods to approximate the Navier– Stokes 
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equations. Runchal and Wolfshtein discovered that they  were both working 

on finite difference solutions— Runchal on low Reynolds number systems 

(i.e., laminar flow) and Wolfshtein on high Reynolds numbers (turbulent 

flow). Spalding talked to them both and got them to think about the prob-

lem physically— the nodes in the finite difference grid represented tanks 

that fluxed with other tanks by way of tubes. Physical intuitions  were the 

proper way to think, according to Spalding.

Runchal and Wolfshtein finished their  theses within a year of each other— 

theses on similar prob lems but with dif fer ent solutions. Runchal then went 

on to teach at the Indian Institute of Technology (IIT) Kanpur (although he 

would return to Imperial College two to three years  later), whereas Wolfsh-

tein went to the Technion.  These young engineering professors spread the 

CFD word very quickly.

Spalding de cided in the late 1960s that he needed to work harder on 

getting the tools that he and his students  were developing into working 

engineers’ hands. So, he created a “post- experience course” of continuing 

education for industrial engineers to keep them up to date with the meth-

ods he had been developing since 1965.13 Spalding, Runchal, and another 

student, David Gosman, then wrote a textbook (Gosman et al. 1969) to fur-

ther inform potential users about the new developments in CFD. The book 

contained the text of the ANSWER code in FORTRAN for users to program 

their local machines. This is significantly dif fer ent from having a software 

package that travels to the user. Training in software implementation and 

modification was a necessary activity on the side of the users that the mak-

ers of software first had to invent.

In 1969, Spalding and several of his students created a consulting com-

pany to do both CFD contract work for industry and to help train industrial 

engineers in the methods. The firm was called Combustion, Heat and Mass 

Transfer, Ltd., or CHAM. In the early 1970s, Spalding turned his attention to 

3- D turbulence and heat transfer in chemical reactions. He started with the 

well- known work by Kolmogorov and Prandtl (in the original  Russian and 

German) and used experimental data to derive constants that could quan-

tize intractable equations. This allowed him to produce a new group of 

algorithms that  were computationally efficient and made accurate predic-

tions.  These algorithms  were written primarily by Patankar and  were called 

 SIMPLE. Even  today, nearly all commercial CFD packages use them. As the 

CFD codes CHAM used grew and their clientele expanded, CHAM became 
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too big for its offices at IC and moved to a storefront in New Malden in 

1974. Patankar and Runchal, who had returned from India, moved to full- 

time work at the CHAM offices, where they developed more tools. Gosman, 

Laudner, Whitelaw, and Lockwood (all Spalding PhDs) also worked in the 

New Malden office. Two more CFD firms  were spun off Spalding’s code: 

David Tatnall and Harvey Rosten founded Flomerics; and using Spalding’s 

code, Jim Swithenbank started the firm Creare LLC that produced FLUENT, 

one of the most commonly used CFD packages  today.

Unlike Harlow, who locked CFD inside a Cold War institution, Spalding 

purposefully built up a CFD community that facilitated the movement of 

CFD to new types of prob lems. Spalding did this by focusing on publica-

tions ranging from textbooks to new journals that would make the methods 

accessible to anyone able to get their hands on and read the English- language 

materials. Spalding also engaged the growing interest among engineering 

professionals in continuing education by offering “post- experience” courses 

that promised to keep engineers who  were already working up to date on 

new methods. He cultivated a global (albeit English- language) community 

that brought university researchers and faculty to London for instruction 

and experience as well as sending out representatives to teach courses at 

diverse institutions, including Göttingen, Penn State, Stanford, Berkeley, 

Brown, Caltech, Tsinhua, IIT Kanpur, the Technion, and even Los Alamos 

itself. The movement of CFD had come full circle from Spalding back to 

Harlow’s home, where Tony Hirt had taken over for Harlow and was work-

ing to declassify and distribute CFD code to make it available to researchers 

outside the Department of Defense system. Through all  these transitions, 

CFD capacity increased and was used to solve more kinds of prob lems. 

Through travel, it was transformed.

One methodological tool we have been working on is the production of 

social network analy sis maps in order to understand the CFD community at 

vari ous times in its development. When making a map of the social network 

that Spalding created, it is easy to see that his role was central and that the 

network was well connected and large. We used the program GEPHI to cre-

ate this map that shows researchers’ closeness, influence, and centrality. We 

did not use co- citation analy sis. Figure 6.3 shows the social network of the 

CFD community. One can read off impor tant information, even without 

taking into account the exact location of the nodes, which is generally not 

well- defined (i.e., might vary depending on the exact specification of the 
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mapping algorithm). Clearly, Spalding forms the central node. Although 

 there are more links than just to and from Spalding, the shortest connec-

tion between two nodes often runs through him, stressing the influence of 

his position. Overall, the nodes are well connected, with only a few that are 

unconnected. Thus, it appears to be a single community of researchers. Fur-

thermore, institutional links are not readily apparent, prob ably superseded 

by the (joint) traveling of code and  people.

When further investigating the movement of code that Spalding facili-

tated, it is impor tant to see that technical commitments  matter for the 

mobility and flexibility of the methods. Spalding and his students worked 

through physical analogies, best seen in the interactions between Spalding 

and Runchal and Wolfshtein. He also modeled simpler, but more generaliz-

able, prob lems than Harlow had done. His prob lems  were typically steady, 

rather than transient, flow. They  were single-  rather than multiple- phase, 

and the boundary conditions  were fixed rather than moveable. As a result, 

Spalding was designing CFD for the accessible business computers that  were 

commonly available by the 1970s. Harlow had designed for high- end sci-

entific mainframe computers that might be accessible to large engineering 

firms such as Boeing or Raytheon but did not offer the  great possibilities of 
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A social network map of the CFD community. Courtesy: authors.

Downloaded from http://direct.mit.edu/books/book-pdf/2369564/book_9780262379045.pdf by guest on 26 September 2024



The Fluidity of Computational Models 145

putting CFD in smaller firms’ repertoires of engineering tools. Spalding also 

attended to distributing the code and eventually making it commercially 

 viable in both proprietary and open code versions. He also set up a con-

sulting business that served to encourage firms to introduce the necessary 

technology and expertise to perform CFD in- house.

6.4 Moving CFD out into Traffic

To choose just one application of CFD that Spalding and Harlow might 

be surprised about, we  shall look at traffic flow. Predicting traffic be hav ior 

is a socially relevant and eco nom ically impor tant prob lem. However, it is 

governed by many hard- to- model  factors. Simulating traffic requires atten-

tion to several levels: the “submicroscopic” on which the physical details 

of each car  matter (e.g., braking distances or traction control algorithms); 

the microscopic on which driver be hav ior  matters (Are  drivers driving very 

close together? Are their decisions impaired by alcohol or distractions such 

as cell phones?); and the mesoscopic on which users can be treated probabi-

listically but some system components and geometries need to be attended 

to. Fi nally, can the movement of traffic be treated simply as a flow without 

attending to its constituent parts? Does the last option produce usable and 

accurate predictions of  actual traffic on real roads?

It might be useful to review Harlow’s how-to list and see where the dif-

ferences between  actual fluids and traffic as a flow are apparent. Which of 

the following convert easily to traffic?

• Define and represent the system geometry.

• Divide the area or volume into cells (a mesh).

• Define the governing equations of the system (e.g., in the case of the 

cone, this was the elliptical and hyperbolic equations of subsonic and 

supersonic flow).

• Set the boundary conditions.

• Run the simulation on the computer.

• Produce a visually informative output.

• Analyze the results.

• Tweak the model’s repre sen ta tional features and boundary conditions if 

needed and rerun the simulation.
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It seems that the one area that might pose challenges is “Define the 

governing equations of the system”  because  these are unknown for traffic. 

But can traffic simply be taken as fluid- like and described mathematically 

using equations taken from real fluids? This has been the approach of traffic 

modelers using CFD.  There has been no  grand justification of the similar-

ity between traffic and fluid— the empirical (even appearance) similarity 

has been sufficient to try to model traffic with CFD and see  whether the 

models can reproduce the phenomena, especially of traffic shocks (most 

commonly known as rubbernecking delays in the United States). The jus-

tification for working with  these models comes mainly from the fact that 

they produce predictions.

But traffic simulation occupies a dif fer ent kind of community than CFD 

developers  because its modelers are fundamentally agnostic with regard to 

their modeling techniques, and they use many dif fer ent simulation tools to 

model traffic, often combining dif fer ent modeling techniques in the same 

simulation. Figure 6.4 maps the social network of the CFD traffic commu-

nity. In contrast to the  earlier CFD community (figure 6.3), this commu-

nity is much less well- organized and connected. Figure 6.4 displays a much 

sparser network of a much newer community with no central node(s), sub-

communities, or institutional links. It is unclear how influence flows. One 

could even discuss  whether it is too small to be called a network— that is, 

 whether it is admissible to display only  those traffic modelers who work 

with CFD. We simply acknowledge that the social network analy sis gives 

very tentative results.

Traffic simulation is also highly multidisciplinary, whereas CFD since 

the 1960s has been located largely within the discipline and departments 

of mechanical engineering. Traffic simulations do not have a clear depart-

mental or disciplinary home and have required the collaboration of civil 

and mechanical engineers, computer scientists, applied mathematicians, 

and even psychologists. Part of the challenge is that simulations need to 

run very quickly and in real time so as to produce a prediction of traffic 

conditions that is useful to  drivers. Like the weather, no one cares where 

yesterday’s traffic jams and tie- ups  were.  Drivers also tend to want to know 

how bad tie- ups  will be in order to calculate  whether it is worth taking a less 

direct but alternative route. This means that jams need to be predicted, but 

so do their longer spatial and temporal consequences. As a result, optimiz-

ing the codes for the simulation is more impor tant for this application than 
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it might be for design pro cesses. This is another way that CFD changes as it 

travels to new applications.

Since the 1990s, CFD has been a standard package software that can be 

run on desktop and laptop PCs. This has standardized the kinds of  things 

CFD can do while also opening up a large number of new application fields. 

Academic researchers in CFD are still rewarded for coming up with new code 

both to address prob lems more efficiently and to produce more accurate 

models. But users of CFD have no incentive to modify code, and in the case 

of proprietary software, have no access anyway. What is useful to consider 

is the extent to which CFD has traveled— from clear heat transfer prob lems 

to fluid flow to traffic, even to modeling “shockwaves” in the economy— 

and how this movement has transformed CFD into a general- purpose tool 

whose predictive powers have superseded questions  after repre sen ta tion.

Figure 6.4
A traffic simulation community social network analy sis map. Courtesy: authors.
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7 A Transformation of Bayesian Statistics

If statistics is viewed as a branch of mathe matics, it has to be seen as a spe-

cial branch distinguished by the ways in which it is linked to both societal 

practices and philosophical positions.1 Bayesian statistics is exemplary on 

both counts.  Philosophers have discussed Bayesian statistics vigorously and 

elaborated Bayesianism as a philosophical position.2 Most significantly, Bayes-

ian epistemology analyzes how one should deal with new data in a rational 

way— that is, the Bayesian standpoint lays claim to capture scientific rational-

ity. Put simply, Bayes’s rule3 is taken as a (normative) princi ple that prescribes 

how one should update prior beliefs in light of new evidence. The use of 

Bayesian approaches in scientific practice shows a remarkable  career. Despite 

their philosophical prominence, they remained very much a minority 

approach in science— but only up to the 1990s when Bayesian methods 

quickly acquired a high level of popularity in the sciences as well.

We  shall describe and analyze this turn. We argue that the success of 

Bayesian approaches hinges on computational methods that make a class 

of models predictive that would other wise lack practical relevance. Philo-

sophically, however, this orientation  toward prediction comes at a price. 

The new computational approaches change Bayesian rationality in an 

impor tant way: namely, they undercut the interpretation of priors, turn-

ing them from an expression of beliefs held prior to new evidence into an 

adjustable  parameter that can be manipulated flexibly by computational 

machinery— a lubricant for exploratory iteration. Thus, in the case of 

Bayes, one can see a coevolution of computing technology, an exploratory– 

iterative mode of prediction, and the conception of rationality.

Section 7.1 briefly introduces the rift in the philosophy and practice of 

statistics in which the Bayesian and the classical accounts  were used, elabo-

rated, and defended by dif fer ent fields and disciplines— until the popularity 
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of Bayesian methods unfolded in the 1990s. According to the prevailing 

stance in philosophy, the advantages in terms of rationality account for the 

upswing of Bayesian methods (section 7.2). Contrary to this view, we claim 

that it was the move to an iterative– exploratory mode of prediction—on the 

technological basis of cheap and easily available computers— that drove this 

upswing. We support this claim with an analy sis of the pivotal roles played 

by Markov chain Monte Carlo methods (section 7.3) together with software 

packages (section 7.4). In the concluding section 7.5, we pre sent an outlook 

on the pragmatic stance that has gained ground in the philosophy of statis-

tics over the last two  decades.

7.1 Bayes’s Popularity

Before appreciating its growing popularity, we  shall briefly and, as special-

ists  will rightly bemoan, superficially describe the situation before it started. 

Bayes’s rule captures how to calculate with conditional probabilities. Let 

π(H ) stand for the probability of a statement or hypothesis H, π (H | D) for 

the conditional probability of H given D. Now, both H and D happen if (for 

the moment, think of a temporal order) D happens and then H happens 

given D, or equivalently, H happens and then D happens given H. In other 

signs: π(D) ⋅ π(H | D) = π(H ) ⋅ π(D | H ). Separating π (H | D) on the left side 

gives Bayes’s rule:

π (H | D) = π(H ) ⋅ π(D | H ) / π(D ). (∗)

It is named  after Reverend Thomas Bayes (c. 1701–1761), a Presbyte-

rian minister,  philosopher, and statistician. Bayesianism starts out with a 

special interpretation of this rule. Consider that you have some hypothesis 

H— for example, that it  will rain tomorrow. You do not know for sure, so (in 

a Bayesian mood) the degree of your belief can be expressed as a probabil-

ity, π(H). Now  there arrives new evidence D— say, you stand up next morn-

ing and have a look at the sky. This should give you additional evidence 

and  will change your (subjective) probability of rain on this day. Therefore, 

π(H) is also called the “prior” that  will be updated. The updated probability, 

written πD(H ), of your hypothesis given the data is also called the “poste-

rior.” Which numerical value does it have? Bayesians take the position that 

updating needs to happen by conditionalization. The posterior is the condi-

tional probability: πD(H) =  π (H | D). In other words, equation (*) answers the 
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question: the posterior is proportional to the (subjective) prior π(H) and to 

π(D | H), the so- called likelihood— that is, the probability of the data given 

your hypothesis (how likely the sky looks like it does in the morning given 

that it  will rain). The term π(D) plays the role of a (normalizing) constant.

Bayesianism adopts (*), or a sophisticated variant of it, as a princi ple that 

should guide inferences. In the entry to the Stanford Encyclopedia, to pre-

sent a generic point of view,4 W. Talbott (2016) identifies the main fea-

tures of Bayesian epistemology as the introduction of a formal apparatus for 

inductive logic that uses the laws of probability as coherence constraints on 

rational degrees of belief. In par tic u lar, it takes Bayes’s rule (a basic rule for 

conditional probabilities) as a norm for probabilistic inference, as a princi-

ple of conditionalization. “What unifies Bayesian epistemology is a conviction 

that conditionalizing . . .  is rationally required in some impor tant contexts— 

that is, that some sort of conditionalization princi ple is an impor tant princi-

ple governing rational changes in degrees of belief.” Famous arguments from 

Bayesian epistemology, such as the Dutch book argument, set out to show 

that following Bayes’s princi ple is following a demand of rationality.5

The classical camp of, among  others, Fisher, Neyman, and Pearson— 

despite internal differences6— criticized mainly two points: first, Bayesian 

estimations hinge on subjective priors and are therefore not robust. Any 

robust results would have to take into account the variability of priors— that 

is, other probability  measures that do not correspond to the  actual beliefs.7 

Statistical inference should be geared  toward the properties of the estima-

tion (such as robustness) rather than rationality according to a system of 

beliefs. Second, the Bayesian assumptions create high obstacles for practice. 

Calculating with (∗) does not just require the specification of all probabili-

ties involved: the probability of a hypothesis π(H), the probability of the 

data π(D) (often expressed via conditioning on dif fer ent possibilities), and 

the conditional probability π(D | H). Crucially, their numerical values have 

to be computed. In a technical sense, the calculation of posterior prob-

abilities requires an evaluation of very difficult integrals. It is preferable, 

according to the classical camp, to avoid specification and computation of 

this kind. Classical statistical modeling aimed to do without priors— such 

as the famous “null hypothesis” in significance tests that allows researchers 

to be agnostic.8

The rift between the Bayesian and classical camps was reflected by a 

divide of disciplines. While economics and—of course— philosophy have 
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been (and still are) dominated by Bayesianism, in most natu ral sciences, it 

is classical methods that have a stronger footing, although this is certainly 

not a clean divide. This brought philosophy of science into an odd posi-

tion.  Philosophers worked out a Bayesian normative account, whereas large 

parts of the sciences apparently did not care but rather continued to prefer 

classical approaches.  Here is a typical opinion from a Bayesian statistician 

reasoning about why the uptake in scientific practice was so slow.

Bayesians  were still a small and beleaguered band of a hundred or more in the 

early 1980s. Computations took forever, so most researchers  were still  limited to 

“toy” prob lems and trivialities. Models  were not complex enough. The title of 

a meeting held in 1982, “Practical Bayesian Statistics,” was a laughable oxymo-

ron. One of Lindley’s students, A. Philip Dawid of University College London, 

 organized the session but admitted that “Bayesian computation of any complex-

ity was still essentially impossible . . .   Whatever its philosophical credentials, a 

common and valid criticism of Bayesianism in  those days was its sheer impracti-

cability.” (McGrayne [2011, 213–214], quote from interview)9

However, the divide changed in a remarkably swift way. Figure 7.1 pre-

sents some bibliometric evidence. The data are from the Web of Science and 

count papers appearing in one of five major statistics journals: The Journal 

of the Royal Statistical Society B, Annals of Statistics, Journal of the American Sta-

tistical Society, Biometrika, and Biometrics. Each point shows the percentage of 

papers (in one par tic u lar year) whose topic contains “Bayes.” All five jour-

nals come from the classical side that dominated mathematical statistics. 

30

22.5

15

7.5

0
1970 1975 1980 1985 1990 1995 2000 2005 2010 2015

Figure 7.1
The axes are the year of publication and percentage of papers related to Bayes. Ten 

data points are displayed, one  every fifth year, 1970 to 2015. Straight lines are added 

connecting  these points. Courtesy: authors.
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The data confirm the outsider role of Bayesian methods in professional sci-

entific statistics, with a consistent share of only 2–4  percent up to the early 

1990s. Then, however,  there is a rapid rise to a level of about 20  percent.10

This picture is conservative  because it displays (at least three) very tra-

ditional journals that  will surely not overrepresent papers inclined  toward 

Bayes. Newly established journals tend to show an even higher share but 

cannot provide reference points for the mid- twentieth  century.11

Bayesian methods eked out an existence as a small minority group in the 

sciences and their statistical approaches—up to the early 1990s.  After that, 

Bayesian methods developed quickly, indeed almost leapt up to become an 

intensely researched and widely used approach. Since then, the extent of 

lit er a ture on Bayesian methods in the sciences has grown rapidly. One can 

track this in many forms from journal papers and discussion statements to 

books and encyclopedia articles. The (Bayesian- inclined) statisticians Brad-

ley Carlin and Thomas Louis (2000), for instance, note:

An impressive expansion in the number of Bayesian journal articles, conference 

 presentations, courses, seminars, and software packages has occurred in the four 

years since 1996 . . .  Perhaps more importantly, Bayesian methods now find 

application in a large and expanding number of areas where just a short time ago 

their implementation and routine use would have seemed a laudable yet absurdly 

unrealistic goal. (xiii)

Thus, we take it for granted that the uptake and use of Bayesian methods 

experienced a turn in the 1990s, and we devote the remaining sections to 

analyzing this turn.

7.2 Rationality or Computation?

The turn did not go unnoticed from the side of  either Bayesian statisti-

cians or  philosophers. We  shall complement the Carlin and Louis quote 

in the previous section with one taken from the philosophical side. In 

their volume on the foundations of Bayesianism, Corfield and Williamson 

(2001) offer an outlook on the field: “Bayesianism has emerged from being 

thought of as a somewhat radical methodology— for enthusiasts rather 

than for research scientists— into a widely applied, practical discipline well- 

integrated into many of the sciences” (3). Scientists and  philosophers agree 

unanimously that the turn happened. The next question is: Why did it 

happen?
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A common viewpoint holds that the main reason for the turn is the 

rationality of Bayesianism itself that fi nally became operational thanks to 

computational methods. Computer- based methods rendered feasible the 

integrations (e.g., when calculating conditional probabilities in complex 

models) that Bayes’s rule requires; and, as a result, the rule’s rationality 

gained traction.12 As Corfield and Williamson (2001) put it (looking back 

on the 1990s), it is only recently that “computers have become power ful 

enough, and the algorithms efficient enough, to perform the integrations” 

(4). Although this explanation is plausible, it is crucially incomplete and can 

therefore easily mislead.

The point is that simply using computational tools does not lead 

straightforwardly to obtaining  those results that had been too difficult to 

achieve before. The tools are not strictly neutral. Which mathematical tools 

are used and how they are used might influence the modeling  process. This 

is exactly our key point. Our analy sis shows that, thanks to new computa-

tional tools, Bayesian methods changed into a new, exploratory– iterative 

mode of prediction— the mode that readers of chapter 4 have encountered 

already. Furthermore, we argue, this mode of prediction affects the very 

nature of Bayesian rationality.

We are well aware that this claim is not easy to substantiate. It ascribes 

a significance to computational methods that has not always been appar-

ent to prac ti tion ers. Early appraisals of the computer and its powers typi-

cally took it for granted that the machine would simply carry out logical 

or arithmetical operations and would not require any new perspective on 

how mathematical tools lead to predictions. For instance, the statistician 

Dennis Lindley, a leading advocate of Bayesianism over almost the entire 

second half of the twentieth  century, had seen Bayes’s rule as an arithmetic 

 recipe for producing inferences. He considered this procedure to be almost 

mechanical, given that the integrations could be made feasible (Lindley 

1965). Lindley did not see any par tic u lar interest in devising computational 

methods. The next generation of Bayesian- minded statisticians, however, 

saw  things differently. The statistician A. F. M. Smith, a leading voice, argued 

in a sort of manifesto that it was efficient numerical integration procedures 

that led to the more widespread use of Bayesian methods (Smith 1984).

