Skip navigation
DSpace logo
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Issue Date
    • Author
    • Title
    • Subject
  • Sign on to:
    • My DSpace
    • Receive email
      updates
    • Edit Profile

  1. About
  2. Faculty & Student Research Papers
  3. VSE&T
Please use this identifier to cite or link to this item: http://localhost:8080/xmlui/handle/123456789/1955
Title: A swarm-optimization based fusion model of sentiment analysis for cryptocurrency price prediction
Authors: Tiwari, Dimple
Issue Date: 2025
Publisher: Scientific Reports (Open Access)
Abstract: Social media has attracted society for decades due to its reciprocal and real-life nature. It influenced almost all societal entities, including governments, academics, industries, health, and finance. The Social Network generates unstructured information about brands, political issues, cryptocurrencies, and global pandemics. The major challenge is translating this information into reliable consumer opinion as it contains jargon, abbreviations, and reference links with previous content. Several ensemble models have been introduced to mine the enormous noisy range on social platforms. Still, these need more predictability and are the less-generalized models for social sentiment analysis. Hence, an optimized stacked-Long Short-Term Memory (LSTM)-based sentiment analysis model is proposed for cryptocurrency price prediction. The model can find the relationships of latent contextual semantic and co-occurrence statistical features between phrases in a sentence. Additionally, the proposed model comprises multiple LSTM layers, and each layer is optimized with Particle Swarm Optimization (PSO) technique to learn based on the best hyperparameters. The model’s efficiency is measured in terms of confusion matrix, weighted f1-Score, weighted Precision, weighted Recall, training accuracy, and testing accuracy. Moreover, comparative results reveal that an optimized stacked LSTM outperformed. The objective of the proposed model is to introduce a benchmark sentiment analysis model for predicting cryptocurrency prices, which will be helpful for other societal sentiment predictions. A pretty significant thing for this presented model is that it can process multilingual and cross-platform social media data. This could be achieved by combining LSTMs with multilingual embeddings, fine-tuning, and effective preprocessing for providing accurate and robust sentiment analysis across diverse languages, platforms, and communication styles.
URI: http://localhost:8080/xmlui/handle/123456789/1955
Appears in Collections:VSE&T

Files in This Item:
File Description SizeFormat 
s41598-025-92563-y.pdf2.31 MBAdobe PDFView/Open
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Customized & Implemented by - eLibSol India