Even granted the importance of numerical procedures, it was hard to 

anticipate just how such procedures would change the method. Identifying 
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the computational tools on which the Bayesian boom is built is straight-

forward.  There is ample evidence in which statisticians write about what 

created the difference in the 1990s. In fact,  there is a remarkable consensus 

on this point: it was the Markov chain Monte Carlo (MCMC) method that 

made the difference— and Smith himself provided a key paper.

When Smith spoke at a workshop in Quebec in June 1989, he showed that Mar-

kov chain Monte Carlo could be applied to almost any statistical prob lem. It was 

a revelation. Bayesians went into “shock induced by the sheer breadth of the 

method.” By replacing integration with Markov chains, they could fi nally,  after 

250 years, calculate realistic priors and likelihood functions and do the difficult 

calculations needed to get posterior probabilities. (McGrayne 2011, 221–222)13

Thus, MCMC opened the door for Bayes to become practically relevant. 

 There is agreement on this point. Now is where the difficult part begins. We 

 shall analyze how MCMC affects the very rationale of Bayesianism.

7.3 The Markov Chain Monte Carlo Revolution: Iteration  

and Exploration

This section bears the main thrust of the argument. Using MCMC meth-

ods, we argue, yields predictions in an iterative– exploratory mode and thus 

affects the rationale of Bayesian methods.

Integration and Convergence

We start with a brief summary of what MCMC is about. Although this part 

 will be about integration in a technical mathematical sense, we  shall keep 

it on a nonformal level. From the outset, MCMC combines Monte Carlo, 

which stands for iteratively sounding out mathematical terms, with Mar-

kov chains, a class of random pro cesses.

Monte Carlo strategies are based on the law of large numbers. This law 

states that the expected value of a random variable is approximated by 

the average of many random  trials (that each follow the same probability 

distribution). In a casino such as the one in Monte Carlo, many  people 

gather around a roulette  table  after a small series of identical outcomes 

happens— say three times “13.” Some think that the next trial is likely to be 

the number 13 again;  others hold that a dif fer ent number has to come now. 

Nonetheless, to the extent that the  owner of the casino lets the roulette 
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wheel operate as a (near perfect) generator of random outcomes, the law of 

large numbers  will defy any superstitious beliefs and apply relentlessly: in 

the long run, the number 13  will make up 1/37 of all numbers (0–36).

It is the simplicity of the example that makes Monte Carlo look trivial. 

Think of another example: a friend gives you a map of Norway— a coun-

try with a famously fractal- like coastline14— and asks how large is the area 

of Norway. In mathematical theory, integration provides the answer; in 

practice, however, integration can be carried out only for a narrow (and 

relatively  simple) class of functional descriptions. Monte Carlo can help 

out— just hang the map on the wall, paint a big square around it, and throw 

darts at the wall. The number of darts that hit the map relative to the num-

ber of darts that hit the square approximates the area of the board rela-

tive to the square on the wall, which is easy to  measure— just count. Of 

course, this finding hinges on two conditions,15 namely, that many darts 

are thrown and that they are distributed randomly across the entire square. 

For  humans, it is hard to fulfill  these conditions. But they are almost tailor- 

made for a computer. One can readily simulate the random procedure 

and iterate it millions of times— and thereby approximate the integral.16 

Although Monte Carlo is almost tailor- made for the computer insofar as it 

transforms a prob lem of integration (an operation of calculus) into a prob-

lem of iteration, it is not immune to the curse of complexity. The simulated 

value— that is, the fraction of hits among all  trials, converges only slowly 

 toward the (unknown) integral. Even  after a large number of iterations, the 

simulated value might not be very accurate, so, despite the high speed of 

modern computers, Monte Carlo is, in many instances, in effec tive.

This is where the second component of MCMC comes into play. Markov 

chains are pro cesses that move in a space according to rules of a certain 

type. For  every state or location17 in this space,  there is a list of what the 

pos si ble locations are that the  process can reach with the next step, plus 

a probability distribution according to which the next- step location from 

this list  will be chosen. In other words, the next step of the  process depends 

only on its pre sent location (and the random choice to be made in this step) 

and not on the history of the  process. One can imagine that at each loca-

tion, the rule for where to possibly move is written on a signpost— such as 

“with probability x go one step north, with probability 1- x jump hundred 

steps south”— also called the transition probability for each location. The 

rules might be complicated, but they never refer to where you come from 
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(never state something like “If you are  here for the third time, do . . .”). In 

other words, moving according to  these rules does not require memory: just 

execute the rules written on the signpost where you stand. Markov chains 

are often called random pro cesses without memory.

The basic theorem about Markov chains states that such a chain  will 

converge to its stationary (equilibrium) distribution no  matter where it 

started.18 In other words, in the long run, the  process  will visit each location 

in a certain fraction of all steps. Some locations are visited more often and 

 others only rarely— reflecting the equilibrium distribution. The astonish-

ing and crucial observation is that this convergence happens very quickly. 

MCMC is based on this observation. The pieces come together for numeri-

cal integration in the following way: first,  there is an unknown integral one 

can describe but not evaluate, such as the posteriori probabilities in Bayes’s 

rule. Assume one can refashion this integral as the stationary distribution 

of a Markov chain. Then the  recipe is straightforward: simulate the Markov 

chain for many steps (easy iteration for computers)  until it is in equilib-

rium, and rec ord its value. Reiterate this many times (Monte Carlo). The 

average overall values obtained then approximate the (unknown) integral. 

The trick depends on two conditions: first, one must find a way to inter-

pret an unknown integral as an (unknown) equilibrium distribution of a 

Markov chain. Second, the Markov chain must have reached its stationary 

distribution before one samples its value. The first condition sounds more 

difficult than it actually is, whereas the second condition sounds easy but is 

not. We  shall discuss both conditions in turn.

Application: The MCMC Trick

The MCMC method was in ven ted early on in the pioneering times follow-

ing the creation of the digital computer. It goes back to the work of Nicholas 

Metropolis, Stanislaw Ulam, and  others at Los Alamos and received a clas-

sical generalization by Hastings (1970). However, it took another twenty 

years before MCMC started to take off when examples became available 

that showed how power ful and flexible the method is—in par tic u lar, how 

doable it is to refashion complicated integrals as stationary distributions of 

Markov chains. One famous instance is the Ising model that describes how 

spins (up or down) on a grid interact with their neighbors. The model is 

famous not only  because the  simple interaction can lead to phase transitions 

and other surprising be hav ior but also  because the prob lem of determining 
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its equilibrium proved to be utterly unsolvable by analytical means and 

had become a mathematical monument of intractability. It turned out that 

MCMC could approximate this distribution with a surprisingly moderate 

effort in modeling as well as computation.19

The Ising model is not a singular case. Mathematicians and statisticians 

quickly realized that the wide applicability of MCMC to long- standing 

prob lems of integration changed the game regarding computational trac-

tability. Restrictions to the mathematically  convenient could be lowered 

substantially, and “from now on, we can compare our data with the model 

that we actually want to use . . .  This is surely a revolution” (Clifford 1993, 

53). Many actors agree with seeing this as a revolution. Diaconis (2009), 

for instance, provides an insightful treatise on “The Markov Chain Monte 

Carlo Revolution.”20 Part of his treatise is worries about the speed of con-

vergence (our second condition) that we  shall discuss next. Put plainly, 

the revolution consisted in how far the limits of mathematically— and 

statistically— tractable models have been extended.

On the side of the practitioner, the main benefit is flexibility in mod-

eling. Bayes’s rule became practical for a wide array of models. Although 

it required the evaluation of posteriors, thanks to MCMC, they lost their 

horror. A wide array of Bayesian applications followed the availability of 

MCMC; computational approaches in fields such as statistical physics, 

molecular simulation, bioinformatics, or dynamic system analy sis started 

to flourish. Statistician Jeff Gill (2008) called the combination of Bayesian-

ism and MCMC “arguably the most power ful mechanism ever created for 

pro cessing data and knowledge” (332).21

One prominent example from the growing set of MCMC variants is the 

“Gibbs sampler” for treating inferences involving images with many pix-

els.22 It was in ven ted by the Geman  brothers as a variant of Monte Carlo 

and gained enormous traction when Gelfand turned it into an MCMC 

method.23

The trick was to look at  simple distributions one at a time but never look at the 

 whole. The value of each one depended only on the preceding value [The Markov 

“no memory” property, jl]. Break the prob lem into tiny pieces that are easy to 

solve and then do millions of iterations. So, you replace one high- dimensional 

draw with lots of low- dimensional draws that are easy. The technology was 

already in place. That’s how you break the curse of high- dimensionality. (Gel-

fand, quote from interview, McGrayne [2011, 221])
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Thus, the Gibbs sampler construes a Markov  process moving through 

 simple distributions. Thanks to his inventive imagination, Gelfand saw 

how an intractable object (a high- dimensional distribution) arises from 

much simpler objects (a  process moving through  simple distributions). 

Much like the equilibrium distribution of the Ising model is built from a 

 process that moves through  simple distributions ( simple flips of one spin), 

the MCMC trick replaces a computationally intractable object with very 

many iterations of simpler, tractable objects.24

Exploration and Flexibility

MCMC has an iterative nature. It also has an exploratory nature. When pro-

ponents such as Smith and Roberts (1993) state that MCMC methods are 

for “exploring and summarizing posterior distributions in Bayesian statis-

tics” (3), the point about exploration is impor tant. Exploration plays a role 

on two dif fer ent levels. First, modeling approaches explore quite generally, 

and this applies to Bayesian statistics in par tic u lar: you always explore what 

the data are telling you relative to a model that you confront with  those 

data.25 Exploration of this sort is at the heart of modeling— given the lack 

of complete knowledge, one explores with the help of models. However, 

exploration also happens on a second level, exploring the mathematical 

model itself. And this is where MCMC becomes relevant.

MCMC methods simulate relevant properties of mathematical objects 

(such as integrals or distributions) in numerous iterated  trials in order to 

gain a picture or approximation of  these properties. One can compare 

MCMC with sounding out unknown territory by taking simulated random 

walks. This modeling approach thus explores the be hav ior of a (complex) 

mathematical object such as a posterior distribution with the help of the 

MCMC machinery. In a way, MCMC explores mathematical properties with 

the help of probabilistic and iterative means. One can see a frequentist ele-

ment sneaking in  here.

However, we want to make an additional point: the speed of MCMC is 

also an invitation to engage in an exploratory mode of modeling in the 

following sense. Modelers can work with incompletely specified models 

that contain  parameters that are adjusted only in a feedback loop in which 

model be hav ior is observed and modified. Researchers do not need to deter-

mine  parameters from the beginning; rather, they can adapt them during 

the  process to obtain a better match.26 For Bayesian modeling, MCMC made 
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exploration on this level feasible. With the help of adjustable  parameters, 

a model can be specified in flexible ways. The MCMC trick brings this flex-

ibility to Bayesian modeling.

A short remark on the timeline. Typically, computational modeling of 

this explorative sort  will be done when computational capacity is easy and 

cheap to access— including software packages (see section 7.5 of this chap-

ter). On expensive mainframe machines, researchers tend to run only their 

best models with their best guesses. This accessibility condition started to 

be fulfilled in many labs and offices from the early 1990s onward, and this 

coincides with the timeline displayed in figure 7.1.

However, the exploratory– iterative mode affects the Bayesian rationale. 

The core of Bayesian epistemology, indeed the defining feature for many 

 philosophers, is the subjective stance. The modeling  process starts out with 

one’s degrees of belief. We have seen, however, that this characteristic of 

Bayesian epistemology is fading away over the course of the development 

of MCMC approaches. Priors now appear as part of the adaptation machin-

ery.27 Importantly,  these  parameters lose their interpretation as prior 

knowledge. To the extent that they are treated as adjustable  parameters, 

the resulting values no longer express (degrees of) prior belief but rather cor-

respond to an overall fit of model and data resulting from the exploratory– 

iterative  process of modeling. In a nutshell, the priors cease to be prior.

We have presented the argument over how using MCMC as a tool under-

mines the perceived rationality of Bayesianism. We conclude this section 

by backing up this argument with a second line of thought that supports 

the claim about the exploratory– iterative nature of MCMC. Now is the time 

to recall the  earlier promise and address the second condition for MCMC: 

the one that looks innocent but is not, namely, that the Markov chain has 

reached equilibrium. The results MCMC provides take for granted that the 

Markov chain has reached stationarity before sampling. If the chain runs one 

million steps, is that enough? Or, if it is not quite in equilibrium, how does 

that play out in terms of error bars? Answering  these questions is arguably 

the most impor tant and intricate prob lem in the validation of MCMC results.

First of all,  there are vari ous approaches that try to implement a com-

putational forward strategy: simulate the chain and observe  whether it has 

reached stationarity. This sort of observation remains shaky  because  there 

might be relevant areas that the chain has not yet visited, or not visited with 

significant frequency. Maybe waiting twice as long  will change the observed 
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distribution significantly. As we mentioned previously, the effectiveness of 

MCMC relies essentially on how quickly Markov chains converge to their 

stationary distribution, sometimes called fast mixing. The speed of mixing 

is relative to the complexity of the space the random walk has to explore. 

The impor tant question is: Exactly how quickly does the chain actually 

converge?

Answering this question is crucial for any assessment of MCMC results. 

Fast mixing and the rate of convergence have been identified as an impor tant 

research topic being tackled by some of the most prominent researchers in 

stochastics and statistics.28 Despite a growing number of results and insights, 

 there is still a large lacuna regarding the be hav ior of chains that move in 

large continuous spaces, as is typical with Bayesian posteriors. In fact, this 

is the downside of MCMC- enhanced modeling flexibility: the menagerie 

of MCMC- enhanced models is growing, whereas knowledge about con-

vergence speed is still lacking.  There may be a chance for a mathemati-

cal theory to eventually provide such a footing; yet up to now, no strong 

results exist. Diaconis (2009, 195) reasons that the market may be popu-

lated by many applied MCMC algorithms that perform well, and that their 

careful analy sis might pre sent useful hints that would direct mathematical 

research  toward why  these algorithms behave so well—or  toward why they 

do not. Diaconis has no illusions about how  limited the range of mathemat-

ical accounts of the validation prob lem is. He is alarmed by the tendency to 

build excessively complex models for which, thanks to MCMC, the Bayesian 

machinery still works, whereas considerations (about MCMC) that could 

help regarding validation are largely missing.

This exemplifies a prob lem whose significance goes beyond the case of 

statistics and Bayesianism: namely, a technology- based mode of mathemat-

ical modeling pushes the limits of modeling so that questions of validation 

can be addressed only by quasiempirical means— that is, by observing the 

 performance of the models. This state of affairs is endemic in computa-

tional modeling. Many researchers resort to a kind of quasiempirical for-

ward strategy— that is, they explore via simulations how the model  will 

behave  under varying initial conditions. Carlin and Louis (2000), for an 

instance from Bayesian statistics, argue:

The most basic tool for investigating model uncertainty is the sensitivity analy sis. 

That is, we simply make reasonable modifications to the assumption in question, 
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recompute the posterior quantities of interest, and see  whether they have changed 

in a way that has practical impact on interpretations or decisions. (194)

This validation strategy— explore and observe variation in model be hav-

ior— can be found in many areas of computational modeling. It is charac-

teristic of a field in which predictions are created in the iterative– exploratory 

mode.  There is nothing wrong with  these strategies; they just express that 

modeling happens  under a condition of partial epistemic opacity in which 

model be hav ior is not controlled by clear- cut assumptions but rather by an 

assemblage of epistemic and instrumental components whose resulting 

be hav ior is adjusted.

7.4 Software

Software plays an impor tant role in the upswing of Bayesian methods. A 

revolution from the perspective of professional mathematicians and statis-

ticians might not necessarily have  great impact on the methods prac ti tion ers 

use. As with any other instrument, the (perceived) quality of the instrument 

has to attract and hold the interest of an array of potential users and, further-

more, must be usable given their level of expertise. Software packages have 

been— and still are— key for distributing the iterative– exploratory approach 

inherent in MCMC that forms the computational backbone of Bayesian 

modeling.

Such software is not a neutral framework  because the options it offers and 

the algorithms it implements tend to steer in  whatever directions statistical 

practices move (cf. Mira, 2005). Bayesian software has had two major effects: 

one the flip side of the other. Due to its usability, together with the easy 

accessibility of networked computers, it has triggered a stunning distribution 

of Bayesian modeling far beyond the ranks of  those who had a Bayesian incli-

nation before the 1990s turn. At the same time, many of  these novices in sta-

tistical modeling are attracted by the software’s capacity to deal with more 

complex models rather than by the standard rationale of Bayesianism.

When the  great potential of MCMC began to become manifest, MCMC 

pioneers such as A. F. M. Smith (1988) realized that a software package was 

the missing ingredient that could turn Bayesian modeling into a widely 

used approach. This was exactly what David Spiegelhalter and his cowork-

ers at the MRC Biostatistics Unit in Cambridge (United Kingdom)  were 
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developing. In 1991, they rolled out the BUGS program (short for Bayesian 

Statistics Using Gibbs Sampling). Freely available, it pop u lar ized Bayesian 

modeling tremendously. BUGS acted as a platform for Bayesian modeling 

by generating code for MCMC- based analyses of models that users could 

specify (see Gilks et al. 1994; Thomas et al. 1992). It featured uncertainty 

propagation in graphical structures; but the main point, of course, is that 

modelers could use the software to compute a posteriori distributions of 

their models without having to master the mathe matics of MCMC.

Not much  later in 1996, now  under Nicky Best who had changed from 

Cambridge to Imperial College, London, the descendant WinBUGS was pub-

lished— a version  running  under Win dows, reflecting the growing demand 

from the side of users who had no connection to special computing facili-

ties but worked on (relatively small) desktop computers.29 WinBUGS acted 

as an efficient pop u lar izer, enlarging the variety (and complexity) of pos-

si ble models as much as the variety of users. Textbooks such as Ntzoufras 

(2009) guided readers into using WinBUGS, with the selling point being 

that this  free software “could fit complicated models in a relatively easy 

manner, using standard MCMC methods” (xvii). The entire book is devoted 

to WinBUGS, but time runs quickly in software development. By the end of 

the 2000s, the BUGS program had been turned into the open- source code 

OpenBUGS that is very similar to WinBUGS but also runs on Linux, Apple, 

and other Unix- related operating systems.30 Importantly for computational 

modelers, OpenBUGS can be run from R and from SAS— that is, from the 

most common platforms of statistical analy sis— thus creating a software 

environment for statistical modelers.

 There is a plethora of packages that come into play on dif fer ent levels. 

Some scientists use MCMC methodology by interfacing their data with a 

(more or less) complete tool for analy sis like the BUGS  family offers.31 The 

BUGS  family is not the only type of software package.  Others invest work in 

developing their own customized MCMC simulations using software pack-

ages such as Mathematica or MathLab more as a generic tool kit. One impor-

tant feature of “complete tool” software such as BUGS is the way one can 

make use of it. It not only provides a graphical interface but also comes with 

a book of examples. Hence, users do not have to learn how it works— that 

is, how to specify their model case. Instead, they can build directly on par-

tic u lar examples. As Carlin puts it: “You  don’t read the manual; instead, 
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you find the example that most nearly matches your situation, copy it, and 

modify it” (Kass et al. 1998, 94; cf. also Carlin [2004]).

Now, however, the flip side comes into play. MCMC has unresolved 

issues with convergence as we have seen  earlier. Standard software has 

no guardrails that would prevent users from ignoring this issue. Jeff Gill 

(2008), for instance, recapitulates the enormous success of software pack-

ages in solving the needs of modelers but also warns:

Unfortunately,  these solutions can be complex and the theoretical issues are 

often demanding. Coupling this with easy- to- use software, such as WinBUGS and 

MCMCpack, means that  there are users who are unaware of the dangers inherent 

in MCMC work. (xx)

The OpenBUGS website issues a “Health Warning”: the programs are 

reasonably easy to use and come with a wide range of examples.  There is, 

however, a need for caution. Knowledge of Bayesian statistics is assumed, 

including recognition of the potential importance of prior distributions; 

and MCMC is inherently less robust than analytic statistical methods. The 

fact that  there is a (largely) unknown level of uncertainty should sound an 

alarm. However,  there is no built-in protection against ignoring this fact.

Not surprisingly, the convergence prob lem is a  matter addressed in some 

of the available packages. Interestingly,  because a mathematical solution of 

the validation prob lem is out of reach, the software resorts to heuristic strat-

egies to explore model be hav ior. The software AWTY (Nylander et al., 2008) 

provides a case in point. The acronym expands into “are we  there yet?”— 

that is, has the chain reached equilibrium? The program is made for graphical 

exploration of convergence in the special case of Bayesian phyloge ne tics.

One can ask to what extent the lack of built-in guardrails poses an  actual 

prob lem in statistical practice. This is hard to judge. It is not at all unlikely 

that practical methods are valid, although they cannot be fully justified 

mathematically. In lieu of a reasoned judgment, I can only offer an impres-

sion: it looks as if the standards of what counts as sound methodology are 

beginning to change. They are moving away from a mathematical para-

digm tied to proof to a computational paradigm in which skillful modifica-

tion is the key.

The wide uptake of Bayesian methods reflects the social  organization of the 

field. The number of users was able to grow dramatically  because— thanks 

to the software— these users do not need to be experts in  either statistics or 

the mathe matics of MCMC. Bayesian methods have become a pragmatic 
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and flexible tool in statistical practice. At the same time, this flexibility 

leads to an erosion of the original rationale:  whether frequentist subparts 

are utilized or  whether priors express a meaningful subjective stance is not 

per se impor tant if the machinery works.

7.5 Prediction and Pragmatism

Bayesian approaches are a success story in statistics that began in the 1990s. 

We have argued that this story pivots on the co- development of computa-

tional methods and a class of models that, when working together, made 

predictions pos si ble. From a methodological perspective, MCMC was the 

key  factor; from a social perspective, the widely available software that runs 

on networked computers was a key contribution to success in practice. In 

a nutshell, Bayesian statistics evolved into an exemplar of the exploratory– 

iterative culture of prediction. Importantly, this evolution affected Bayes-

ian rationality in an impor tant way. Namely, the interpretation of priors 

changed from an expression of beliefs held prior to new evidence into an 

adjustable  parameter that can be manipulated flexibly by computational 

machinery—an auxiliary for exploratory iteration. This change transforms 

Bayes’s rule from a princi ple motivated and justified by rationality into a 

tool efficient in making predictions. Thus, in the case of Bayesian statistics, 

we see a coevolution of computing technology, the exploratory– iterative 

mode of prediction, and the conception of rationality.

This has the potential to fundamentally affect the philosophy of statis-

tics. The principled interpretation of Bayes’s rule has been the major bone of 

contention. Statisticians are aware of this transformation, not least  because 

ele ments that formerly counted as incompatible now come together in pre-

dictive practices. How the new situation should be captured conceptually is 

not yet clear. Some scholars want to restrict the title “Bayesian” to approaches 

that stick to the Bayesian princi ple. They are critical of the newer prediction- 

oriented approaches.  Others, who still perceive themselves as Bayesians, side 

with prediction- making.32 Next is a sample of responses from statisticians.

According to Bradley Efron,33 classical frequentist and Bayesian approaches 

work together and mutually complement each other in computer modeling. 

Especially when analyzing large amounts of (“big”) data— according to Efron 

(2005)—it is often hopeless to construe priors in a subjective way. Sander 

Greenland (2010) argues that Efron’s stance on the mutually complementing 
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virtues is not correct and that it would be better to use the term “ecumenism” 

to describe how statistical methods come together.34 He traces this back to 

G. E. P. Box’s (1983) plea for ecumenism. Despite its prominent advocates— 

according to Greenland— ecumenism has not yet had a large impact on the 

teaching or practice of statistics.35 Robert Kass is another prominent statisti-

cian who reflects on the ongoing changes in a conceptual way. He advo-

cates what he calls “statistical pragmatism,” a position that sees modeling 

as the core activity (Kass 2011). He makes a careful attempt to sketch the 

common ground between Bayesian and frequentist positions regarding how 

statistical models are connected with data. Thus, the dynamics of compu-

tational modeling seem to be a uniting feature of formerly separated camps 

of philosophy of statistics: “The loyalists of the 1960s and 1970s failed to 

realize that Bayes would ultimately be accepted, not  because of its superior 

logic, but  because probability models are so marvelously  adept at mimick-

ing the variation in real- world data” (Kass, cited according to McGrayne 

[2011, 234]).36 Steven Goodman (2011) disagrees  because Kass’s pragmatism 

looks like a mere truce rather than a new foundation. Also commenting on 

Kass, Hal Stern (2011) worries “more broadly that pragmatism might appear 

to reinforce the notion of statistics as a set of techniques that we ‘pull off 

the shelf’ when confronted with a data set of a par tic u lar type” (17). Fi nally, 

Andrew Gelman (2011, 10) observes that this pragmatism, though thriving 

on the flexibility of methods to obtain calibration between model and data, 

is still objective. In sum, notions such as complement, truce, ecumenism, 

or pragmatism show that statisticians grapple with reflecting on what hap-

pens in practice and  whether this makes a discussion about the foundations 

dispensable or, on the contrary, downright demands it. Although  there is 

no settlement in sight, one message is apparent: the exploratory– iterative 

culture of prediction is bringing forth a new discussion about the founda-

tions of statistics.
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Thermodynamics features prominently in both science and engineering. 

First, it is a paradigmatic example of a fundamental and broadly applicable 

scientific theory. Its main laws— the first is about conservation of energy 

and the second about the increase of entropy— instantiate gems of a ratio-

nal viewpoint (in the sense of the rational culture of prediction introduced 

in chapter 2). Second, thermodynamic pro cesses are at the core of many 

engineering feats. The steam engine1 is linked particularly to thermody-

namics  because it triggered its evolution. It is precisely for this reason that 

it is so prominent in the history of science and engineering— the steam 

engine predated the theory, hence defying claims that engineering knowl-

edge would rest on, or derive from, scientific knowledge.

This chapter examines engineering thermodynamics, a field that has 

received surprisingly  little attention from history and philosophy of sci-

ence. Thermodynamic engineering is concerned with designing (chemical) 

pro cesses, and it is fundamentally about prediction. Engineers ask ques-

tions such as: What  will be the pressure in a tank of a given volume if one 

loads it with a given amount of a given mixture at a certain temperature? To 

answer such questions, engineers use equations of state (EoS) that express 

the relationship between pressure, temperature, and further variables. More 

generally, they are used wherever engineers need to characterize properties 

of materials, and they are standard mathematical tools for prediction.

The most basic EoS is the ideal gas law, formulated by the engineer and 

physicist Benoît Clapeyron (1799–1864) in 1834. It holds for all substances, 

but only if the molecules do not interact— that is, for the “ideal gas.” This 

law is part of the rational culture of prediction (see chapter 2)—it claims uni-

versal validity but ties prognostic value to idealizing assumptions. At the 
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same time, this law is also part of the empirical culture of prediction  because 

Clapeyron synthesized mainly empirical results.2

In other words,  today’s thermodynamics engineers construct EoS in a 

way that merges both cultures. They combine mathematical formulation 

and predictive capacity with adaptation to empirical results. But a given 

EoS can be used only if this equation captures the complexity of the target 

in an adequate way and if it is tractable. Hence, developing EoS is a diffi-

cult and  limited theoretical endeavor. The iterative capabilities of compu-

tational modeling changed the game, we argue. More precisely, engineers 

and scientists develop and use predictive EoS through utilizing adjustable 

 parameters in exploratory modeling.3 This sort of exploration became fea-

sible with the computational infrastructure of easily accessible computers—

it characterizes the exploratory– iterative culture of prediction. In fact, we 

argue, making predictions is based on a merger of all four cultures discussed 

in this book— the rational and the empirical as well as the computer- based 

iterative– numerical cultures of prediction. Moreover, we claim that the 

recent exploratory– iterative culture is a crucial ingredient  because it fea-

tures adjustable  parameters.4

In section 8.1, we  shall describe EoS and how they produce predictions. 

The wide variety of EoS form a structure resembling a tree with the ideal 

gas law as its root. This law is the simplest EoS. From  there, branches with 

other EoS grow  toward complexity, mainly through pa ram e terization. In 

many relevant circumstances, the predictive quality of the EoS depends cru-

cially on the number and type of its  parameters and on the way in which 

they have been adjusted. However, “climbing up the tree”— that is, work-

ing with more complex EoS—is generally not feasible without simulation 

modeling. Hence, the second section starts with a systematic schema of 

simulation modeling and highlights the decisive role of a feedback loop 

through which modeling and experimentation are connected. This loop 

is the key methodological ingredient for exploratory modeling— adjusting 

 parameters thrives on it.

With the framework of thermodynamics (section 8.1) and simulation 

modeling (section 8.2) in place, section 8.3 pre sents the centerpiece of our 

analy sis: a closer look at dif fer ent types and functions of  parameters. Pa ram-

e terization is a key ele ment  because it effectively addresses three types of 

gaps. Typically, adjustable  parameters are used to work around gaps in math-

ematical tractability and gaps in which theoretical knowledge is missing at 
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the same time. And  because pa ram e terization is done over the course of sim-

ulation modeling, it also bridges the gaps in the software. Thus,  parameter 

adjustment is a crucial tool for producing a prediction that draws on— and 

convolutes— theoretical, empirical, and computational resources.

In section  8.4, we  shall wrap up our findings and argue that utilizing 

adjustable  parameters entails a mixed bag of implications. In par tic u lar, EoS 

wield predictive power at the cost of their explanatory capacity.5 Merging 

theoretical, empirical, and technological resources is often without alterna-

tive when aiming at predictions. This merging has become pos si ble  because 

technology and mathematization are intertwined in a way that we call the 

exploratory– iterative mode of prediction. In short, thermodynamic engi-

neering leverages an exploratory– iterative culture that draws on resources 

of dif fer ent cultures and merges them in a way that aims at prediction.

8.1 The Branching Tree of Equations of State

Our thermodynamic examples  will focus on EoS for fluids, while leaving 

solids aside.6 The best known EoS is that of the ideal gas:

p v   =   R T (1)

where p is the pressure, v   = V/n is the molar volume (volume per mole of 

substance), and T is the temperature  measured in kelvins. All  these quanti-

ties are  measurable in classical experiments. R is a universal constant (8.314 

J mol-1 K-1). It should be noted that R was established on the phenomeno-

logical level— that is, it started its  career as an adjustable  parameter but  later 

led to theoretical insights into molecular thermodynamics.

All substances fulfill equation (1) if the density ρ = 1/v is low enough (or 

the molar volume v is high enough). Equation (1) is a showcase of a univer-

sal law (cf., e.g., Woody [2013]), carry ing the idealized nature in its name; 

and this law is a special case for a much broader concept of EoS. Such an 

equation is a function describing how the quantities p, v, and T relate to 

each other for a given amount of a given substance. The general form of 

such an EoS is accordingly:

f( p, v, T ) = 0. (2)

In equation (2), a pair of  independent variables can be chosen (e.g., p and 

T), and the third (dependent) variable (then v) can be calculated. In the low- 

density limit, the function f is given by the  simple equation (1): p v − R T = 0. 
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At higher densities, however, the interactions between the molecules start 

playing a role, and hence, the functional relationship becomes much more 

complex and also specific to the substance. Hence, a tree of EoS grows from 

equation (1) and branches  toward more complex EoS that aim to extend the 

region of applicability of EoS beyond the low- density limit of the universal 

equation (1). When climbing up the tree of EoS, the first two branches are 

the van der Waals EoS:

p = RT
v − b

− a
v2

 
(3)

and the virial EoS

pv
RT

= 1 + B1
v
+ C 1

v2
.
 

(4)

The researchers who introduced  these equations, J.  D. van der Waals 

(1837–1923) and H. Kamerlingh Onnes (1853–1926),  were awarded Nobel 

prizes in physics in 1910 and 1913.  These equations, though both with 

strong theoretical roots in physics and mathe matics, contain adjustable 

 parameters— namely, a and b in equation (3) and B and C in equation (4). 

The nature of  these  parameters changed over the development of thermo-

dynamics. For example, the theory  behind equation (4) yields that B and 

C are functions of the temperature but not of the pressure. In the original 

version of equation (3), a and b  were numbers. However, in  later versions 

of equation (3), a is considered to be a function of temperature. Adjust-

ing functions is obviously more flexible than adjusting numbers.  These 

 parameters are needed to account for the individuality of dif fer ent fluids 

(e.g., oxygen or nitrogen). In other words, numbers that are found for the 

 parameters a and b in equation (3) differ depending on  whether one is 

studying oxygen or nitrogen.

A major asset of EoS lies in their ability to describe properties of fluids 

with  great precision. Often, pa ram e terizations of p can be tested against v 

and T data available from laboratory experiments. A good EoS  will match 

 these experimental data over a wide range of conditions. However, it fol-

lows from thermodynamic theory that EoS can do much more: they con-

tain information about many other in ter est ing quantities. If an EoS describes 

both gaseous and liquid states, it also describes boiling and condensation. 

For instance, equation (2) also determines the so- called vapor pressure curve 

describing how the boiling temperature depends on the pressure.  These 
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results can be compared to experimental data as well. Another instance would 

be the heat of vaporization that can also be obtained from equation (2).

An EoS can be modified in two ways: first, by structural modification, 

which would lead to a new EoS— that is, a new function f. In this way, 

equations (3) and (4) emerged from (2). Second, the pa ram e terization of 

one par tic u lar f can be changed— that is, by assigning values to  parameters 

of the function such as choosing a and b in equation (3) to describe a given 

substance.

The number of EoS in the lit er a ture is enormous. Just counting only the 

dif fer ent mathematical forms of equation (2) adds up to several thousand 

equations. Considering the specifications for par tic u lar substances or mix-

tures of substances would further increase that number dramatically. Not 

only has the number of EoS has soared but also the number of adjustable 

 parameters used in EoS. Whereas  there are also new EoS with only a few 

adjustable  parameters,  others have more than fifty (e.g., Span et al. 2000). 

Groundbreaking new ideas, which would lead to the creation of new class of 

EoS, are comparatively rare. The proliferation of EoS is created more by intro-

ducing new pa ram e terizations for a function f that is already in use, and it is 

driven by the demand to be able to use EoS for very specific predictions such 

as for a certain class of fluids in a certain range of conditions. Clearly, the use 

of computers has enabled such profusion. In precomputer times,  handling 

only very few  parameters was already demanding. The computer and its 

numerical and iterative capabilities changed the situation. Pa ram e terizing 

EoS— adjusting them to the circumstances of interest— has turned from a 

tediously time- consuming endeavor done by specialists into a commodity 

that is in easy reach for many users.7 In this way, adjusting  parameters is an 

efficient instrument with which to gain predictions from EoS.

In this book, we have distinguished between two computer- related cul-

tures of prediction: the iterative– numerical mainframe culture from the 

exploratory– iterative culture. The latter is more recent (starting around 

1990) and tied to easily available networked computers. This chapter largely 

ignores the former one  because adjusting  parameters has a strong exploratory 

ele ment. Bibliometric data from the Web of Science corroborate the time 

frame. The number of papers that work with EoS started to grow significantly 

around the 1990s (see figure 8.1). Additionally, the data document the grow-

ing ties between EoS and engineering. Whereas in 1985, physics publications 

dominated, and the share of publications classified as “engineering” lingered 
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around 25  percent, this share had risen to 75  percent by 2015.8 This suggests 

that the usefulness of EoS as tools for prediction in engineering set in around 

1990.

8.2 Simulation Modeling, Experiments, and Feedback

In the pre sent account, the term model9 is used in the sense of a math-

ematical model that aims to depict certain aspects of physical real ity such 

as an EoS that describes the vapor pressure curve for a given substance. This 

model is considered to be embedded in some kind of theory that provides 

a frame not only for the modeling but also for carry ing out experiments on 

physical real ity that deliver outcomes that can be compared with  those of 

the model. Simulation models are models that are evaluated by carry ing 

out (computer) simulations as opposed to models that can be evaluated by 

other means such as pencil and paper. Figure 8.2 gives an overview of the 

picture on which the following discussion is based.10

Modeling is an inevitably indirect procedure. Modelers might target a 

quantity xreal in the real world such as the vapor pressure curve.11 The cor-

responding entity in the model is xmod.  Because the model is too complex to 

be evaluated directly, it is implemented on a computer and simulations are 

carried out.  These simulations yield a quantity xsim that can be compared 

eventually to the results of experimental studies xexp. In general, neither xreal 

nor xmod can be known; only the corresponding properties xexp and xsim are 

known and can be compared.

Both are known through types of experiment: one from “below” that pro-

vides  measured values and the other from “above” that provides simulated 

2200

1650

1100

550

0
1985 1990 1995 2005 20152000
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Figure 8.1
The number of papers per year in the Web of Science databank with “equation of state” 

in their title or abstract, in five- year steps and linear interpolation. Courtesy: authors.
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values.12 The latter are often called computer experiments or numerical 

experiments. However, we prefer using the term “simulation experiment” 

(or briefly just simulation)  here. Such experiments are used to investigate the 

be hav ior of models. Importantly, it is only through simulation experiments 

that relevant properties of simulation models can be known.13 This has two 

immediate and impor tant consequences: first, simulation experiments are 

unavoidable in simulation modeling. Second, when researchers construct a 

model and want to find out how modifications of the current version per-

form, they  will have to conduct repeated simulation experiments.

The second variety (“from below” in figure  8.2) is the experiment in 

the classical sense. When comparing simulations to their target system, 

such classical experiments  will usually provide the data for the comparison. 

However, the situation becomes complicated in an in ter est ing way  because 

of the growing influence of simulation on  these experiments. Debate is 

just beginning on how computer use is changing the face of  measurement 

and experimentation (cf. Morrison [2009; 2015]; Tal [2013]). Nonetheless, 

this debate is already showing that the clear- cut separation between the 

two types of experiments as suggested in figure 8.2 is oversimplistic. This is 

underpinned by the fact that when developing new models, researchers use 

Model
Model implemention

Simulation

Comparison

Experiment

Model quantity xmod

Real world

Real quantity x real

Measured quantity xexp

Simulated quantity xsim

Modeling

Figure 8.2
A schema of simulation modeling including a feedback loop. Courtesy: authors.
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models of a finer granularity to amend data from classical experiments with 

data from simulation experiments.

The case of EoS illustrates this point. Modern EoS are developed rou-

tinely using both data obtained from classical experiments and data from 

molecular simulations. Such simulations are based on atomistic models and 

enable systematic parametric studies of how atomistic  parameters such as 

the size of the molecules influence macroscopic fluid properties: for exam-

ple, large molecules  will tend to have low boiling temperatures.

Figure 8.2 shows a feedback loop of model adaptation that starts by com-

paring xsim with xexp. This feedback loop easily appears to be marginal, to 

be merely a pragmatic  handle for fine- tuning and correcting imperfections 

of the simulation model. We argue that this is not the case. This feedback 

loop is essential for the model development. Simulation modeling thrives 

on iterated modifications via this feedback loop. The feedback loop shown 

in figure 8.2 is basically a classical control loop aiming to minimize the dif-

ferences between a variable ( here: xsim) and a set value ( here: xexp).14

Within the feedback loop, repeated comparisons of the results of the 

two types of experiment guide the modeling  process. The new versions of 

the model obtained in the loop are explored via simulation experiments 

and compared to results from classical experiments. Hence, this reveals a 

cooperation between both types of experiment that is the core of model 

development via the adjustment of  parameters.15

Pa ram e terization schemes are architectures that guide actions of this 

type.16 They can be considered as a sort of auxiliary construction that is used 

intentionally to deal with missing knowledge and the inaccuracies of exist-

ing knowledge. The simulation model is designed to contain  parameters 

that can be adjusted over the course of further development. Hence, pa ram-

e terization schemes supply flexibility to a model. Even a model whose 

structure represents the structure of the target only poorly can give fair 

repre sen ta tions of xexp  after a suitable adjustment of  parameters. However, 

this implies that conditions regarding technology (computational power), 

social  organization (access), and economy (costs) are fulfilled. Hence mod-

els, methodologies, and technologies coevolve.

8.3 Adjusting Model  Parameters: A Closer Look

In the remainder of this chapter, we  shall focus on the role of adjustable 

 parameters— such  parameters that cannot be eliminated from simulation 
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modeling. We discuss the reasons for using adjustable  parameters and also 

their (un)intended effects in more detail.

The Control Loop Machinery

Figure 8.3 pre sents a  simple scheme of a feedback control loop— a common 

ele ment in systems theory. The  process model aims to describe a certain 

set of quantities y that we  shall call output variables. The output depends 

on the input, which is described by another set of quantities u: the input 

variables. Both y and u belong to the quantities that occur in the model. 

We  shall call the latter model variables x. The set of the model variables x 

may contain quantities that are neither input nor output (i.e., internal vari-

ables). The question of which subset of x is considered as input and which 

as output may depend on the application. In the models considered  here, 

y and u describe properties of the target system. Ideally, y is a  measurable 

quantity and u can be set in experiments.

Alongside the input variables u, many models require the specification 

of model  parameters p, as shown in the case of EoS. By cleverly setting the 

model  parameters, the quality of the model can be improved in terms of its 

output y, and therefore especially in terms of predictions.

Adjusting the  parameters involves some kind of optimization procedure. 

The goal of optimization is to improve the fit between the model output 

y and some reference data, usually experimental data yexp (see figure 8.3). 

Its outcome is a  parameter set that becomes an inherent part of the model. 

This  parameter set, and hence the model itself,  will depend not only on the 

type of reference data chosen for the comparison but also on the way the 

comparison is carried out.

Model

Optimization
method

Set of all variables
x

Adjustable parameters
p

Input variables
u Output variables

y
Experimental data

yexp

Figure 8.3
 Parameter adjustment in model development as a control loop that uses some opti-

mization method. Courtesy: authors.
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We are not rigorously presupposing some elaborate formal algorithm 

for optimization. A  simple trial- and- error method is also eligible for the 

“method.” Nonetheless, we wish to point out that mathematical optimi-

zation methods extend far beyond what can be handled by  simple trial 

and error. Such methods may pre sent black boxes to modelers when, for 

instance, a numerical solver is applied. Nonetheless, such solvers can deal 

with a surprisingly large number of  parameters. What had been inadmis-

sibly tedious when having to be done by hand has now become feasible 

thanks to automated iteration by the computer.

Figure 8.3 highlights that adjusting model  parameters aims to produce 

predictions. Numerical optimization targets overall  performance for a given 

data set and  performance metrics. Therefore, practical values guide the 

adjustment more than epistemic ones. Furthermore, it shows that the appli-

cability of a model is determined not just by its form. It is also influenced 

strongly by the choice of the dataset on which its  parameters  were trained.

The van der Waals equation (3) can be used as an example to illustrate 

this point. The input variables may be chosen as the temperature T and the 

molar volume v; and one may be interested in the result for the pressure p at 

 these chosen conditions. The calculated result  will depend on the choices 

made for the  parameters a and b. Obviously, if some p, v, and T data points 

are available for a given substance, the  parameters a and b can be adjusted 

to  these data. Additionally, the results obtained for a and b  will depend not 

only on the choice of the dataset to which they are fitted but also on the 

way they are fitted.

To pa ram e terize EoS, dif fer ent types of data are used (e.g., alongside p, 

v, and T data, also data on vapor pressures, data on the critical point of 

the fluid, or caloric data). Calculating such properties requires numerical 

procedures; and, as a consequence, computers are needed. This becomes 

especially impor tant when pa ram e terization is set up as an optimization 

task that regularly involves a large number of evaluations of each property. 

Computers enable adjustments that had not been feasible before. This can 

lead researchers to introduce  parameters solely to achieve a better fit. In 

such cases, model  parameters assume a purely instrumental role. They do 

not represent anything  because they have no meaning beyond the optimi-

zation procedure. Consequently, they cannot be tested in de pen dently.

On the other hand, in the case of EoS,  there is an obvious need to 

adjust  parameters. With only a few exceptions, science is not yet capable 
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of predicting properties of real fluids from first princi ples. At pre sent, such 

predictions are  limited more or less to calculating ideal gas properties from 

Schrödinger’s equation. In all other cases, models describing such proper-

ties must be trained with some experimental data. The way to do this is via 

adjusting model  parameters. We would like to point out that the control 

loop does not just operate with an instrumental logic but combines theo-

retical and empirical reasoning. Equations of State such as equations (3) 

and (4) are far more than some arbitrary mathematical form that is fitted 

to data. They do not just contain equation (1) as limiting case. Moreover:

• The B  parameter of equation (4) can be related directly to intermolecular 

pair interactions and was for a long time the most impor tant source of 

quantitative data on them.

• The  simple equation (2) predicts the existence of phenomena such as 

critical points or the metastability of fluid phases and relates  these to 

other fluid properties in a consistent way.

 These examples highlight the power of thermodynamic theory and illus-

trate the benefits of combining theory and experiment: the power ful theory 

can be exploited only if an EoS is available that has been adjusted to some 

experimental data. Both parts together— that is, a combination of theoreti-

cal structure and pragmatic flexibility— are crucial for attaining predictions.

An illustrative case in point is how EoS can be used to describe mixtures 

of substances. One has to find expressions for the  parameters of the equation 

(such as a and b in equation [3]) that hold for the mixture.  These mixture 

 parameters are usually calculated from the corresponding pure component 

 parameters and the composition of the mixture  parameters via so- called 

mixing rules. With the exception of the mixing rules for the  parameters 

of equation (3), which can be determined rigorously from the princi ples 

of molecular thermodynamics, mixing rules for EoS are essentially empiri-

cal. They contain  parameters that usually have to be adjusted to mixture 

data (Wei and Sadus 2000). Nevertheless, they can be submitted to some 

tests that may be  either of a logical nature (i.e., if a pure component is split 

up formally into two identical subcomponents, the pure component result 

should also be obtained from the mixture model) or based on theoretical 

findings in thermodynamics such as  those from molecular thermodynamics 

mentioned previously. It is known that mixing rules that have failed in both 

logical tests and tests from molecular thermodynamics can nevertheless 
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prove to work well in practice when the  parameters are adjusted suitably. 

From a pragmatic standpoint, they may even perform better than theoreti-

cally sound mixing rules (for examples, see Mathias et al. [1991]).  These are 

cases in which the overall pa ram e terization, including all  parameter assign-

ments, gives a prediction that can be tested, whereas single  parameters can-

not be tested in de pen dently.

Proliferation of Model Variants

Model variants proliferate along the branches of the EoS tree.  There is an 

enormous number of functional forms of EoS, choices of the  parameters 

in  these forms, and, on top of this, choices of the numbers for the open 

 parameters for some given fluid. In fact, computers have opened the gates 

to this proliferation. The possibility of easily creating and checking variants 

of some model against empirical data is, at first sight, a positive development. 

On closer inspection, however, the picture changes: first, the plethora of vari-

ants of a given model  will rarely have epistemic value. Second, they  will 

create an obstacle for anybody wanting to use that model. Which variant 

to choose? By facilitating the creation of sprawling mutations of models, 

computers contribute to the fragmentation of research and even compro-

mise its  actual applicability.

The van der Waals equation (3) can be reconsidered as an example. Devel-

oped in 1873,  there are now more than four hundred equations of state 

(so- called cubic EoS) that can be considered to be variants of that single 

equation (Valderrama 2003). Although this grants, of course, enormous 

credit to the groundbreaking work of van der Waals, it is also a source of con-

cern in the community of researchers. The variants can hardly be classified 

on theoretical grounds. Instead, this is replaced by historical (When  were 

they developed?),  sociological (How well are they received?), or pragmatic 

(What practical benefits are offered?) arguments and classifications. Some 

very successful variants are widely used, and some older versions certainly 

have technical drawbacks, but  there is also a plethora of variants that are 

very similar. Many of  these have been used only by the group that origi-

nally proposed the equation. Thus, the exploratory– iterative approach to 

modeling that developed together with an infrastructure of highly avail-

able computers has social repercussions of an almost paradoxical character. 

The networked infrastructure encourages the fragmentation of modeling 

groups. This has been captured nicely by the computational chemist Daan 
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Frenkel (2013) in his paper on the “dark side” of simulations: “In the past, 

we had to think about the role of simulations  because they  were expensive, 

now we have to think  because they are (mostly) cheap” (footnote 1).

Need to Adjust Model  Parameters

What makes this pa ram e terization prob lem so endemic and, in a sense, 

unavoidable? In general, any mathematical model pre sents an idealized 

version of a real- world target system.  There is always a greater abundance 

in the target system than in some mathematical model equations. Hence, 

 there may be both known and unknown properties of the target system that 

should be, but have not been, included in the model. Leaving open some 

model  parameters and adjusting them to experimental data can be consid-

ered as a pragmatic remedy: the model meets the diversity of the target sys-

tem through strategic flexibility.

Even if all the properties of the target system that exert an influence 

 were to be known, it might still be prohibitive to account explic itly for 

their influence in the model.  There may simply be a lack of theories, or 

existing theories might be so complex that they would make the model 

intractable. Adjustable  parameters are of prime importance in this context. 

They make it pos si ble to use simplified but tractable models. Such mod-

els may be related only loosely to the target object and may be obvious 

oversimplifications. But leaving open some  parameters in such models and 

adjusting them in ingenious ways can make them work. This is part of the 

modeling activity in applied science and engineering. In the vast majority 

of cases in engineering and science, the choice is not between having some 

model without adjustable  parameters and having one that contains such 

unconfirmed ele ments. Rather, the choice is between having a model with 

adjustable  parameters and not having a (relevant) model at all.

Again, the van der Waals equation (3) can be used as an illustration. In 

equation (3), the  parameters a and b have a physical meaning. They are 

associated with attractive and repulsive interactions between particles. It 

is well known that  there are many dif fer ent types of attractive forces that 

are all lumped together in the  parameter a. It can, hence, be considered 

as an “effective”  parameter— that is, a  parameter that describes the influ-

ence of an entire class of physical phenomena (attractive forces) within 

a given model. In addition, the  parameter b can be considered as such an 

effective  parameter describing repulsion. Despite the crude simplifications 
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in the assumptions on the intermolecular interactions, the van der Waals 

equation and its mutants have been extremely successful in describing real 

fluids.  There are two main reasons for this: first, the structure of the equa-

tion (which comes from theory) is able to qualitatively reproduce many 

impor tant features of the be hav ior of fluids such as the coexistence of vapor 

and liquid at certain conditions or the ideal gas- limiting be hav ior. Second, 

the equation contains the adjustable  parameters that create flexibility and 

thus can alleviate shortcomings of the theory. Both  factors— adequacy and 

flexibility— act together.

 Parameters with and without  Independent Physical Meaning

In princi ple, any variable in a model can be used as an adjustable  parameter. 

However, two cases should be distinguished:  whether or not the  parameter 

has an  independent physical meaning.  Independent physical meaning is 

used  here in the sense that  there is a physical interpretation outside the 

context of the  parameter fitting.

The van der Waals equation again illustrates this case: assume its  parameters 

are fitted to the experimental p, v, and T data of some liquid. On closer inspec-

tion of equation (3), one finds that the liquid density at high pressures is deter-

mined by the b  parameter (since v   =   b for p → ∞). Hence, one can interpret the 

b  parameter physically as describing the liquid density at high pressures. We 

consider this to be an interpretation in the context of the  parameter fitting 

 here, and hence not as an  independent physical interpretation. However, as 

stated previously, by virtue of the derivation of the van der Waals equation, 

the b  parameter has a deeper meaning. It describes repulsive intermolecular 

interactions.  These obviously become very impor tant in liquids at high pres-

sures in which the distances between the particles in the fluid become very 

small. Repulsive interactions can, in princi ple, also be determined in de pen-

dently, namely, from quantum chemistry. Unfortunately, the derivation of 

the van der Waals equation is based on such crude simplifications that  there 

is no way to relate or predict the b  parameter from  independent sources of 

information such as quantum chemistry.

The above statement shows dif fer ent  things: whereas it is fair to say that 

b is related to repulsive interactions,  there is no way to establish such a corre-

lation quantitatively on a theoretical basis. An impor tant consequence of this 

is that the numbers for b obtained from the fitting procedure should not be 
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overinterpreted as carry ing useful quantitative information on the repulsive 

interactions. This cautious conclusion is supported by noting that the num-

bers obtained for the b  parameter of a given real fluid  will depend strongly 

on the choice of the dataset used for the fitting. Nevertheless, it is obviously 

a merit of the van der Waals equation that it delivers structural insight into 

the importance of certain interactions  under certain conditions—in the pre-

sent example, the repulsive interactions in liquids at high pressures.

In the general case,  parameters  either do or do not have an  independent 

physical meaning. First, consider the case in which the variable used as a 

 parameter has an  independent physical meaning. By using it as an adjust-

able  parameter, that physical meaning is initially abandoned. A number is 

assigned to that variable in the feedback loop based on pragmatic consider-

ations about the overall model  performance while disregarding the physical 

interpretation that the resulting number may have. However, one may try 

to recover the physical interpretation  after the pa ram e terization by com-

paring the result with some  independent information on the property—if 

such information is available. Even if the result of this comparison is not 

promising, this does not compromise the usefulness of the overall model for 

predictions. However, such an outcome  will shed a bad light on its explana-

tory power. On the other hand, it might turn out that the fit produces a 

 parameter value that is “physically reasonable”—in other words, that meets 

some expectations based on considerations that  were not included in the 

fit. This would be an indicator for the epistemic value of the model, even in 

the strong sense of predicting physical phenomena not only qualitatively 

but also quantitatively.

In the second case, the variable used as a  parameter has no  independent 

physical meaning. At first glance, that may seem to be trivial. One simply 

obtains some numbers from the fit, and  there is no need or possibility to 

interpret the results for  these numbers. All that can be done is to check the 

overall model  performance. In practice, the typical situation is more com-

plicated:  parameters of models chosen for entirely mathematical reasons 

(e.g., coefficients of Taylor series expansions) may turn out to have a strong 

 independent physical meaning. For example, equation (4) can be consid-

ered as a Taylor series expansion around the state of the ideal gas, and B and 

C are just the first two coefficients of that expansion. The theory of molecu-

lar thermodynamics shows that  these coefficients are related directly to the 
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energy of pair interactions in the gas. This means that  parameters can lose 

and sometimes also gain a physical interpretation. Adjustable  parameters 

help to articulate a theory  toward applications.

 Parameters in the Implementation

So far, we have discussed only model  parameters. We have neglected the 

fact that the (theoretical) models often cannot be studied directly. They first 

have to be implemented on computers.  Philosophers of science have pointed 

out that the path from a theoretical to an implemented simulation model 

involves a  whole chain of models (Winsberg 1999), and that the discrete 

model might be in partial conflict with the theoretical one (Lenhard 2007). 

As a consequence, the implementation, which is a part of the feedback 

loop of modeling,  will also influence the model pa ram e terization. Aside from 

implementation errors, the differences between dif fer ent implementations of 

one model are luckily often small enough to be ignored. Model  parameters 

determined in one study are used regularly and successfully in other studies, 

even though the model implementations differ. However,  there is no guar-

antee that this  will be the case. Recent examination of molecular dynamics 

models has shown that dif fer ent implementations of the same model  will 

usually not yield exactly the same results (Schappals et al. 2017).

The  parameters emerging in the model implementation are a greater 

concern. Prominent examples of such  parameters are  those used in the dis-

cretization of models or  those used to control the numerical solvers that are 

part of the optimization procedures. Ideally,  these  parameters are chosen 

from ranges in which their influence on the simulation result is negligible 

(e.g., the grids used for the discretization must be “fine enough,” sometimes 

even “not too fine”). But it may be very difficult to guarantee this.17

When such  parameters exert an influence on the simulation results, 

they can be adjusted actively in the modeling feedback loop to improve the 

simulation results. This is much more problematic than adjusting model 

 parameters  because it is implementation dependent.  After modelers have 

adjusted this kind of  parameter, their results depend on the context of the 

specific implementation. Consequently, dif fer ent modeling groups cannot 

discuss the model in de pen dently from its implementation. This situation 

may easily be misused by claiming misleadingly that the model is a success. 

However, such success cannot be attributed to the model alone but only 

to the model in conjunction with a deliberately tuned implementation. 
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Issues regarding the implementation are hard to communicate—or, at least, 

they have no place in current publication practices. On the other side, if 

 parameters of the implementation are used as adjustable  parameters, this 

threatens the testing of a model in a fundamental way. To the degree that 

model be hav ior depends on the concrete implementation, no other group 

of modelers can confirm or disconfirm simulation results— short of dupli-

cating the implementation. Alas, in any concrete case, it is hard to deter-

mine on what sort of adjustments the predictions rest. Did the modelers 

fiddle about with the implementation? This information is rarely available. 

Addressing this question seems to be a  matter of the modelers’ ethos. Many 

prac ti tion ers observe that such an ethos might be desirable, although they 

agree that it is far from established in extant research practices.18

8.4 Prediction and Integration

Exploratory modeling thrives on the versatility of models. Without such ver-

satility, the achievements of thermodynamic theory could not be brought to 

bear in concrete situations and for concrete properties. Our analy sis showed 

that adjustable  parameters are the tool to operationalize the flexibility of 

the models. This elevates adjustable  parameters to crucial components of the 

models.

In traditional philosophy of science,19 such  parameters count as insig-

nificant supplements or even also as an irritation to the theoretical core of a 

model. To the extent adjustable  parameters (co-)determine model be hav ior, 

they influence, and possibly blur, the part of theory. Thus, they fall  under the 

category of what  philosophers of science have called ad hoc modifications. 

The take of  philosopher Karl Popper was that ad hoc modifications are 

generally bad  because they shield hypotheses against falsifying evidence.20 

Analy sis of recent and historical examples has led  philosophers of science 

to a nuanced viewpoint that has partly revaluated ad hoc  measures. Vari ous 

studies have shown convincingly that ad hoc modifications form an impor-

tant part of scientific practice that does not undermine confirmation (see 

Bamford 1993; Friedrich et al. 2014; Worrall 2010).

Yet, the fact that adjustable  parameters contribute to predictive success 

does not imply that such  parameters  will always be legitimate. Some adapt-

ability is admissible; but how much of it is admissible without giving in 

to complete arbitrariness? According to Worrall, when accommodation is 
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“reasonably foreseen” in the theory, it is “good ad hoc” and does not jeop-

ardize confirmation, whereas modifications that merely react to observed 

shortcomings are “bad ad hoc.” Alan Chal mers (2013) follows Worrall but 

adds an empirical twist: for him, ad hoc modifications are admissible as 

long as they are “in de pen dently testable” (126).

In our case, however, a main finding is that the pa ram e terization cannot 

be separated from the model itself  because it bridges multiple gaps si mul-

ta neously. Consequently, reaction to observed shortcomings is exactly the 

point of pa ram e terization schemes, and  there is often no  independent 

testing pos si ble that would focus on single  parameters in a larger pa ram e-

terization. In other words, adjustable  parameters might be legitimate and 

might bring predictive success even if they are outside of what philosophy 

of science sees as admissible, “good” ad hoc modifications.

Two questions suggest themselves. The first is an epistemological one: 

Does this imply that confirmation of simulation results is doomed? Not 

quite. Validation of a model is  limited due to the holistic nature of pa ram e-

terization (Lenhard 2019); but within  these limits, validation can be strict. 

Even if tests cannot address  parameters in isolation, it is still pos si ble to 

test the entire pa ram e terized model along multiple dimensions. Testing a 

model along dimensions to which it has not been adjusted (such as at dif-

fer ent temperatures or pressures or on dif fer ent physical properties) is still a 

strong criterion, even if  parameters are not tested in de pen dently.

The second question asks: What are the reasons why the philosophical 

discourse (exceptions allowed) is so strikingly incongruent to scientific and 

engineering practice? Of course, one reason is simply that this discourse 

started before the exploratory– iterative mode of prediction  rose to promi-

nence. Another reason, so we speculate, is the low- rank status of prediction. 

In many philosophical approaches, prediction counts as a sort of technical 

achievement, whereas explanation is seen as the more virtuous epistemo-

logical goal. And we have seen that working with adjustable  parameters is 

oriented  toward prediction, partly to the detriment of explanation (sec-

tion 4.4). However, rising interest in engineering and applied science— and 

in their tools for prediction— will bring the issue of pa ram e terization to 

prominence.

Our final point is that we observe a strong integrative contribution of the 

exploratory– iterative culture. Our analy sis of adjustable  parameters high-

lights  these as central ele ments in simulation models. It would be misleading 
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to think this happens at the cost of theory. On the contrary, the theory 

of thermodynamics is a resource that modelers can tap into for a broad 

range of practical applications exactly  because adjustable  parameters bring 

versatility. Thus, using adjustable  parameters is a condition for attaining 

successful predictions. This finding resembles the cases of computational 

chemistry (chapter 4) and Bayesian statistics (chapter 7) examined  earlier 

in this book— and displays engineering thermodynamics as a member of 

the exploratory– iterative culture of prediction. By integrating ele ments of 

older cultures of prediction, the new exploratory– iterative culture of predic-

tion leads to new neighborhood relations between science and engineering. 

Mathematical modeling itself turns to an exploratory– iterative mode. In 

thermodynamics, as well as in computational chemistry and statistics, sci-

ence and engineering approaches share impor tant methodological features.
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9 Conclusion

Our investigation has been a journey into the philosophy and history of 

predictions— however, not just any predictions but  those made by engi-

neers and scientists on the basis of mathematical tools. It is widely con-

sidered that this is what makes predictions scientific: they do not rely on 

guesswork or epiphanic experience but are based on knowledge— that is, 

on theories or models that take a mathematical form.  Because predictions 

can be derived mathematically, it is tempting to think of them as direct 

functions, almost emanations, of scientific and engineering knowledge. 

Following this line of thought, the spread and success of predictions would 

simply mirror the spread and success of science. However, this book has 

taken a very dif fer ent point of view: we did not accept prediction by math-

ematical means as a functional unit. Our goal was rather to bring to the fore 

how diverse practices of prediction have been (and are) as well as to show 

how rich (and challenging) the history of prediction proves to be.

All chapters contribute to two main findings about diversity and struc-

ture: the first is that predictive practices are diverse and strug gle to assert 

themselves against competing predictive practices. How predictive goals are 

formulated, the conditions of what counts as a prediction, and the varying 

ways of  organizing the predictive endeavor— they all change. Notably,  these 

changes happen at the same time and mutually influence each other— that 

is, they combine to form a picture of coevolution. The evolutionary per-

spective on prediction revealed how rich the topic is. It is not the conclu-

siveness but the diversity of predictive practices (with mathematical means) 

that is enlightening.

The second main finding balances the first by adding structure. We clas-

sify the nexus between epistemology, mathematization, technology, and 

social  organization into four cultures of prediction.  These cultures do not 
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displace each other but rather coexist— a finding based on the longue durée 

perspective proposed in this book. The rational and the empirical cultures 

established themselves from early on in the history of modern science. 

The tension between the rational and the empirical modes accompanied 

prediction from the seventeenth  century onward, though in constantly 

renewed forms. The iterative– numerical and the exploratory– iterative cul-

tures are both linked to computer technology. The former has forerunners 

in precomputer calculating instruments, and it matured with mainframe 

machines, whereas the latter is tied to easy access and availability— that is, 

conditions pre sent from around 1990 onward.

The significance of  these cultures is evident from the breadth of answers 

given to the following two questions: What counts as a prediction? And when 

does it count as a predictive success? As the chapters have shown, answers 

to  these questions are highly culture dependent— and often counterintuitive 

to members of other cultures (including the authors and prob ably also most 

readers of this book). For more than a  century, predicting the trajectory of a 

projectile was considered a triumph of mathematized science, regardless of 

 whether the correctness of the prediction was, or indeed could be, in any 

way confirmed empirically. In the late nineteenth  century, engineers such 

as Bach, who wanted to bring empirical components to mathematization, 

argued that the predictions of an older, rational— and deeply mathematized— 

culture in engineering  were not successful. However, this clashed with estab-

lished opinion. The hybrid culture advocated by Thurston, Bach, and other 

engineers required new standards of success to become established with the 

help of engineering laboratories. When the Club of Rome asked for a global 

forecast based on new computer technology, Jay Forrester already had the 

model approach (system dynamics) and the technology at hand. However, 

this example of a new culture did not just thrive on the iterative capabilities 

of the digital electronic computer. The technology also shifted the standards 

regarding when a prediction counts as valid. With a slight oversimplification, 

iterative methodology trumps empirical precision in the context of complex 

systems. Overall, the findings on (co)evolution, variety, and structure pro-

voke three questions that the remainder of this chapter addresses. The first 

two questions look back; the third looks ahead.

(1) Why does that prediction feature so prominently in science and 

engineering— and prove to be so rich a topic for historical and philosoph-

ical studies— yet is examined so rarely? Our tentative answer identifies an 
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unfortunate confluence of philosophical methodology and the alleged 

status of mathe matics.

(2) What is the status of the classification into four cultures? Are  there 

in- between cases that combine features of several cultures? Yes,  there 

are. We have repeatedly observed and analyzed hybridizations between 

cultures of prediction. Furthermore, building such hybrids seems to be 

a key feature of engineering.

(3) What about history dragging on?  Will new cultures of prediction 

evolve? In all likelihood, yes. We argue that the current hype of deep 

learning is part of a new culture of pure prediction.

9.1 Prediction— Functional Unit versus Coevolution

When the first question asks why the existing lit er a ture reflects so rarely 

on the importance of prediction, it is tempting to give the blunt reply: 

 because prediction is of so  little historical or philosophical interest. This 

statement must be qualified in two ways: First, prediction is receiving 

increasing attention in connection with recent machine- learning methods. 

We address this issue in our reflection on the third question. Second, the 

generally weak coverage can be attributed to a widespread but misleading 

view that prediction is a functional unit. Nobody questions that predictive 

capability is impor tant, or even  whether it is at the heart of scientific and 

engineering activity. But it is seen as exactly that—an activity for engineers 

and scientists. They learn how to apply existing mathematical models and 

techniques that yield predictions and also how to develop new ones. That 

math instruments yield predictions counts as almost trivial, whereas how 

they do it is seen as a concern of the specialist, neither in ter est ing for nor 

accessible to the nonspecialist. From such a perspective, making predictions 

with mathematical means appears as a functional unit.

This unity is a myth that can continue to exist only as long as historical 

and philosophical investigations do not pay closer attention. Each of this 

book’s chapters provides a fundamentally dif fer ent picture. Prediction is 

growing out of a very dynamic interaction— not resulting from the execution 

of logic, data, and math but from the coevolution of epistemology, technol-

ogy, mathe matics, and their social  organization. Gaining an understanding 

of this kind of coevolution requires the combination, and sometimes inven-

tive mix, of disciplinary perspectives from philosophy, history, and science 

studies.
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A number of insightful works covering dif fer ent facets provide a cru-

cial orientation  here. Of course, the social turn is prominent since at least 

Thomas Kuhn’s seminal work. We are, like Kuhn, indebted to Ludwik Fleck’s 

studies of thought styles (Fleck 1979) that bring together (or encourage us 

to do so) philosophical, historical, and  sociological perspectives for describ-

ing configurations.1 More recent studies like  those of Andrew Pickering on 

The Mangle of Practice (1995) underline how impor tant it is to take into 

account several  factors together and to integrate historical and philosophi-

cal with social and practice- oriented  angles. However, a mangle exerts a lot 

of pressure to bring the mangled pieces into form. In our examinations of 

prediction, we found that such pressure does not play a leading role. Hence, 

we preferred the less precisely outlined, and therefore more open, terms 

of culture and mode. This framing should invite one to see prediction as 

the complex and multifaceted activity that it is— even and especially when it 

comes to mathematical tools.

 There is also illuminating work that shares the par tic u lar focus on math-

ematization and mathematical tools. To be sure, many accounts of math-

ematization address the tensions and upheavals that have arisen as a result 

of mathe matics’ new role in methodology, in epistemology, and, more gen-

erally, in the way we view the world. Peter Dear (2006), Donald MacKenzie 

(2001), Michael Otte (1993), Ian Hacking (1990), and Lorraine Daston (1988) 

provide exemplars from which we have learned a  great deal. Mark Wilson 

(2017) derides philosophies as “theory T thinking” when they assume math-

ematical relationships are logic- derived notions instead of the more varie-

gated and partially incoherent strategies they are in practice. Such approaches 

“erase the very detail they require to resolve the conceptual questions before 

them” (57). For this reason, we designed our study of prediction in a way that 

should escape a similar criticism and provide a history and an epistemology 

of the use of mathematical tools for prediction and, in this way, establish it as 

a profitable object of research.

Admittedly, such an analy sis initially produces plurality.  After all, it is 

also directed against a unity viewpoint. In strong agreement with this, 

Joseph Pitt (2011) argues that  doing philosophy of engineering and technol-

ogy means being oriented “against the perennial” (viii). Paul Feyerabend 

(1999) also uses pluralism as a lever against an idealizing philosophy, and 

Nancy Cartwright (2020) demands from science studies that they value 

pluralism, particularity, and practice— when science works, it works with a 
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“tangle.” However,  there is a path back from detail and concretion to gen-

eral significance. Analyses of rich practical cases allow something like an 

“ascension to the concrete”—to use Marx’s (1973) phrase targeting abstract 

philosophy— that is open to the unexpected, open to the strange turns in 

how prediction is achieved—or thought to be achieved—by mathematical 

means (101).

9.2 Hybrid Cultures

The second question targets the classification of cultures of prediction 

into four types— rational, empirical, iterative– numerical, and exploratory– 

iterative. Distinguishing rational from empirical sounds catchy and has 

proven helpful in many sorts of analyses. However, such distinctions resem-

ble ideal types (à la Max Weber) that aim at structuring an investigation 

rather than fully capturing an  actual configuration. In other words,  these 

four types help us to gain insight into the history of prediction in which, 

nonetheless, hardly any individual case can be classified as being pure. No 

case is entirely rational, and none is entirely empirical. But this is not a 

weakness of the typology. On the contrary, it indicates applicability. Think 

of Isaiah Berlin’s (1953) brilliant essay on persons being  either hedgehogs— 

knowing one big  thing very well—or foxes— that is, having some knowl-

edge about many  things. Although no person is completely a hedgehog or 

completely a fox, it is instructive to see them classified this way. In other 

words, the typology of cultures of prediction used in the previous chapters 

(rational, empirical, iterative– numerical, exploratory– iterative) should ini-

tially serve to identify relevant differences. At the same time, each chap-

ter developed a richer and more adequate picture and identified hybrids 

between cultures. We make no claim to be exhaustive.

Not even exploration is restricted to the exploratory– iterative culture 

(presented in chapters 4, 7, and 8). Some ele ments of exploration occurred 

 earlier, such as, for example, the robustness tests (Cole and Curnow 1973) 

of Forrester’s world model (chapter 5). Building computer models always 

requires some ele ment of exploration. A main reason for this is that model 

be hav ior— that is, the  actual result of many iterations on a par tic u lar 

machine, using a par tic u lar algorithm and software, and so forth— must be 

sounded out in iterated runs. Exploration has a long trace already pre sent 

in the mainframe culture. As computers became more available and more 
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interactive, the role of exploration grew. In the 1970s, only a  couple of pio-

neers  were imagining that computers could strongly support an exploratory 

approach. One of them was J. C. R. Licklider et al. (1967) who  imagined 

real- time feedback as direct interaction between researcher and computer:

The modeler observes through the screen of an oscilloscope selected aspects of 

the model’s be hav ior and adjusts the model’s  parameters . . .   until its be hav ior 

satisfies his criteria. To anyone who has had the  pleasure of close interaction with 

a good, fast, responsive analog simulation, a mathematical model consisting of 

mere pencil marks on paper is likely to seem a static, lifeless  thing. (282, cited 

according to Waldrop [2001, 98])

Licklider was clear that his vision would not work  because computers 

 were too costly at the time. This economic  factor changed only  after the 

advent of micropro cessors and their shrinking production costs.2

Furthermore, our investigations brought to the fore how hybrid cultures 

are of par tic u lar significance in engineering. Tartaglia pioneered a rational 

culture of prediction, and Galileo developed this culture further by giv-

ing mathematization a new significance. Robins, however, clearly pursued 

a very dif fer ent culture in which he wanted to combine empirical with 

rational aspects of mathematization (chapter 2). His approach was contro-

versial exactly  because it mixed both ideal types and thus located predic-

tion in a dif fer ent coordinate system. Chapter 3 on the mathematization 

of mechanical engineering deals with a similar situation. The German Anti- 

Math movement at the end of the nineteenth  century developed in stark 

opposition to the rational viewpoint of an  earlier generation of engineers. 

However, proponents such as Robert Thurston at Cornell or Carl Bach at 

Stuttgart advocated a new conception of mathematization that was not 

concerned with eliminating rational ele ments but with combining them 

with empirical ones in a new way, thus establishing a hybrid culture of 

prediction in engineering.3

As new cultures of prediction develop, this diagnosis is reinforced by 

the technology of the computer. The iterative– numerical culture associated 

with centrally managed mainframe computers was distinctly dif fer ent from 

the exploratory– iterative culture that emerged only with readily accessible 

computers. This expansion rested heavi ly (but not exclusively) on iteration. 

Certainly, iterative algorithms  were in use for many centuries before any-

thing such as a digital computer was in ven ted. However, the ability to iter-

ate so rapidly changed the conception of mathematization in fundamental 
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ways, and the computer as an instrument allows, and also calls for, a dif-

fer ent kind of social and cognitive  organization— the effects of which have 

only gradually become (and are still becoming) apparent. Although situ-

ated very differently, the inquiries into computational chemistry, Bayesian 

statistics, and thermodynamics engineering reached a joint accord, namely 

the mutual significance of exploration and pa ram e terization. They build a 

flexible link for use in practice and thus a boost for hybridization.

In fact,  there is a good reason why the outcomes delivered by prediction 

are not pure types but mixtures: they are produced by the coevolution of 

mathe matics, technology, and social  organization. And this happens in an 

open way that is not bound to pure types. What prediction means, what is 

accepted and when, what is considered a promising methodology, and how 

this methodology is  organized socially and cognitively— all this develops in 

mutual dependence. Coevolution proves to be seminal to our dynamic his-

tory of prediction in science and engineering. This consideration concludes 

our brief look back. We now turn our heads and look ahead. One could say 

that we bring to bear what we have learned about the history of prediction 

to understand the pre sent of prediction.

9.3 Looking Ahead: A New Culture of Pure Prediction?

The third and last of our questions inquires  whether a new culture of predic-

tion might evolve.4 Are we not witnessing the emergence of a new culture of 

prediction— a culture that involves machine learning and deep neural net-

works? A culture that is discussed widely in the media  under vari ous head-

ings ranging from AI to digitization? A culture that might aptly be called one 

of “pure prediction”? In the remainder of this chapter, we  shall reflect on the 

suggestion that the recent movement in AI and machine learning heralds a 

culture of pure prediction. We begin with a snippet of a story.

Automated driving is a recent example that draws much public— and 

commercial— attention and illustrates how prob lems of prediction coevolve 

with computational tools. When determining what the appropriate con-

trols over an automated car  will need to be in the next instance of time, a 

number of predictions have to be pro cessed such as  whether some object 

is  going to move across the street,  whether the brakes have to be activated 

 because  there is a stop sign, and so forth. The adequacy of predictions can 

be a  matter of life and death. On May 7, 2016, a Tesla car on autopi lot with 
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a  human driver not touching the steering wheel had a fatal accident on 

a Florida highway. Such cars have a number of sensors on board includ-

ing cameras and radar. An eighteen- wheel truck started crossing from the 

median, with a big white trailer that was difficult for the camera to discrimi-

nate against the bright sky. However, radar should have easily detected the 

object. The Tesla crashed into the trailer without any attempt at braking. 

The autopi lot system had made a wrong prediction. The trailer, according 

to Tesla’s explanation in the subsequent investigation, had been taken to 

be an overhead sign—no breaking required. This accident was the first fatal 

accident with an automated car. All kinds of questions arise regarding such 

issues as regulation, safety, responsibility, and trust that require us to reflect 

on the predictive system, its properties, and its uses.

We would like to point out that the car was controlled by a machine- 

learning computer model— that is, an artificial neural network (ANN) that 

classified the incoming data (from cameras, radar, and other sensors) and 

delivered the predictions needed to operate the car.  Because it was the first 

incident involving an automated car, the case attracted a  great deal of pub-

lic attention, and the obvious question was: If the ANN produced a tragi-

cally wrong prediction, why did it do so?

The answer is hard to give for vari ous reasons. One of them is that the 

predictive system is proprietary, and Tesla has a vested interest in not pro-

viding real insight.  Because this situation is typical for the use of software 

that is intended to produce a commercial profit, difficult questions of regu-

lation and accountability arise. Another reason that makes the question so 

difficult to answer is the mathematical and computational tool itself— that 

is, the ANN.

ANNs classify according to a learning algorithm that is easy for a com-

puter but impossible for a  human being to follow  because it works with a 

quite generic model of input– output be hav ior (stop sign in— brake acti-

vated out) that is extremely voluminous when it comes to mathematical 

operations with data. In par tic u lar, training  these ANNs with the help of a 

 great deal of data involves the adjustment of millions of  parameters in the 

model.5 Theoretically,  these systems are extremely flexible and can emulate 

almost any input– output be hav ior. Based on sufficiently rich data and  after 

adequate adjustment of the  parameters, the predictions should be fine. 

Importantly, the adjustment, called “learning,”6 happens automatically fol-

lowing an optimization algorithm.7
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In the model, the trailer was apparently similar to a road sign— but why 

exactly this was so escapes  human explanation—it is just what the ANN 

has learned in its machine way. Just imagine a photo portrait of ours. Most 

 people we know (including ourselves) can easily recognize it when displayed 

on a cell phone. However, the computer (of the cell phone) operates with 

an array of pixels, and each frame contains about a million of them. If we 

 were to receive the information about each pixel value in a very long series, 

we would have no idea what the image displays. However, this is what 

machine learning with ANNs achieves: the identification (of a large set) 

of correlations between (large) sets of pixels.  These correlations are what 

distinguishes our portrait from other pictures (from the perspective of the 

ANN). The question of why this image differs from  others—or better: why 

images of us differ from images of other persons or objects—is pointless. It is 

simply a dif fer ent set of correlations. In other words, the question as to how 

a model can adequately represent a target system has become obsolete.8

Being able to work with the statistics of correlations is a feature of deep 

learning or AI working with multilayered ANNs. This feature rests on the 

enormous iterative capabilities utilized in data input,  parameter adjust-

ments, and optimization. Hence, this sort of prediction belongs to a culture 

that can be called iterative. However,  there are a number of issues that lead 

us to won der if a new culture of “pure prediction” is developing.

Therefore, the output of such ANNs leaves  little room for reasoning about 

what exactly caused it. Of course, sometimes concise answers do exist such 

as when a relevant type of input has not been in the training data.  Because 

the network did not see this kind of data in the training phase, it is no 

won der when it does not react adequately. Normally, however,  there is not 

much more to say than that the data and the learning together produced 

the prediction (as was the case in the Tesla story). Every thing that makes a 

difference is contained in the subtle differences of adjustable  parameters. 

However,  there are millions of them, so their relationships are hard to over-

see. Compared to  human powers, ANNs are statistical monsters. They make 

predictions pos si ble even in the most intricate situations but do not allow 

any queries about reasons. In short, ANNs produce predictions but not 

much  else. So, maybe pure prediction looks like an adequate label.

Do ANNs belong to one of the computer- related cultures of prediction 

that we examined: The iterative– numerical or the exploratory– iterative 

one? First of all, ANNs belong  there  because they are certainly characterized 
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by iteration. However, they also have unique features that do not coin-

cide readily with  either of the two cultures. Adjustable  parameters have 

been a hallmark of the exploratory– iterative culture. Our case studies on 

computational chemistry (chapter 4), Bayesian statistics (chapter 7), and 

engineering thermodynamics (chapter 8) introduced adjustable  parameters 

as an impor tant supplement and extension to theoretical structure. This 

extension created the malleability necessary for prediction in practical situ-

ations. Hence, theoretical structure was combined with an empirical com-

ponent in a way feasible only in an exploratory and iterative manner. ANNs 

take adjustable  parameters to the extremes. Their successes seem to depend 

on the capability of adapting millions of  parameters in a systematic way. 

Moreover,  because the model structure is generic, the prediction seems to 

depend solely on  these  parameter values. This minimizes the theoretical 

component; or, more precisely, it shifts the theoretical component from a 

target domain (no mastery of chess or grammar necessary on the side of the 

modeler) to mastery of the computational instrument.

Another unique feature concerns the infrastructure. Data such as compre-

hensive image inventories from the internet are usually not stored locally.9 

Often, the  actual optimization is also outsourced, typically to a software 

suite such as TensorFlow that runs on a platform maintained by Google. 

Thus, the exploratory– iterative mode of prediction has been  adopted by 

a new centralized infrastructure. Although it is centralized as in the main-

frame regime, it is readily available (or  those parts of it are that some com-

pany thinks in its interest to make available). Moreover, the exploratory 

part is automated; it consists in adjusting the  parameters almost entirely 

in de pen dently from the modelers, thus contributing to opacity.

The difference in infrastructure is closely related to a difference in social 

 organization. One highly vis i ble feature is that  there is a host of competi-

tions set up to achieve a given predictive task to the best degree or with the 

lowest failure rate (as on the platform Kaggle). Such competitions attract 

attention from vari ous groups and have established an arena  independent 

of academia (notwithstanding the fact that typical participants have had 

contact with universities). When data and software are provided on the 

internet, participants can act in de pen dently from resources provided by a 

university or other academic institution.  These competitions function as a 

market from which big companies recruit scientists and programmers.
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Importantly, the methodology together with the infrastructure create a 

new situation when it comes to policy and regulation. The quality of pre-

dictions depends on the quality of the (training) data.  Because the quality 

of data is (still) ill defined, main actors take the quantity of data as a proxy. 

 Today, data such as  those that Tesla collects while developing its automated 

car count as a commercial  treasure (not to mention Facebook and other 

actors in the field). Whereas the collected data are proprietary, government 

interventions such as regulating when a car has to apply its brakes depend 

on access to  these data. And therefore, practice is heading for a conflict as 

far as regulatory  measures—or better, their justifiability—is concerned.

In an epistemological re spect, ANNs are characterized by opacity. In phi-

losophy, epistemic opacity is discussed as a feature of computer simula-

tion (Humphreys 2009; Lenhard 2019). The case of ANNs is special. They 

emulate all kinds of relationships through an extremely high number of 

statistical correlations. A face or an image is a correlation pattern of pixels. 

And while  humans are used to operating with all kinds of images, they are 

at a loss when it comes to patterns. Opacity is an obvious obstacle to expla-

nation. Not very astonishingly, and in response to the successes of ANNs, 

 there is a recent call to develop “explainable AI.” To the extent that opacity 

is a central feature of ANNs, seeking a strategy of explanation seems like 

trying to climb a ladder that has no rungs.

From a historical and philosophical perspective, prediction challenges 

the search for an explanation. This tension has been a constant companion 

to the entire discussion about explanation since the beginning of moder-

nity—or actually even longer: ever since mathe matics played any role whatso-

ever in considerations of epistemology and practice. A basic viewpoint is that 

the ability to predict shows something impor tant. What this impor tant  thing 

is, is something that dif fer ent cultures are anything but unan i mous about—

as we have shown. Nevertheless, the following applies across the board: the 

quality of the prediction redeems a claim that itself is based on other proper-

ties than merely the fact of the prediction. In some way,  whatever is able to 

give good predictions has got something right about the world, or about 

that fraction of the world  under investigation. And this something is the 

fundament and the true source of the predictive capability.10

Remarkably, the new culture seems to turn this upside down: pre-

diction happens on the basis of a method, or a generic model, whose 
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repre sen ta tional properties are in question or even inaccessible. We have 

seen that this is a trait of computer- based approaches in all of the iterative 

cultures. This kind of prob lem is relatively new to mathe matics. It defies 

attempts to use mathematical tools exactly to avoid prob lems of opacity.11 

The principled stance  toward the predictive machinery is then a bit like 

that  toward the predictions of an oracle. However,  these prob lems are not 

new to many parts of society in which division of  labor makes  people rely 

on the expertise of  others. In such circumstances, this potentially new cul-

ture of prediction has not only an epistemic and social character but also a 

decisively  political one.12

Practical work with ANNs is in flux, with epistemological, mathematical, 

and  political questions arising— sometimes interrelated with each other. 

Overall, says the historian’s caution, it is still too early to judge  whether a 

new culture is emerging. Thus, even though our study of prediction does 

not provide an answer to the third question, it does provide a benefit. It 

provides a rich historical background and a flexible conceptual tool kit to 

reflect on the ongoing dynamic of prediction in an illuminating way.
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Chapter 1

1.  A few recent historical analyses, including Lynda Walsh (Scientists as Prophets, 

2013) and Jamie Pietruska (Prediction and Uncertainty in Modern Amer i ca, 2017), detail 

how making predictions has been related to manufacturing certainty. Arthur  C. 

Clarke (1973, chapters 1 and 2 on  Hazards of Prophecy) gathers stories in instructive 

detail in which prophets, including scientific ones, have failed. Walter Friedman 

(2014), for instance, tells “The Story of Amer i ca’s First Economic Forecasters” who, 

like Roger Babson,  were eco nom ically successful without following any scientific 

methodology; or who, like Irving Fisher, advocated advanced mathematical meth-

ods but failed spectacularly to predict the  Great Depression even when it was already 

underway.

2.  As examples in which the philosophy of science addresses prediction, see the 

accounts by Peter Achinstein (1994) and Stephen Brush (1994) who discuss the rel-

evance of predicting new phenomena versus explaining known phenomena.

3.  Often,  these books link prediction with a new computer- driven way of pro cessing 

data. Examples are Nate Silver (2012); Viktor Mayer- Schönberger and Kenneth 

Cukier (2013); David Orrell (2007); or Eric Siegel (2013).  Others throw light on the— 

impor tant though also dubious— role predictions play in the economy. Examples 

are Nassim Taleb (2007) and William Sherden (1997); or in the broader society, 

Halpern (2000).

4.  Compare the edited volumes by Lisa Gitelman on Raw Data (2013), which exam-

ines the interlinked history of data pro cessing and mathematization; by Dan Sarewitz 

et al. on Prediction (2000), which focuses on scientific predictions in policymaking; or 

by Matthias Heymann et al. on Cultures of Prediction in meteorology (2017).

5.  The works of Thomas Hughes elucidate the system character of technology far 

beyond the role of the computer. Importantly, the notion of culture, like the notion 

of the system, entails a certain interaction of components that reinforce the system 

or culture. This topic has been explored by Hughes (2004) and Levin (2004).
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6.  This lit er a ture began to develop about two  decades ago with Paul Edwards’s 

The Closed World (1996) and continued with David Mindell’s Between  Human and 

Machine (2002), Jon Agar’s Government Machine (2003), Atsushi Akera’s Calculating 

a Natu ral World (2007), and Fred Turner’s From Counterculture to Cyberculture (2006). 

One  decade ago, it included Paul Edwards’s A Vast Machine (2010), Joe November’s 

Biomedical Computing (2012), and Ron Kline’s The Cybernetics Moment (2015).

7.  Cybernetics is a prominent field in which prediction and control nearly merge— 

see Kline (2018), who argues about mathematical models in par tic u lar. Without 

sharing the focus on mathematical means, Miriam Levin’s edited volume Cultures of 

Control (2004) exemplifies how technologies and ideologies stabilize into “cultures.” 

She adopts a broad historical perspective and takes the culture of the Enlightenment 

as the quin tes sen tial culture of control.

8.  Peter Dear’s book on The Mathematical Way in the Scientific Revolution (1995) or 

Peter Machamer’s study on Galileo, mathe matics, and a new world view (1998) are 

but two out of a truly impressive body of scholarship on mathematization in the 

seventeenth  century. Many aspects of the history of probabilistic and statistical 

reasoning are well charted by a group of interconnected works including the two- 

volume edition of Lorenz Krüger et al. (1987) on The Probabilistic Revolution, Lorraine 

Daston’s Classical Probability in the Enlightenment (1988), Ian Hacking’s Taming of 

Chance (1990), and Ted Porter’s Trust in Numbers (1995).

9.  William Aspray’s edited volume on Computing before Computers (1990a) is one of 

the relatively rare contributions that looks at traditions and methods that bridge 

pre-  and postdigital computer methods of computation. The edited volume by Len-

hard and Martin Carrier Mathe matics as a Tool (2017) provides another example. It 

contains a chapter by Ann Johnson that explores the idea of discerning “Rational 

and Empirical Cultures of Prediction” (2017) in the ways engineers use mathe-

matics. Andrew Warwick (1995) argues that the main feature of mathematical pre-

dictions is their exactitude rather than their certainty. A particularly useful account 

is Peter Dear’s The Intelligibility of Nature (2006), in which he explores a long- term 

tension between two positions: one that sees science as natu ral philosophy linked 

to knowing and the other as instrumentality linked to  doing.  These positions are 

ideal types, not fully and purely realized at any one time but effective in guiding 

development— much as the modes of prediction we discern.

10.  We do not detail  either the practice turn or the somewhat related model turn 

 here. We just point out that recent accounts of computer modeling and simulation 

make good use of looking at practices (see Humphreys 2004; Lenhard 2019; Mor-

rison 2015; or Winsberg 2010).

11.  Donald MacKenzie has contributed an entire series of books on this. Mechanizing 

Proof (2001) and Engine, Not Camera (2006) are close to our study in the way they 

situate computational tools in a longer history of mathematization. We also learned 

much from Michael Mahoney’s Histories of Computing (2011), which is concerned 
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with the ways  actual scientific prob lems and questions are reparsed for computational 

approaches.

12.  On this point, Andrew Pickering elaborated the  metaphor of The Mangle of Prac-

tice (1995), Bruno Latour (1987) speaks of a network that connects technological 

and  human actors, whereas Akio Akera argues for an “ecol ogy” (2007). All three are 

innovative attempts at capturing mutual dependence along a  process of coevolution 

that involves technologies, methods, concepts, and institutions.

13.  We avoid most of the well- known subject  matters of mathematization such as 

astronomical calculations or statistical mechanics, focusing instead on cases that are 

new to the lit er a ture such as the strug gle over engineering mathe matics in the late 

nineteenth  century or the development of computational fluid mechanics.

14.  This diagnosis is very similar to that of Lorraine Daston and Peter Galison in 

their illuminating book Objectivity (2007). They note that forms of objectivity are not 

displaced but that they are joined throughout history by further forms of objectiv-

ity. We share the emphasis on instrumentation, epistemology, and how they inter-

relate. Both objectivity and prediction tend to be seen as monolithic notions— but 

the two studies each show that this viewpoint does not hold  water when practices 

are scrutinized. An impor tant difference is that we pay more attention to hybrid and 

immature variants. Furthermore, in our analy sis, the tools studied (mathematical 

tools) are located in an extraordinary systematic context— making the results all the 

more surprising.

15.  We do not differentiate between prediction, forecast, and other terms of similar 

meaning. Some authors intend to fix the terminology— for example, Erich Jantsch 

who declares that a forecast is a probabilistic statement whereas “a prediction is an 

apodictic (non- probabilistic) statement, on an absolute confidence level, about the 

 future” (Jantsch 1967, 15). Friedman (2014, x) differentiates forecast and prediction 

in the following way: “To forecast is to make a prediction using tools not easily 

employed by the general public but requiring expertise.” And he points out that 

forecasting has an ambivalent meaning as both predicting the  future and shaping 

(casting) it (xi). We share his point about shaping; and this book details how meth-

ods, tools, practices, and goals of prediction (forecasts) coevolve. However,  because 

 there is no standard terminology, we use prediction and forecast interchangeably 

and indicate when absolute confidence or other properties are in play.

16.  We are well aware that this is not a precise description of technology. We use 

the notion to refer to computers that are easily and cheaply available to research-

ers, a property that machines such as labscale minicomputers, workstations, or PCs 

share to varying extents.

17.  In a way, this mode is the computer- based new edition of the hybrid rational– 

empirical mode of mathematization discussed in chapter 3 in the context of engi-

neering knowledge.
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18.  Broad and controversial discussions around repre sen ta tion in philosophy of sci-

ence try to pin down what it is that must be right.

Chapter 2

1.  The historical and philosophical lit er a ture is far too voluminous to even 

attempt a condensed overview  here. Koyré (1957), for instance, famously made 

a case for the rational (Platonic) roots of modern science. Amsterdamski (1975) 

is an example of the episteme- plus- techne viewpoint, whereas Shapin and Shaf-

fer (1985) analyzed the (decidedly nonmathematical) experimentalism à la Boyle. 

This lit er a ture is so prominent that we can skip an exposition. Dear’s Discipline and 

Experience (1995) is a particularly pertinent contribution in our context. He stressed 

how “the mathematical way” and its complexities codeveloped with the notion of 

experience, whereas we target the heterogeneity in mathematics- related approaches 

to prediction.

2.  In an illuminating study, Peter Dear (2006) argues that natu ral philosophy and 

instrumentality are two ideal types to which science belongs si mul ta neously (7).

3.  The term “mixed mathe matics” reflects this practice. It has been used to signal 

the difference to geometry that counted as exemplary for homogeneous and strin-

gent  organization. In the examples we discuss, the nature of the mixture is contro-

versial. The term itself, however, occurs  later in the chapter in a historical context.

4.   There are many historical accounts of vari ous episodes but only one book about 

the development of ballistic science. That book, Their Arrows  Will Darken the Sun, by 

Mark Denny (2011), is more of a  popular account of the physics of projectile motion 

than a rigorous history of science or mathe matics.

5.   Because he was looking for a balance, it is apt to speak of a rational– empirical 

mode. We stick to “empirical” to underline the contrast.

6.  Nova Scientia Inventa da Nicolo Tartalea (1537). A  later edition, entitled La Nova 

Scientia, was printed in Venice in 1554; see Cuomo (1997) and Valleriani (2013) for a 

historical account and the latter also for a careful translation.

7.  Just to avoid misunderstandings, we are using “analy sis” in a generic sense  here. 

Calculus and even Descartes are still waiting to be born.

8.  Some historians see Tartaglia’s entire work as motivated by the search for patron-

age (cf. Biagioli 1989; Cuomo 1998).

9.  Tartaglia  here is in line with the general Aristotelean rationale of starting with 

par tic u lar knowledge from experience and then producing general knowledge 

through reasoning. He was well- versed in Greek mathe matics, publishing Italian 

translations of Euclid and Archimedes in 1543.
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10.  A consistent trait of science and scientific expertise is identifying (and redefin-

ing) what is reason and what is  hazard. A culture of prediction revolves around a 

shared concept of how reasonable predictions are to be made.

11.  This is the main point of Ekholm’s (2010) valuable work on Tartaglia.

12.  We owe this observation to Arend’s comprehensive study (Arend 1998, 191–192).

13.  Tartaglia knew this work well. In 1543, he was to publish the Ele ments in Italian, 

the first translation into a modern language.

14.  Arend (1998) provides a well- argued example.

15.  Sebastian Münster (1551) and Daniel Santbech (1561) also developed math-

ematical accounts of projectile trajectories. However, they did not envision Tarta-

glia’s kind of innovative mixture but used standard (geometrical) approaches. Their 

accounts did not have much impact.

16.  Tartaglia’s amalgam also included “Archimedean reasoning” that is replaced in 

a  later edition by “physical reasoning,” which means including sense perception. 

Tartaglia never actually used data. The Nova Scientia mentions a one- time shot 

with a cannon to verify the 45- degree  angle for maximum range, but the evidence 

remains unclear.

17.  Seminal accounts include Alexandre Koyré (1957), who sees Galileo as Neo- 

Platonist rather than an experimenter, and Geymonat (1965) and McMullin (1967), 

who reclaim Galileo as an experimenter. McMullin sees Galileo as an advocate for 

the notion of freedom of expression being essential to the generation of useful sci-

ence (reading Galileo’s letters to Duchess Christina). Valleriani (2010) examines 

Galileo the engineer. Machamer (1998) gives a good overview of the “Galileo indus-

try,” including further lit er a ture.

18.  On this tradition of Italian scholars of the sixteenth to the seventeenth centu-

ries, see Drake and Drabkin (1969).

19.  Cf. Biagioli (1993) and Westfall (1985).

20.  Machamer (1978) and Lennox (1986) forcefully argue that this is the adequate 

category for defining Galileo.

21.  Galileo (1974). Valleriani’s (2010) findings indicate that the strength of mate-

rials would provide another case study for our claim about mathematization and 

conflicting modes of prediction (see also Johnson 2017).

22.  Galileo was not a first- rank mathematician, and he was no pioneer at all con-

cerning the role of algebra, sometimes considered the key to mathematization. His 

student Torricelli was able to achieve more exact results  because he invoked more 

algebraic means. The much  later “rigor movement” in the nineteenth  century tried 
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to rely on arithmetical reasoning  because the perspective had changed completely 

by then, and geometrical reasoning was viewed as not rigorous enough.

23.  That an  angle– range formula would be useful for gunners only if sufficiently 

 simple is another issue.

24.  Only calculus, elaborated by Newton, Leibniz, the Bernoullis, and  others, would 

enlarge the mathematical toolbox.

25.  See Erlichson (1998) for a reconstruction of how Galileo obtained his math-

ematical results.

26.  The “statement of  others” prob ably refers to Tartaglia who also stated the 

 45- degree  angle but did not give the kind of mathematical derivation for it.

27.  We rely heavi ly on Segre’s work on Torricelli (1983, 1991).

28.  They traveled well below sonic speed.

29.  According to what has been called “Galilean idealization” (McMullin 1967), 

strictly speaking, wrong assumptions might be quite adequate to model physical 

pro cesses.

30.  It is unclear what exactly Renieri tested. He reported on gun shots at dif fer ent 

 angles. But Segre recomputed  these and found the reported results inconclusive.

31.  We do not fully agree with Michael Segre (1983) who argues that Torricelli’s 

view in this work is that “mathe matics does not describe real ity” (489).

32.  B.  S. Hall (1997) analyzes reasons for the unpredictability of  spherical can-

nonballs shot from smoothbore barrels, especially the incalculable spin placed on 

cannon balls by their final point of contact with the barrel (202, fn 76).

33.  Dear (1995, ch. 6) highlights the mixture of demonstrative mathematical rea-

soning and causal physical reasoning. For a historical account, see Brown (1991).

34.  Brett Steele has worked extensively on the case we are analyzing  here (1994). In 

his contribution to the collection he edited on Enlightenment war and science, Heirs 

of Archimedes, Steele argues that looking at eighteenth- century ballistics as a failure, 

as many historians have done, is a  mistake. Whereas we agree that the alternative 

between Plato and Aristotle does not provide an adequate contrast as a backdrop to 

analyze mathematization and modes of prediction, we also maintain that “a sym-

biosis (. . .) between the supply of mechanistic science and the demand for military 

capability” (Steele and Dorland 2005, 15) does not serve  either.

35.  Johnson (1992) gives a valuable account of Robins’s biography but does not 

address our topic of mathematical tools and mathematization.

36.  The observation can count as the first anticipation of the sound barrier.  Today, 

the coefficient for air  resistance is not seen as a constant but as a function of the 
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Reynolds number. The science and mathe matics become intricate  here. Denny 

(2011) and Long and Weiss (1999) provide accessible accounts.

37.  This famous story is told in part by I. Bernard Cohen in his guide to Newton’s 

Principia, see Newton (1999, 168–171) and by A. Rupert Hall (2009, 140, 152–156).

38.  Truesdell (1984) includes an informative biographical essay.

39.  Historian of mathe matics Henk Bos (1980) welcomes using rational mechan-

ics as a lens. He applauds Truesdell for giving a structured account of eighteenth- 

century mathe matics. In most other accounts, according to Bos, the eigh teenth 

 century looks like a mere bridge between the seventeenth and the nineteenth. 

Truesdell is right in shifting the focus to rational mechanics.

40.  Alder is critical of Steele for painting a too heroic and not sufficiently rich soci-

etal picture (1997, 91–92), whereas Bos raises doubts as to  whether “insights gained 

through mathematical theory effectively influenced practice before the nineteenth 

 century” (1980, 354).

41.   Philosopher Mark Wilson (2006) has pointed out that numerical approxima-

tions might induce their own set of conditions dif fer ent from (and alien to) what 

rational mechanics assumes. In Euler’s case, his iterative algorithm may lead to false 

results  because it assumes a Lipschitz condition that is not fulfilled at the highest 

point of the trajectory. How good the approximation actually is must be deter-

mined by empirical  measurements: “We engineer a thinner hold on its appropriate 

 measures of correctness than classicism presumes” (Wilson 2006, 176). We argue 

in chapter 4 that questions of numerical methods and computations lead to a new 

mode of prediction.

42.  Both modes can claim lasting success. Robins’s book went through several edi-

tions in  English (while Euler’s commentary was not translated into  English  until 

1777) and was used at the Royal Military Acad emy (Sandhurst). Euler’s method was 

in use up to World War II for low- speed projectiles (McShane et al. 1953, 305).

43.  This frontier is still moving. Numerical methods together with electronic com-

puting technology can answer many questions that are intractable with analytical 

methods, whereas such new mathematical instrumentation is opening up new ques-

tions (see Sengupta and Tatta [2004] on the Robins– Magnus effect).

44.  Bashforth (1890) dedicates his introductory chapter to a review of  measurement 

technology created in the  later part of the nineteenth  century (including his own 

electrical chronograph).

45.  Gluchoff (2011) examines the American side and reports the work of Moulton at 

the Aberdeen Proving Ground.

46.  Grier (2001; 2005) tells the story of the Aberdeen Proving Ground where a large 

number of  people (mainly  women)  were employed as “computers.”
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47.  Haigh, Priestley, and Rope (2016) tell this story in enlightening detail, revealing 

that many commonly held opinions are incorrect.

Chapter 3

1.  Historians have highlighted dif fer ent aspects of  these changes. In his classical 

study, Monte Calvert (1967) scrutinizes the conflicts in the United States between 

established shop culture and upcoming school culture. In the  process of profes-

sionalization, the turn to school culture is linked to the striving for high social 

status. According to historian Peter Lundgreen (1990, 33), social motives are the de 

facto  drivers of professionalization, whereas the belief “that modern socie ties have 

characteristic needs that must be met” is a technocratic myth. Ed Layton (1986), in 

contrast, identifies industrialization as a driving  factor in professionalization. Tom 

Hughes (1989) pushes the point one step further and defines the American nation by 

technology or rather by the system of technologies that includes social  organization 

and education as components. Terry Reynolds (1991) provides a succinct historical 

overview of the traditions and sources that made up American engineering.

2.  See also Böhme et al. (1978) on the scientification of technology. However, König 

(1993) weakens this claim by arguing that, in Germany, industry did not demand 

more scientifically educated engineers.

3.  Gispen (1989) and Lundgreen (1990) give standard accounts in  English. How-

ever, most contributions including Manegold (1971; 1980), Hensel et al. (1989), and 

Dienel (1993) are in German.

4.  Archival material documented by Puchta (1998), formerly Hensel, requires a reas-

sessment of the role ascribed to him in older lit er a ture.

5.  Chapter 4 follows  these tensions in computational chemistry over a large part 

of the twentieth  century, whereas chapter 8 discusses them in the new context of 

engineering thermodynamics and computer simulation.

6.  Recent lit er a ture is almost as divided as the actors have been. Layton (1971) is a 

classical on how the picture of engineering was modeled. Another example is Böhme 

et  al. (1978), who argue that what happened was a scientification of technology. 

König (1993)  counters this by pointing out that successes in industrial engineering 

often happened in de pen dently from science.

7.  This might seem a mild irony of history for a staunch believer in theory such as 

Rowland. Maybe Hughes (1989) would feel confirmed in claiming the United States 

as a technological nation.

8.  David Hounshell (1980) suggests that Rowland may have been prompted to 

strengthen his claims  because of sour business dealings with Edison, the then para-

digmatic inventor (i.e., nonpure) scientist.
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9.  Rowland also defended a strong normative and ethical priority, but we leave out 

that aspect (see Lucier [2012] for a summary).

10.  In the late 1870s, he served as vice president of AAAS and, from 1880 to 1882, as 

the first president of the American Society of Mechanical Engineers.

11.  Thurston acknowledged his forerunners: King’s College, London; the University 

of Edinburgh; the Polytechnic at  Zurich; and the Munich Laboratory, planned in 

1871 by Linde. Linde also made a case for research and education.

12.  Thurston (1896) made his first laboratory- based discovery in 1872 of “the exal-

tation of the normal elastic limits by strain” (270). The “normal” limits  were  those 

assumed on the basis of theory. Starting in 1875, Thurston acted as secretary of the 

“U.S. Board appointed to test Iron, Steel, and other Metals” and took over official 

testing tasks at Stevens from the government.

13.  See Calvert (1967) on the stalemate between adherents of shop and school 

cultures that threatened to paralyze Cornell’s engineering college.  Because of his 

work as a  consultant, Thurston was in good standing with professionals although he 

favored school culture (cf. Durand 1939).

14.  Of course, the use of empirical data to modify design equations was not intro-

duced by Thurston alone. Steinmetz, for example, used it for his theory of the 

induction motor (see Kline [1987; 1992] and the discussion of Steinmetz’s law in 

section 3.5, this chapter).

15.  For a discussion of applied science— discerning four usages of the term— and 

the autonomy of engineering knowledge, see Kline (1995). For a historical perspec-

tive on engineering education in the United States from Thurston onward, cf. Seely 

(1993).

16.  Thurston consistently underlined the importance of good knowledge of higher 

mathe matics for making engineering predictive (see also Thurston 1896, 280).

17.  Thurston wrote again in 1893 to the president, Andrew D. White, confirming 

that the concept of a purely professional school that would make no attempt to 

provide a general education was highly efficient and successful (Calvert 1967, 102).

18.  For instance, Thurston presented a two- hundred- page report on technical edu-

cation to the American Society of Mechanical Engineers (ASME) in 1893 in which he 

elaborated on the structure of the Sibley curriculum.

19.  Thurston (1893a; 1893b; 1893c), Burr (1893), and Swain (1893) all sang from 

the same hymn sheet.

20.  Whoever visited Germany would have had ample opportunity to witness a 

(then) new Imperial style in buildings of all kinds that clearly expressed a  political 

stance.
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21.  The historian Kees Gispen (1989) describes the particularly uncomfortable posi-

tion of German engineers who strug gled to become fully integrated into the (feudal) 

establishment. Gispen argues that the “rift separating Technik from Bildung and 

Besitz remained so wide and deep in Germany that engineers  were forced to develop 

something like a counterculture and to compete rather than amalgamate with the 

dominant social order” (2). This is markedly dif fer ent in France as well as in Britain 

(see Shinn 1980; Wiener 1981).

22.  Adelheid Voskuhl (2016) details the role of both the history and the philosophy 

of technology in the engineers’ desire for upward social mobility. She mentions the 

“social critic” Carl Julius von Bach who  will serve as main actor in section 3.4 of the pre-

sent chapter— although in his role as promoter of a new concept of mathematization.

23.  Translating names of German institutes is notoriously difficult  because not only 

did they change names but their  English meanings changed as well. Polytechnical 

schools  toward the end of the nineteenth  century changed into Technische Hochschulen; 

and,  later in the twentieth  century, into technical universities. The formal name “uni-

versity” once indicated that students  were offered a full range of humanities. This relic 

of nineteenth- century Humboldtian universalism has more or less lost its influence on 

con temporary terminology. One more point on terminology: The German Techniker 

[technician] and Ingenieur [engineer]  were practically synonymous at the time.

24.  This history is covered mainly by German authors such as Hensel (1989, 1991) 

and Mauersberger (1980). On Reuleaux, see Ihmig (1989).

25.  For instance, at Karlsruhe, maybe the institute providing the foremost theoreti-

cal education, Redtenbacher, who himself promoted a balance between theory and 

practice, had hired the mathematicians Clebsch (in 1858) and Schell (in 1861) who 

stood for this new abstract orientation. See Stäckel (1915) as well as Hensel (1989) 

and Otte (1989).

26.  Reuleaux had an international reputation for proposing engineering as a sci-

ence. Reuleaux, who had reported from the 1876 World Exhibition in Philadelphia 

about Germany’s embarassingly poor reputation due to cheap and shoddy (billig 

und schlecht) products, was convinced that engineering’s way out must lead  toward 

mathematized science (1877). His theory of kinematics (1875, 1900) was built in a 

logical, axiomatic fashion. Although Thurston is reported to have admired him (see 

Durand 1939), in fact, Thurston followed a very dif fer ent track on mathematization.

27.  Also in 1893, the VDI had sent a collection of impor tant research questions to 

Helmholtz at the physikalisch- technische Reichsanstalt. Helmholtz did what the 

engineers expected—he acknowledged the importance of the questions, but declared 

the Reichsanstalt to be unable to address the topics. This in de pen dently confirmed 

that engineers had to carry out experimental research in their own facilities. The 

VDI moved on to strike while the iron was hot.
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28.  It is the founding document of the “laboratory movement” (Ernst 1894).

29.  Klein gave a series of lectures. The (originally  English) publication bears the 

full title: The Evanston Colloquium: Lectures on mathe matics, delivered from Aug. 28 to 

Sept. 9, 1893, before members of the Congress of Mathe matics held in connection with the 

World’s Fair in Chicago, at Northwestern University, Evanston.

30.  The terminology does not seem to be fixed but oscillates between anti- 

mathematicians and anti- mathematics movement. We keep this vagueness by using 

the  English title Anti- Math Movement.

31.  The Anti- Math Movement is not well covered in  English. Gispen (1989) and 

Lundgreen (1990) both cover this episode, but do not look into the role of mathe-

matics in any detail.

32.  Puchta (formerly Hensel) (1998, 191) retrieved letters between Bach and Peters, 

the acting secretary of VDI, that document the role played by Bach.

33.  See, for instance, Dienel (1993), Gispen (1989).

34.   Because Bach had read and discussed Klein’s memorandum on the planned 

foundation to the state of Wuerttemberg’s assembly of engineers (Klein 1896c, see 

also Klein 1896b) in early summer, he could make his mind up before  things ramped 

up at the general assembly in late summer 1895. Klein, in turn, had prob ably also 

expected approval from the side of engineers, but found himself mired in a  bitter 

controversy with some of them.

35.  Puchta’s (1998) findings show that the mathematicians had also consulted with 

Bach. Furthermore, he persuaded engineers such as von Lossow to tune down their 

originally much sharper opinion statements when they published in VDI Nachrich-

ten (Bach 1899, von Lossow 1899).

36.  One example is August Föppl (1897) who defended a standpoint similar to 

Bach’s before the assembly of German mathematicians. Aurel Stodola (engineer 

at ETH  Zurich), or Walter von Dyck (mathematician,  later president TU Munich) 

provide related examples of activities (Stodola 1897; von Dyck 1898). Hashagen 

(2003) gives a comprehensive account of von Dyck’s life and work. He reports that 

the Anti- Math Movement did not have much impact in Munich where a mathema-

tized engineering science developed in mutual agreement between engineers (such 

as Linde, Foeppl, or Bauschinger) and mathematicians and physicists (such as von 

Dyck). Dienel (1993) also highlights the role of TH Munich against the background 

of the controversy being much less fierce  there. Carl von Linde had established 

experimental orientation and a laboratory in the mid-1870s, something Thurston 

had already been watching. Dienel is right when he diagnoses that “fruitful symbio-

sis of theory and practice” (1993, 87) is the solution. But actors on both sides of the 

controversy agreed on this general level.
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37.  This  process started in 1899, but it took a  couple of years before all states had 

approved.

38.  At the TH Munich, von Dyck (former student of Klein’s, see Hashagen 2003) 

created a similar institute for “technical physics” in 1902.

39.  Klein also saw a related challenge for educational concepts. Klein was convinced 

that instruction needed to be linked to application (see Menghini and Schubring 

2016).

40.  This part of the 1902 course appeared as volume III of Elementary Mathe matics 

from a Higher Standpoint in 1928 and in a new  English translation as Klein (2016).

41.  Klein advocated the renewal of the (rational) French ideal (“Wiederaufnahme des 

Pariser Ideals”) (1900a, 23/24).

42.  The controversy between Riedler and Reuleaux is discussed extensively in 

König’s (2014) biography of the two men.

43.  Where the quote is in  English and the reference id to a German text, the transla-

tion is our own.

44.  Riedler criticized that mathe matics education (for engineers) did not entail the 

determination of coefficients from data (Riedler 1895).

45.  Otte (1989) stresses this point in his interpretation of Riedler’s work.

46.  This is a telling instance of a German word that translates into several  English 

words that express the meaning much more precisely.

47.  Riedler gives an insightful account of this viewpoint in his book Emil Rathenau 

and the development of big industry (1916).

48.  Puchta (1998, 194) has documented that Bach had been an oft- sought counselor 

and a pivotal mediator and author in the Aachen resolutions. Also, the  later activi-

ties by mathematicians took place in exchange with Bach. Puchta (1998) examines 

Bach’s position on the role mathe matics should play in the education of engineers. 

We complement this by looking  toward research and examining the hybrid concep-

tion of mathematization.

49.  Gispen (1989) lays out the precarious status of large parts of the engineering 

profession in Germany— despite the success of pioneers such as Bach.

50.  This gave him first- hand experience with Franz Grashof and his rational– scientific 

approach to engineering. Bach’s already considerable experience in engineering prac-

tice must have been a striking contrast to what he learned at Karlsruhe. Overcom-

ing this contrast may well have motivated Bach to work out an alternative to the 

rational school.

51.   There had been forerunners. In  England, “Testing and Experimenting Works 

of David Kirkaldy” had opened in 1866. The first testing lab in Germany had 
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opened in 1868 in Munich (directed by Johann Bauschinger), and Carl von Linde 

had opened the first mechanical engineering laboratory, also in Munich, in 1871. 

 Zurich, with Ludwig Tetmajer directing the “Festigkeitsprüfungsanstalt” since 1881, 

was an equally early example, see Ditchen (2016) for a history of materials testing 

laboratories in  Europe.

52.  We quote from the eighth edition 1920.

53.  We quote from the seventh edition 1899. Mauersberger and Naumann (1998) 

appreciate how the book set standards.

54.  Due to the impending termination of the monarchy, he was also the last one. At 

least, we could not identify another instance (outside the military).

55.  Bach was experienced enough to direct his attention to  those cases where 

accepted rules failed.

56.  Maybe such criticism of Grashof and  others brought Bach a reputation for being 

antitheoretical. However, such a reputation would be unwarranted, as we  shall show 

below.

57.  Reuleaux (1882/1889, 870), Grashof (1875, Vol. 1, 473–476), and Weisbach 

(1880, 1095–1096).

58.  In more technical language, the common theoretical treatment assumes a 

constant elasticity module for each material, implying that stress and stretch are 

proportional.

59.  The point of spring break, if the pun is allowed.

60.  Bach’s assistant Richard Baumann (1917) published a critical essay on the dubi-

ous origins of Hooke’s law: equation (*) “does not pre sent a natu ral law, but no 

more, no less than the simplest of all pos si ble mathematical relationships” (118).

61.   After additional experiments, Bach doubted  whether  there exists some law that 

would cover all materials (Bach 1898, footnote 1).

62.  Sandra Mitchell (2009) discusses rules as pragmatic laws for complex situa-

tions. She focuses on the complexity of the natu ral world but does not touch upon 

engineering.

63.   Philosopher of science Mark Wilson (2006) argues along similar lines when he 

points out that even the alleged homogeneous mathematical structure of rational 

mechanics resembles a façade of patches.

64.  Maybe Grattan- Guinness (1993) is right in blaming the mathsphobia of histori-

ans of science for per sis tent blind spots. Nonetheless, we searched for accounts that 

entail some mathsphilia from the side of historians.

65.  For the numbers, see Ditchen’s (2016) history of materials testing institutes. Zie-

linski’s (1995) study provides more details about Tetmajer as the  founder of the EMPA.
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66.  For details on the accident, the gravest in the history of Switzerland, see Schnei-

der and Masé (1970).

67.  The beauty of  these constructions was hotly debated at the time. The aesthetics 

of industrial building material can still be contemplated in Paris at the Eiffel Tower 

built in 1889.

68.  Throughout this brief case study, we rely heavi ly on the excellent biography by 

Ronald Kline (1992). Kline (1987) discusses the theory of the induction motor and 

how physicists criticized Steinmetz’s modifications of Maxwell’s equations.

69.  Low- hysteresis silicon steel was not available in the nineteenth  century.

70.  Taken together, the books authored by Hunt (1991), Nahin (1988), and Yavetz 

(1995) give an outstanding coverage of the historical, philosophical, and engineering– 

scientific aspects.

71.  For more details, see Nahin who refers to the controversy as “the  battle” (1988, 

196).

72.  August Otto Föppl (1854–1924), professor for technical mechanics and graphi-

cal statics at TH München 1893–1922, introduced Heaviside’s vector calculus into 

Germany. In 1894, he wrote the first German textbook on Maxwell’s theory. Quite 

similar to Bach and to Heaviside, he held that electrical engineering is theory- based, 

but not Cartesian— that is, rational (1897, 109)— and that mathematization is not 

directed  toward foundational conceptions.

Chapter 4

1.  Of course, many  factors are at work in the complex history of QC. Excellent and 

multifaceted accounts of this history can be found in Gavroglu and Simões (2012) 

or Nye (1993).

2.  See Ashford (1985) for more details on the biography of Richardson who ended 

up as a pacifist volunteer in a British Quaker ambulance unit of the French army.

3.  Developed by V. and R. Bjerknes in the 1910s, this remained the leading approach 

up to the 1980s (Hunt 1998, xxvi). For more detail on Bjerknes and the history of 

weather prediction, see Friedman (1989) and Harper (2008).

4.  The title of Richardson’s first draft was Weather Prediction by Arithmetical Finite 

Differences.

5.  Lynch (1993) reevaluates the claims about computing time— “the better part of six 

weeks”— that Richardson makes in chapter IX of his book and estimates that 6 weeks 

nonstop computing time are meant, so that a single person would need about half a 

year to finish if working 40 hours per week.
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6.  Richardson refers only to the work of mathematician Carl Runge who followed 

similar lines in numerical mathe matics.

7.  See the review of Richardson’s book by Exner (1923).

8.  Platzman was a meteorologist and a pioneer of quantitative forecasting. He was 

also part of the team that used the ENIAC in 1950 to produce the first numerical 

weather forecast.

9.  Proponents of a computer- related culture of prediction have identified computa-

tional power as the critically scarce resource ever since.

10.  Iteration has been acknowledged by Hasok Chang (2004) in his Inventing Tem-

perature where he discusses “epistemic iteration” as a valuable strategy, indeed as a 

key to justification in a nonfoundationalist, coherentist setting (in par tic u lar, chap-

ters 1 and 5). For Chang, epistemic iteration, is “most likely a  process of creative 

evolution; in each step, the  later stage is based on the  earlier stage, but cannot be 

deduced from it in any straightforward sense” (2004, 46). He highlights the general 

significance of self- corrective pro cesses in science, but is also clear that the concept 

of iteration is borrowed from mathe matics.

11.  Iterative approximation is a key notion in Newton’s method (see Smith 2002).

12.  The term “computer” came into being in the context of  human— mostly 

female— workers calculating in an  organized distributed way to produce, for exam-

ple, ballistic  tables (see Grier 2005). Thus,  human computers  were in fact  organized 

much in line with Richardson’s “fantasy” of computing the weather.

13.  Babbage was unable to finish his projected analytical engine (see Hyman 1985).

14.  Considerations on how to design iterative numerical algorithms that would 

help to solve prob lems in mathe matics gave rise to numerical mathe matics with 

Carl Runge as a forceful proponent (see Richenhagen 1985).

15.   There are more options to examine the history of math- based predictions in 

chemistry. For instance, Evan Hepler- Smith (2018) studies the influential work of 

chemist E. J. Corey who formalized organic synthesis and built a computer program 

to assist (or replace) the intricate  process of looking forward and looking backward 

in the design of a synthesis. Curiously, according to Hepler- Smith, chemists incor-

porated Corey’s formal approach into their practice but largely without making use 

of the computer. However, we concentrate on QC  because it features mathematiza-

tion and prediction in an outstanding way.

16.  For a typical proposal, see the definition of QC in Per- Olov Lövdin’s “Program” 

that opened the newly founded International Journal of Quantum Chemistry in 1967.

17.   After this second turn, QC is often referred to as computational quantum chemis-

try. Computational chemistry, a member of the “computational” disciplines that have 
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emerged multiply since the 1990s, transcends QC and denotes a wider array of quan-

titative modeling using computer- implemented techniques that includes  handling 

databases, drug design, molecular syntheses, and nanotechnology simulations.

18.  From the standpoint of the history of science, it is the early phase of QC that 

has been researched most thoroughly. Scholars such as Nye, Gavroglu, and Simões 

have laid out the field. The books by Nye (1993) and Gavroglu and Simões (2012) 

cover the early history up to the late 1960s. Both take the establishment of QC as an 

accepted subfield of chemistry as the endpoint of their narratives. We add a further 

twist by identifying a new turn in the 1990s.

19.  Many historical and philosophical arguments hold that the  acceptance of quan-

tum mechanics does not imply reduction (see Gavroglu and Simões 1994; Harris 2008; 

Scerri 1994; Schweber 1990; Simões 2003, 2002). We  shall add an argument against 

reduction from the combinatorial nature of computational QC  later in this chapter.

20.  Gavroglu and Simões (1994) contrast German and American traditions in 

research culture that run more or less parallel to the strands discerned  here.

21.  The use of artificial or fictional components has been picked up in the context 

of the philosophy of simulation (cf. Lenhard 2007; Winsberg 2003).

22.  Hartree developed his iterative strategy for precomputer technology, but his 

approach became increasingly  popular with the digital computer. For more histori-

cal detail as well as more quantum chemical context, see Park (2009). For a more 

general appreciation of Hartree’s work, see Fischer (2003).

23.  Hartree himself called the approach SCF before the method became standardly 

known as Hartree– Fock. The  Russian physicist Vladimir Fock (1898–1974) had 

pointed out weaknesses in the original Hartree method.

24.  This perspective ties in with discussions in philosophy of science about the role 

of models and especially “models as autonomous mediators” (Morrison 1999).

25.  George Forsythe (1917–1972) provides another instance. He was a pivotal actor 

in the movement to turn computer science into an academic discipline. He built 

and directed the Stanford computer science department and promoted computers 

as instruments for mathe matics that should become part of undergraduate programs 

(Forsythe 1959). November’s (2020) entry in the Complete Dictionary of Scientific Biog-

raphy gives information and further lit er a ture on Forsythe.

26.  Michael S. Mahoney (2005) refers to the growing importance of the computa-

tional standpoint as “reparsing” the prob lem so that it can be solved advantageously 

by computer. Ann Johnson (2004) describes this privileging of numerical analy sis 

motivated by computing instruments in “From Boeing to Berkeley: Civil Engineers, 

the Cold War and the Development of Finite Ele ment Analy sis.”
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27.  Handy et al. (1996) give a historical sketch of Boys’s work and the success of 

Gaussian functions.

28.  Klaus Ruedenberg’s work in the 1950s or Roothaan’s (1951) widely cited paper 

are further instances of fairly systematic investigations of strategies of computa-

tional modeling.

29.  For a consideration of conferences such as the one on Shelter Island that aspire 

to found new fields; see Schweber (1986).

30.  Indeed, it was not mathematical rigor that was decisive, but rather feasibility 

within a given framework of technology and manpower. Or, to quote Paul Hum-

phreys’s (2004) motto for computational science: “speed  matters.”

31.  The LCAO- MO- SCF label indicates a combination of computational strategies 

building on the work of Slater, Lennart- Jones, Mulliken, Hartree, and  others. The 

amalgamated name reflected the pragmatic mixture of approaches combining their 

respective computational advantages.

32.  Utilizing adjustable  parameters is pivotal in engineering knowledge (see 

chapter 3 and also Vincenti [1990]). Chapter 8 discusses the intimate relationship 

between adjusting  parameters and the exploratory– iterative mode of modeling.

33.  It was initially called NCCC, the National Center of Computation in Chemistry.

34.   Because the competencies and working conditions for modelers change over 

time, software has not lost any of its bottleneck- creating abilities  today. Michael 

Mahoney makes a clear case for the importance of software in his “Software as 

Science— Science as Software” (2002) and his Histories of Computing (2005).

35.  In 1962, the Quantum Chemistry Program Exchange (QCPE) was set up at Indi-

ana University as a hub for the distribution of software. Initially funded by the mili-

tary, it changed to an academic endeavor in 1966. The goals of QCPE  were to collect 

and distribute software including basic verification— that is, checking  whether the 

program runs, not  whether models are valid. Bolcer and Hermann (1994, 33) esti-

mate that roughly one- sixth of users  were quantum chemists. For more details on 

QCPE, see NAS (1971). DENDRAL can be considered an early example of such a 

type of software: It was built to elucidate molecular structure from mass spectra and 

made double use of the computer. It was designed for automated experimentation 

to accumulate spectral data plus a computer program to interpret  these data (see 

Lindsay, Feigenbaum, and Lederberg [1980] and the comprehensive study of the 

computerization of biology and medicine from November [2012]).

36.  This mathematical term basically indicates the growth of computational com-

plexity in relation to the size of the prob lem. O(N5), for instance, means roughly if 

the prob lem size is N, the number of computational steps grows like N5.
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37.  However, Scerri (2004) argues that it is not clear exactly what characterizes ab 

initio methods in QC.

38.  See, for example, Boys and Cook (1960).

39.   Today, the term ab initio is still in wide use, although the two meanings are not 

adequately held apart. Engel and Dreizler (2011), for a typical recent example, dis-

tinguish the “ab- initio or first princi ples approach” based on the “true, fundamental 

Hamiltonian” from a model- based approach that studies a “suitable model Hamilto-

nian.” They suggest that an ab initio approach would not be model- based. But such 

a view would be misleading  because ab initio approaches all rely on computational 

modeling.

40.  The recent discussion in philosophy of science about models convincingly 

supports this standpoint (see, e.g., Lenhard [2019]; Morgan and Morrison [1999]; 

Winsberg [2010]).

41.  For instance, Pople and Segal (1966) introduced the so- called CNDO method, 

one of the most influential semiempirical approaches.

42.  See, for example, the account in Krishnan et al. (1980).

43.  Cf. Nye (1993) on “the hubris so characteristic of the quest for mathematical 

certainty” (261).

44.  The sudden movement of DFT in the 1990s from the boundary of the discipline 

to the mainstream is part of a broader change from QC to computational QC. This 

claim is developed in Lenhard (2014). DFT is a shining example, but not the only 

one. Molecular dynamics (i.e., using continuum models for molecular interaction) 

arguably underwent a similar history.

45.  The density itself is a function and functions of functions are often called 

functionals— hence the name “density functional.”

46.  Redner also documents the steady flow of citations from the physics commu-

nity that set in more or less instantly  after the publication.

47.  Another impor tant contribution came from the experimental side— namely, 

from new technologies in spectroscopy that provided very detailed data and thus 

the opportunity for refined  parameter adjustments.

48.  Weisberg (2013) contains an elaborated version of this account.

49.  Regarding commercialization, Gaussian is not unique. The production of com-

mercialized resources for computational chemistry accelerated in the early 1990s. 

Now, “customers had to buy commercial versions of MOPAC, AMPAC, MM3, Gauss-

ian, and other  popular programs to obtain the latest versions with the most features 

and most bugs fixed” (Lipkowitz and Boyd 2000, ix).
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50.  In addition, Gaussian prohibits scientists who develop competing programs 

from purchasing licenses for Gaussian. Whereas Gaussian claims this is standard 

practice, many chemists object. See http:// www . bannedbygaussian . org, and Giles 

(2004) and Gaussian’s response at http:// www . gaussian . com / g _ misc / silly . htm.

51.  In recent work, Alexandre Hocquet and Frédéric Wieber are approaching this issue 

in the case of molecular dynamics (Hocquet and Wieber 2021; Wieber and Hocquet 

2020).

52.  Centralized (super)computers are still extant, of course. Networks and the inter-

net have made it easier to gain access to computing centers. A significant fraction 

of supercomputer time was and is used for computational chemistry. The cultures 

of prediction are not strictly sequential. Dif fer ent cultures of prediction coexist and 

arguably even intermingle.

Chapter 5

1.  “Prediction,” the volume by Sarewitz et al. (2000) concentrates on environmental 

sciences and includes a valuable essay by Naomi Oreskes (2000) on the related his-

tory of prediction.

2.  Although mainframe computers  were the dominant form only in the early  decades 

of digital computing (1950s to 1970s), they still exist in many computing centers. 

 There are also further cultures of prediction related to digital computers. Around the 

1990s, easily accessible networked desktop computers added an exploratory compo-

nent in a way that the mainframe prohibited, thus leading to an exploratory– iterative 

culture of prediction (examined in chapters 4, 7, and 8).

3.  We  shall restrict ourselves to naming just a small sample taken from the large 

body of excellent historical scholarship. Ceruzzi (2003) gives a standard history of 

computing, and Metropolis et al. (1980) gather perspectives from actors. In- depth 

studies of par tic u lar topics include  those by Aspray (1990b) on John von Neumann, 

Agar (2003) on the bureaucratic practice of  handling files, Grier (2005) on  human 

computers predating electronic ones, and Mindell (2002) on the analogue branch 

of computing. Waldrop’s (2001) more  popular account tells a story that leads to the 

personal computer.

4.  We are greatly indebted to studies of computer use that highlight some variant of 

coevolution, namely “ecol ogy of knowledge” (Akera 2007), “trading zone” (Galison 

1997), the “mangle of practice” (Pickering 1995), and also the system perspective 

pursued by Paul Edwards (1996; 2000).

5.  Chapter  4 has already introduced  these features of the mainframe culture of 

prediction.
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6.   Here are four particularly shining examples of this history. David Mindell (2000) 

locates the roots of the systems approach in the labs at Bell and MIT in which engi-

neers developed radar. Donald MacKenzie (2000) examines the near failure of the 

SAGE system. Paul Edwards (2000) conducts an insightful study in which he relates 

Forrester’s world dynamics model to simulation models of weather and climate. 

Edwards (2000) makes the point that a systems approach constructed “the world” as 

an object for science and science- based policy (222). And he sharp- sightedly observes 

that the encompassing nature of the models required a global system for obtain-

ing the data to be fed into the models. Fi nally, Ron Kline (2018) reveals insightful 

contrasts between Herbert Simon, Stafford Beer, and Jay Forrester in regard to “the 

contested issues of prediction and control” (285).

7.  He brought in the engineer Robert R. Everett as coleader.

8.  Redmond and Smith tell the history of the Whirlwind proj ect in  great detail in 

a way close to the developers’ perspective. Akera’s (2007, chap. 5) analy sis is more 

attentive to the prob lems that riddled Whirlwind.

9.  SAGE stands for semiautomated ground environment, an antiaircraft radar 

system. It was one of the monumental military proj ects in the early Cold War that 

combined high ambitions with deep wells of funding. It is well covered by historical 

lit er a ture (see Hughes 1998, chap. 2; Hughes and Hughes 2000; Mindell 2002, chap. 8; 

and Edwards [1996, chap. 3], who stresses the  political and institutional side, seeing 

Whirlwind and the SAGE system as an example of the typically “Closed World” 

of the Cold War). For a stance that explores the absurd valences of a large military 

system, see Stanley Kubrick’s Dr. Strangelove.

10.  A servomechanism translates electrical signals into mechanical movement. MIT 

was a leading institution in developing such equipment.

11.  Captain D. S. Diehl, chief of the Aerodynamics and Hydrodynamics Branch of 

the Bureau of Aeronautics, in a memorandum (1944, cited in Redmond and Smith 

[1980, 7]).

12.  John von Neumann, the exceptionally well- connected mathematician and 

science  organizer who was working si mul ta neously at Prince ton, Los Alamos, and 

some further locations, had written up the “first draft to the EDVAC.” This docu-

ment introduced the concept of the stored program computer— that is, control 

by software. The intellectual authorship of stored program computers is contested 

 because von Neumann’s “Draft” arose over joint discussions with Mauchly, Eckert, 

and  others (see the multifaceted account of ENIAC by Haigh et al. 2016).

13.  Akera addresses the Whirlwind proj ect—in par tic u lar, the early exchanges 

between ONR, the Office of Naval Research, and MIT— under the heading of “Research 

and Rhe toric. Jay Forrester and Federal Sponsorship of Academic Research” (2007, 

chap. 5).
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14.  A large proj ect is itself a kind of predictive machinery.  Future costs and success 

must be predicted to secure funding. The many charts for pro gress and cost that For-

rester presented  were plausible to MIT and the navy when issued but  later proved to 

be examples of predictive failures. In the face of exploding costs, one of his rhetori-

cal strategies was to predict an even better product in the  future.

15.  On SAGE and the more general prob lem of reliability in complex computer sys-

tems, see the enlightening work by Donald MacKenzie (2000; 2004).

16.  A list of R&D costs locates all early computers in the same ballpark of 0.5 to 

0.7 million dollars (not value- adjusted). Examples are IAS: $650,000; Eckert- Mauchly 

UNIVAC: $400,000 to $500,000; ENIAC: $600,000: and Harvard Mark III: $695,000. 

The single exception was Whirlwind, which cost more than $3 million— that is, 

about as much as all other computers together.

17.  The average repair time was four hours per day, and the cost for the tubes 

amounted to $32,000 USD per month (not value- adjusted), amounting to an addi-

tional 1  percent of the development costs per month.

18.  See Waldrop (2001, 114) or, similarly, Redmond and Smith (1980, 206).

19.  The mainframe culture still exists. Although current high- performance comput-

ers have left Whirlwind  behind by several  orders of magnitude, most of the software 

runs cannot be repeated very often. They have grown in pace with the machines 

and are still too demanding and too expensive.

20.  This recalls the controversy between Klein and Riedler about engineering and 

the role of mathe matics discussed in chapter 3.

21.  Akera (2007) and Redmond and Smith (1980) give details on the memos and the 

correspondence.

22.  Forrester learned the theory of feedback control and communication from the 

Servomechanisms Laboratory at MIT. Engineering was an impor tant component in 

theories of information, control, and communication (cf. works by Bennett 1979; 

Kline 2015, 2018; or Wiener himself 1948). Lenhard (2019, chap. 6) discusses a con-

temporary controversy between Wiener (MIT) and von Neumann (IAS, Prince ton) 

on what should be the task of computer simulation.

23.  A fitting description of how much the mainframe paradigm  shaped the culture 

of prediction comes from Kenneth Olsen: “Indeed . . .  to most  people in the 1950s, 

that was what computers  were: big, impersonal oracles sitting off in air- conditioned 

rooms somewhere, crunching data for big, impersonal institutions” (cited according 

to Waldrop [2001, 142], emphasis in original). Olsen was Forrester’s student, then a 

leader in the advanced computing laboratory of MIT’s Lincoln Laboratories, before 

he founded the Digital Equipment Corporation. Wes Clark, who pioneered stand-

alone computers in 1961 with the Linc, expressed a similar viewpoint: “The only 
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surviving computing system paradigm seen by MIT students and faculty was that of 

a very large International Business Machine in a tightly sealed Computation Center: 

the computer not as a tool, but as a demigod” (Clark 1988, 353; emphasis in original).

24.  In her book The  Future of the World (2018), Jenny Andersson provides a histori-

cal and  political analy sis of futurism in all desirable detail. Futurism’s prehistory lies 

in planning, national accounting, and statistics. For work on  these  earlier predictive 

endeavors, see Daston (1988), Desrosières (2000), Morgan (2012), or Porter (1995). 

Andersson identifies the  decade 1964–1973 as the high point of  future research. 

A good entry point to this research is the compilation by Alvin Toffler (1972). It 

was not only a bestseller in its time but lists about fifty books on futurism in the 

appendix— a broad outlook on what the  future used to be according to futurism.

25.  At the time, population growth and  limited resources  were being discussed 

widely. The Club entertained a Malthusian perspective— that is, it argued with a 

mathematical model based on the growth rate of the population and its consump-

tion. Hardin (1972), for another con temporary example, gives a Malthusian- minded 

exposition of the “Tragedy of the Commons.”

26.  The term systems thinking denotes a larger movement to quantify the social 

sciences comprising cybernetics, system dynamics, systems analy sis, systems engi-

neering, operations research, game theory, and general systems theory. This is a 

well- researched area (see Heyck 2015; Kline 2015; Mirowski 2002).

27.  The study by Meadows et al. acknowledges Forrester’s claim; see William Watts’s 

foreword to Meadows et al. (1972).

28.  Actually, the model “world 3” in LtG is an elaboration of Forrester’s “world 2” 

that adds detail while maintaining the same structure.

29.  Chapter  4 observes this property in cases as dif fer ent as the weather and the 

be hav ior of electrons and analyzes how iteration opens up a computer- based path 

to prediction.

30.  Nonetheless, access is still highly restricted and regulated by doorkeepers like 

Forrester— a key feature of the mainframe culture.

31.  Simmons (1973) draws a parallel to the technocracy movement of the 1930s. 

Engineers know the prob lems and their pos si ble solution quite in de pen dently from 

being experts in respective fields. For instance, as Simmons observes, in his urban 

dynamics book, Forrester references only Forrester.

32.  Lilienfeld (1978, 238) critically remarks that the system dynamics perspective 

drives abstraction to the point of meaninglessness.

33.  Forrester openly agreed with Malthus but simply claimed that he himself could 

provide a more complete picture (see Forrester 1971, 2). See also Freeman’s com-

mentary on LtG: “Malthus with a Computer” (Freeman 1973).
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34.  This observation applies beyond the realm of science. For instance, predictions 

obtained from the oracle of Delphi  were power ful  because asking the oracle was an 

accepted go-to method.

35.  Forrester insists on many occasions that computer modeling is inescapable 

 because  there is no other way to bring out counterintuitive characteristics of com-

plex systems. However, this instantiates the tightrope walk: How are counterintui-

tive dynamic characteristics compatible with foreseeable system be hav ior?

36.  Solow’s growth model is an equation with just three variables: capital stock K, 

 labor L (assumed proportional to population), and aggregate product or national 

income Y.

37.  An algorithm is intractable when its execution takes too many resources to be 

practical. Obviously, tractability depends on available instrumentation. Adding the 

prices of all items I had for dinner is tractable for any skilled waiter with paper and 

pencil. Adding a list of a million prices is definitely not, although, in princi ple, it 

is the iteration of the same  simple operation. However, it is perfectly tractable for a 

computer—in almost no time.

38.  Another piece of evidence is the foundation of the World  Future Studies Federa-

tion in 1973 that was heavi ly influenced by LtG (cf. Seefried [2015, chap. VII]).

39.  Richard Ashley (1983) reviews impor tant members of the second generation, 

including Bremer (1977), Guetzkow and Valadez (1981), Hughes (1980), Leontief 

et al. (1977), and Meadows et al. (1982).

40.  A standard critique of the LtG as “Models of Doom” is Cole et al. (1973); see also 

Maddox (1972). Bloomfield (1986) offers a look back on the entire debate around 

LtG.

41.  Interestingly, the critical evaluation by Cole and Curnow (1973) found that the 

robustness assumption is wrong. They found  parameters indicating that the model 

be hav ior still fitted the period 1900–1970, but avoided the catastrophe, mainly by 

directing a higher fraction of capital into food production and raising the rate of 

pro gress from 1  percent to 2  percent.

42.  In fact, the only real- world data that went into Forrester’s study  were about 

population size. The LtG took in more  actual data.

43.  See also Forrester (1971, ix, or 1969, princi ple 3.2–1) on model validity. LtG fol-

lowed a similar line of argument (see Meadows et al. 1972, 20–21).

44.  When considering the two camps, we follow Jenny Andersson’s work (2012; 

2018) on futurism. She identifies the first camp as “futurology” and contrasts it with 

a more utopian futurism. For the latter, she provides more examples such as Jungk 

and Galtung who founded “Mankind 2000” in 1968 with the purpose “to  free the 

 future from futurology” (Andersson 2012, 1423). However, Hartmann and Vogel 

Downloaded from http://direct.mit.edu/books/book-pdf/2369564/book_9780262379045.pdf by guest on 26 September 2024



226 Notes to Chapter 5

(2010, 16), who write about futurism in Germany, see a utopian futurism not in 

opposition to but as the forerunner to the Club of Rome study and the  later environ-

mental movement. Seefried (2015) stresses that the  future movement changed the 

attitude from enthusiasm to skepticism about the  future. She shows how dif fer ent 

approaches lead to significantly dif fer ent pictures of the  future, so that one should 

speak of “ futures” in the plural. However, her work does not reflect on the potential 

influences that the culture of prediction, including its technology and methodol-

ogy, had on thinking about the  future.

45.   Doing historical research about dif fer ent and changing conceptions of time and 

temporality has evolved into a prominent topic— see Hartog (2015) or Clark (2019) 

as examples. We follow Jenny Andersson’s suggestion (2018) of juxtaposing Arendt 

and Koselleck.

46.  Koselleck’s “ Futures Past” proj ect (2004) aims to determine concepts of  future 

held in the past.

Chapter 6

1.  The text itself goes back to a manuscript that Ann Johnson presented several 

times and also to dif fer ent audiences (historians,  philosophers, computer scientists). 

Characteristically for her,  these  presentations  were never identical but changed with 

their audience and with the pro gress made through discussions. Without doubt, her 

final version would have looked dif fer ent, been more elaborated, and also been more 

sophisticated than the pre sent text. I did not want to decide on its direction— and 

then an inevitably diminishing potential— but rather preferred to have this chapter 

documenting work in pro gress close to Ann’s original writing, even if this is far from 

what she would have counted as ripe for publication. I am grateful to Robert Mullen 

and Michael Stöltzner for valuable discussions on CFD.

2.  Readers interested in the history of computational methods might want to look 

at Ann Johnson’s account of the Finite Ele ment Method that developed and flour-

ished in an engineering context (Johnson 2004). It is a fine example of readability 

and scholarship.

3.  On model transfer and the interplay between maintaining identity and adapting 

to the situation, see the 2022/2023 topical issue of Synthese, edited by Chia- Hua Lin 

and Paul Humphreys.

4.  Other candidates for comparison include Ursula Klein’s “paper tools” (1999) and 

Andrew Warwick’s “theoretical technology” (1992).

5.  Kaiser’s motivation for the title of his book Drawing Theories Apart was to contrast 

it with Latour’s Drawing  Things Together (1990).

6.  Patrick Roache’s (1982) book on CFD is an example.
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7.  Our historical approach is part of an emerging interest in code and software stud-

ies. This interest encompasses very dif fer ent directions from work close to computer 

science— such as in Cynthia Rudin’s Interpretable Machine Learning Lab (Duke 

University, North Carolina) or Katharina Zweig’s Algorithm Accountability Lab 

(Kaiserslautern, Germany)—to work related to science studies— such as in Gabriele 

Gramelsberger’s Computational Science Studies Lab (Aachen, Germany)— and to 

work related to  political writing— such as in Mark Marino’s Humanities and Critical 

Code Studies Lab (USC Dornsife, California). The obvious preference for the title 

“Lab” might perhaps indicate that the actors see themselves as making advances 

into yet uncharted territory.

8.  Most of them make an appearance in chapter 2 in the context of ballistics.

9.  See NACA report 1381, by Ames researchers Allen and Eggers (1958).

10.  See the classic textbook by Liepmann and Roshko (1957), who mention the 

prob lem as one that cannot be predicted theoretically (5). It may be worth noting 

that shortly  after this handover, Ames acquired a computer and eventually became 

NASA’s high- end computing fa cil i ty. See the Ames history by Bugos (2014).

11.  His first name is alternatively spelled Francis. Harlow was the leader of the fluid 

dynamics group at Los Alamos from 1959 onward. At first, he worked on a room- 

sized IBM 701 mainframe computer (for more details, see Harlow’s review [2004]).

12.  The simultaneous development of finite ele ment analy sis shows that this strat-

egy was common at the time (Johnson 2004).

13.  Runchal argues in his recollection (2009) that Spalding created the practice of 

CFD as an engineering tool.

Chapter 7

1.  The history of probability casts light on how science and society, in mutual inter-

relation, have developed ways to deal with uncertainties ranging from strategies 

in games to the prices of annuities. Whereas predicting the death of an individual 

might require divine foresight, estimating the death rate in a large population can 

get by with profane data. The historical and philosophical accounts by Daston 

(1988), Hacking (1990), and Porter (1995) cover the seventeenth to nineteenth cen-

turies in admirably sophisticated ways.

2.  The Stanford Encyclopedia of Philosophy has entries on the philosophy of statis-

tics (Romeijn 2023) and a separate one on Bayesian epistemology (Talbott 2016). 

Taken together,  these provide a guide to the large body of philosophical lit er a ture 

on Bayesianism.

3.  This rule follows from the definition of conditional probabilities and is accepted 

unquestionably across all camps.
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4.  A sample of standard accounts from both sides of the Bayesian versus classical 

divide is Earman (1992), Howson and Urbach (1993), and Mayo and Spanos (2009). 

Hacking (2001) provides an accessible introduction. I openly admit that the picture 

I paint does not match the complexity of extant terminology in which subjectivism 

is pitted against objectivism, frequentist accounts of probability against subjective 

ones, and so forth.

5.  Trying to keep  things  simple, I have glossed over internal differentiations of 

Bayesians. Neal’s (1998) verdict that “ there is (in theory) just one correct prior” 

might be controversial among adherents of Bayesianism. Corfield and Williamson 

(2001), for instance, discern subjective priors from objective (pluralist, logical, 

empirical) ones that, however, add further requirements for being rational while 

maintaining the princi ple.

6.  On  these differences, see, for instance, Lenhard (2006).

7.  Bayes, for instance, had presented an example in which he did not know about 

priors and assumed equal distribution among possibilities. Neyman considered this 

step illegitimate.

8.  Bayesians, in turn, would typically object that such agnosticism ignores relevant 

knowledge that actually is available.

9.  McGrayne’s book is about the eventual success of Bayesian approaches, so the 

quote does not reflect a bias against Bayesianism.

10.  This figure resembles the one included in chapter 4 on the rise of density func-

tional methods. Both depict a 1990s turn.

11.   There are also some areas of statistical work that are closely connected to Bayes-

ian methodology. One example would be causal analy sis and Bayesian nets, a field 

following the lead of Judea Pearl (cf. Pearl 1995; or Williamson 2005). At pre sent, it 

is a subfield of artificial intelligence and also philosophy of science. The flourish-

ing of examples of this sort is not included in figure 7.1, which is already dramatic 

enough to motivate my analy sis.

12.  Zellner (1988) and Howson and Urbach (1993, 1st ed. 1989) argue for the supe-

rior rationality of Bayesianism in de pen dently of computational methods. Hence, 

they cannot account for the timeline of the upswing (except that it had to happen 

sometime).

13.  Similar quotes abound. We picked this quote from McGrayne’s book  because of 

its atmospheric qualities.  Here are two alternative quotes: “In fact, it may be argued 

that the main reason that the Bayesian approach to statistics has gained ground 

compared to classical (frequentist) statistics is that MCMC methods have provided 

the computational tool that makes the approach feasible in practice” (Häggström 

2002, 47). The probability theorist  here agrees with statisticians: “A principal reason 
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for the ongoing expansion in the Bayes and EB [empirical Bayes, jl] statistical 

presence is of course the corresponding expansion in readily- available computing 

power, and the simultaneous development in Markov chain Monte Carlo (MCMC) 

methods and software for harnessing it” (Carlin and Louis 2000, xiii).

14.  For a short discussion on the form, beauty, and creation of Norway, see Adams 

(1979).

15.  A third condition— that this should be carried out in your friend’s apart-

ment rather than your own—is of merely aesthetical concern and mathematically 

irrelevant.

16.  The term “evaluation of integral” more aptly describes the point than “numeri-

cal integration.”

17.  We use the notion of location that suggests a geo graph i cal picture. Using the 

term state would be less intuitive but more apt to the generality of MCMC methods.

18.  We greatly simplify  matters in this discussion. Questions regarding how the 

space is defined or which technical conditions have to be satisfied are not impor tant 

for the illustrative task we are pursuing  here.

19.  Persi Diaconis (2009), a leading expert on MCMC, describes the jaw- dropping 

surprise when he first saw how MCMC solved this task. R. I. G. Hughes (1999) gives 

a good account of the Ising model in the context of modeling and simulation.

20.  Titterington (2004, 192) makes a case about a “Bayesian computational revolu-

tion”; Smith and Roberts (1993, 4) make a similar case.

21.  MCMC is not necessarily Bayesian, but protagonists of Bayesian approaches  were 

often developing MCMC methods to make Bayes’s rule more relevant to practice.

22.  Work on the Gibbs sampler started with Geman and Geman (1984) and gained 

popularity rapidly  after the landmark paper of Gelfand and Smith (1990). The hit- 

and- run algorithm is related to the older Metropolis– Hastings and was proposed by 

Bélisle et al. (1993) and Chen and Schmeiser (1996). Other MCMC methods show 

similar timelines.

23.  McGrayne (2011) tells the story in a vivid way on pp. 218–222. “The minute 

Gelfand saw the Gemans’ paper, the pieces came together: Bayes, Gibbs sampling, 

Markov chain, and iterations” (221).

24.   Philosophers of science have argued that computer simulation changes mathe-

matics  because simulation enlarges the realm of tractability (see, e.g., Humphreys 

[2004]). Regarding iteration, this is certainly correct. From this perspective, MCMC 

is a way to utilize the new tractability for prob lems of modeling.

25.  We owe this formulation to an anonymous reviewer who helpfully inquired 

about senses of exploration.
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26.  This is very similar to the  process of  parameter adaptation of density functional 

theory; see chapter 4.

27.  Consider the chapter by Datta and Sweeting (2005) on matching priors that are 

used to adjust priors so that the posterior distribution has the desired properties. 

Instances such as this abound— they are unavoidable when working in an iterative– 

exploratory mode.

28.  The monographs by Levin et al. (2009) and Aldous and Fill (2002) document the 

settled state of the art; Diaconis (2013) provides an outlook on current pro gress and 

challenges.

29.  Lunn et al. (2000) is the standard reference for WinBUGS.

30.  See Lunn et al. (2009) and, for very brief historical remarks, the official website 

openbugs . net.

31.  Other  popular software includes JAGS (Just Another Gibbs Sampler), Stan 

(developed at Columbia University), MCMCpack, bayesm, or the SAS MCMC. Their 

differences are of no concern  here.

32.  To do justice to the full richness of Bayesian approaches, it would be necessary, 

as noted previously, to include approaches such as “objective” and “evidentialist” 

Bayes. Instead of entering a more detailed appraisal (see Romeijn [2023] and Talbott 

[2016]), this paper prefers a simplistic approach to Bayesianism and fully concen-

trates on the computational perspective.

33.  Efron is famous for the bootstrap method that works in a frequentist guise. 

Therefore, he is presumably a significant witness in  favor of Bayesian approaches. 

Moreover, he has repeatedly made claims that statistical inference has been trans-

formed through computer use (explained in book length in Efron and Hastie [2016]).

34.  Gill (2008) also  favors “ecumenism.”

35.  Greenland further acknowledges that this theme is not new but also has been 

brought up repeatedly by Good (1983); Diaconis and Freedman (1986), which 

includes a discussion; and Samaniego and Reneau (1994).

36.  This capability is based heavi ly on adaptable  parameters, especially on priors 

that can be changed to increase the ability of a model to mimic the data— quite in 

line with our prior analy sis of MCMC.

Chapter 8

This chapter was written jointly with Hans Hasse, head of the Laboratory of Engi-

neering Thermodynamics at RPTU Kaiserslautern, Germany. This collaboration 

is itself a methodological experiment that provides access to scientific practice 

is an unusual way. And it was a highly enjoyable experience. As a consequence, 
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the pre sent chapter differs from the previous ones in that it pursues a systematic 

argumentation that is oriented more  toward scientific and engineering practice 

and less  toward history. This chapter is a revised and adapted version of Hasse and 

Lenhard (2017).

1.  Rosen (2012) tells an engaging “Story of Steam, Industry and Invention” in  great 

detail. In general, the history of the steam engine is so famous that we forego further 

references.

2.  About twenty years  after Clapeyron, Krönig, and Clausius derived the ideal gas 

law from kinetic theory.

3.  A brief comment on terminology: Speaking about the “adjustment” of  parameters 

invokes a field of similar terms with (only) slightly differing connotations. “Calibra-

tion,” for instance, is used in the context of  measuring instruments. Hence, talking 

about calibration of  parameters makes models look a bit like precision instruments. 

“Tuning,” on the other hand, has a slightly pejorative meaning, though it is used in 

some areas of science as the standard term. We chose “adjusting”  because it seems 

to be neutral and does not appear to be a good or bad  thing from the start— though 

this is not to claim that the pre sent terminology is without alternative.

4.  The claim about prediction and the role of adjustable  parameters in the 

exploratory– iterative culture of prediction echoes, and thus vindicates, the findings 

in chapters 4 and 7.

5.  Hasse and Lenhard (2017) therefore call adjustable  parameters “boon and bane.”

6.  Although we cannot avoid discussing thermodynamic engineering, we  shall do 

our best to avoid technicalities.

7.  This statement mirrors our findings in chapter 4 almost verbatim.

8.  The Web of Science has a system of disciplinary categorization. We made the follow-

ing choice: if for one par tic u lar journal, one of the categories includes “engineering,” 

the journal has ties to engineering.  Because we limit our conclusions from bibliometric 

data to the crudest ones, such a simplistic choice is hopefully not invalidating.

9.  The notion of models is a prominent issue in both history and philosophy of 

science; see de Chadarevian and Hopwood (2004), Lenhard (2019), Morgan and 

Morrison (1999), Morrison (2015), and Wise (2004), to name but a few references.

10.  It coincides with other schemes of modeling such as R.  I.  G. Hughes’s DDI 

(1997) account.

11.  The notion of vapor pressure curve is already theory laden. We keep it  simple 

and leave the background theory out of figure 1.

12.  When addressing the intricate questions about correspondence and repre sen ta-

tion, we refer to Weisberg’s (2013) work on a taxonomy of the relationships between 

model and target system.
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13.  Mark Bedau (1997; 2002) has highlighted that some properties can be known 

only by actually conducting the computational  process of a simulation, and he has 

aptly called  these “weakly emergent.”

14.  The two quantities that are compared do not need to be scalar quantities. They 

may have many entries or be, for example, trajectories over time.  There are also 

many ways of carry ing out the comparison.

15.  The cooperation becomes even more entangled in  those situations in which the 

 measured quantities themselves are partly determined with the help of simulation 

or in cases in which the data used for the comparison come not only from classical 

experiments but also from other types of simulation.

16.  Modifying the functional structure of the model is another option. Sometimes 

such modification can be interpreted as  parameter adjustment (and vice versa).

17.  See Oberkampf and Roy (2010, sect. 13.5.1) for a systematic proposal on how 

 parameters influence the validation of simulations from an engineering perspective. 

Nonetheless, using mesh- size refinement can be a sound practice when an explicit 

estimation of errors is available.

18.  Cf. Schappals et al. (2017) for the case of molecular simulation.

19.  The issue of statistical (over)fitting is arguably an exception; see, for example, 

Kieseppä (1997).

20.   There is a longstanding debate in philosophy of science about what ad hoc 

hypotheses are and what status they have (see, e.g., Grünbaum 1976; Leplin 1975).

Chapter 9

1.  Cf. also Lenhard (2019) who applies the term styles of reasoning (referring to 

Hacking 1982) to shed light on computer simulation.

2.  Whereas the story about the evolution of technology has been told, what we 

are highlighting is the coevolution of technology, epistemology, and institutional 

 organization in the mainframe iterative– numerical culture of prediction.

3.  One model for this kind of non- eliminative development is that proposed by 

Daston and Galison (2007) in their book on objectivity. They discern dif fer ent 

modes of objectivity in which a new mode does not eliminate the older ones but 

adds a new possibility and enriches the picture.

4.  Prediction has become a buzz word in recent reflections on machine learning, 

with Agrawal et al.’s Prediction Machines (2018) being just one instance.

5.  The number of adjustable  parameters is increasing rapidly in recent years. In 2022, 

Chat- GPT, a flagship of ANN use, worked with billions of adjustable  parameters. 
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Curiously, this number has reversed its standing. In  earlier times, such  parameters 

indicated potential weaknesses and shortcomings. Hence, using a small number of 

adjustable  parameters counted as sign of quality.

6.  One can argue that speaking of learning is misleading  because learning is among 

 those actions that computers cannot do; or this is how the likes of Dreyfus (1972) 

put it in their controversial discussions over artificial intelligence.

7.  We omit all the technical details  because they do not  matter  here. Two informed 

and critical outlooks on AI that can be highly recommended are Smith (2019) and 

Russell (2019).

8.   There is a controversial discussion in the community on  whether and how the 

adjusted  parameters induce repre sen ta tion in some way.

9.  The obvious exception being the servers of the software  giants.

10.  Broad and controversial discussions around repre sen ta tion in philosophy of sci-

ence actively engage in trying to pin down what it is that must be right.

11.  Admittedly, experts with  these tools usually develop standards of what counts 

as transparent that do not always match  those developed by other persons.

12.  The allegedly pure prediction culture is also a hybrid  because it draws on data 

that are deeply entrenched into culture such as labeled pictures, translated texts, 

and so forth.
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